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Abstract

We investigate how lumber futures returns are affected by monthly housing starts an-
nouncements and analyze the dependence of the response on lumber inventories and
time to delivery. We develop a Generalized Least Squares method to jointly analyze
simultaneously traded contracts. We find that the unanticipated component of hous-
ing starts announcements increases returns on lumber futures contracts. Further, the
effects of housing starts shocks decline with lumber inventories and time to delivery.
Futures contracts up to four months out respond by a larger amount to the shocks
than do more distant ones. For more distant delivery horizons, the effect of housing

starts shocks declines linearly with time to delivery.
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1. Introduction

Two concepts are key to understanding commodity futures price formation. One is market
efficiency, which explains how well-functioning markets process information. The other is
the theory of storage, which explains price dynamics when the commodity in question is
storable.

According to the efficient markets hypothesis, asset prices move only when new infor-
mation arrives to the market. Following the seminal paper by Fama, Fisher, Jensen, and
Roll (1969) many economists have conducted event studies to measure the impact and in-
formation content of economic announcements or events and the speed of adjustment of
prices following new information. Binder (1998) reviews the event study methodologies and
previous work on this topic.

According to the theory of storage, the discounted expected price of a storable commodity
should exceed its spot price by the cost of storage. See, for example, Brennan (1958), Telser
(1978), Scheinkman and Schechtman (1983), Thurman (1988), and Williams and Wright
(1991). For storable commodities, and unlike the situation in financial asset markets, physical
inventories serve to stabilize price movements in response to shocks. Thus, the return from
holding commodities and the variance of the return should depend on the level of physical
inventories. In the physical asset markets represented by commodity futures, we expect
smaller price responses to demand or supply shocks during high inventory regimes.

The implications of market efficiency and the theory of storage can be tested in commod-
ity futures markets and futures price movements understood in their context. We empirically

analyze the market for lumber futures contracts, both to test the implications of received



theories and to contribute to an understanding of an important natural resource market.

Most past analysis of futures price movements (with the notable exception of Smith’s
analysis of corn futures (2005)) splices together time series of prices on multiple futures
contracts—with different delivery dates—and studies the behavior of the resulting single
time series. See, for example, Rucker, Thurman, and Yoder (2005) for an analysis of lumber
futures. As Smith points out, this underutilizes the available information from futures ex-
changes, on which several contracts trade simultaneously. Multiple contracts provide more
information about the market in consideration. Consequently, using all traded contracts
increases statistical efficiency. For this purpose, and in the spirit of Smith’s partially over-
lapping time series (POTS) model, we develop a Generalized Least Squares (GLS) method to
jointly analyze all traded contracts for lumber. Our methods and results differ from Smith’s
but there are common themes. We compare and contrast them in the Conclusions section
(see footnote 2) after presenting our results.

Our empirics measure the effects of U.S. Census Bureau housing starts announcements,
one of the key indicators of the demand side of lumber markets, and their dependence on
physical lumber inventories and time remaining to contract expiration. We analyze daily
lumber futures prices from the Chicago Mercantile Exchange in Chicago, from 1992 to 2005,
and define a housing starts shock as the difference between the released figure and a survey
measure of the market’s expectation. When there is an observable information flow, such as
a housing starts announcement, lumber futures prices should move only if the announcement
contains new information. The effect of the news component of housing starts announce-
ments, or housing starts shock, should also depend on physical lumber inventories —see the

theory of storage— and time remaining to contract expiration, due to the difference between



contract delivery time and the perceived time horizon of the shock.

We find that housing starts announcements contain new information: the unexpected
component of housing starts announcements increases expected returns on lumber futures
contracts on announcement days. Further, the effects of housing starts shocks decline with
inventories, as predicted by the theory of storage. We also find that housing starts shocks
have effects that vary across delivery horizon. One to four-month out contracts respond
by a larger magnitude to housing starts shocks than do five to eight-month out contracts,
reflecting a greater elasticity of supply and demand response at more distant horizons. The
response to news does not differ among the nearby contracts, that is, the housing starts
shocks have the same impact on return for one to four-month out contracts. However, the
response to news does vary among more distant contracts. We find that among five to
eight-month out contracts, housing starts effects are more pronounced for contracts with the

shortest time to delivery, and less pronounced for the ones with longest time to delivery.

2. Theoretical Implications

The efficient market hypothesis asserts that asset prices move in response to an announce-
ment only if the announcement conveys new information. In most past studies, the price

change of an asset is modeled as a function of the unexpected part of the announcement:

InP,—InP,_1 =a+bA; + &,

where In P, is the natural logarithm of the asset price in question on day t and A; is the

unexpected part of the announcement made on day ¢t. The theory suggests that b #£ 0, that



is, the return on an asset is related to the news effect of an announcement.

The theory of storage suggests that the return from holding a commodity should depend
on the level of physical inventories. Because inventories can be used to stabilize a supply
or demand shock, we should expect to see a smaller price response due to a shock when
inventories are large. Justification for this result can be seen from the theory developed in
Thurman (1988), which is summarized graphically in figure 1.

Equilibrium in the markets for physical inventories is characterized by a Hotelling-like
equation where the marginal return to holding inventories is just balanced by its marginal
cost. Purchasing a unit of the commodity in the current period costs P;, the current price.
Holding and selling in the next period gives an expected return of E(Py1)/(14r)—c—CY (S,),
where r and ¢ are the (assumed constant) interest rate and cost of storage, respectively
and CY'(S;) is the marginal convenience yield enjoyed by stockholders. Convenience yield is
large when aggregate inventories are small and declines with aggregate inventories. There are
various interpretations of convenience yield, which are empirically equivalent for our purposes
(see Brennan, Williams, and Wright (1997)). In equilibrium, then, inventory equilibrium
requires:

P, = E(Py1)/(1+7) —c— CY(S,). (1)

The right-hand side of equation (1) can be interpreted as a demand for inventories, Sy,
to carry out of period t. It is decreasing and convex in Sy, as depicted in figure 1(a). This
decreasing and convex relationship is also shown in the three-period simulation study of
Karali (2007), which is based on the analytical solutions of optimal storage rules.

Flow equilibrium derives from the material balance equation and the excess supply of



the commodity:

Sy = Si_1+S(P) — D(F,)

=51+ XS(P), (2)

where S(P;) and D(F;) are the flow supply and demand functions for the commodity, X S(P;)
is the excess supply function, and S;_; is the level of inventories inherited from period ¢ — 1.
The flow supply curve is upward sloping in P,—S; space because excess supply is an increasing
function of price. Flow supply shifts rightward for increases in P,_;. Equilibrium price and
inventories are determined by the intersection of the inventory demand and flow supply
curves in figure 1(a).

Next consider the price effects observed in response to commodity supply and demand
shocks. Refer to figure 1(b). There, the uppermost two supply functions are both conditioned
on an initial inventory level of Sy ;. The top supply curve is subject to a negative excess
supply shock of € and the one immediately below it is subject to a positive excess supply
shock of the same size. The difference between the price responses from the positive and
negative shocks (as, say, forecast in the futures market) can be seen from the vertical distance
between the two implied equilibrium prices.

The bottommost two supply functions replicate the excess supply shock experiment but
for a higher beginning level of inventories, S! ;. Because the demand for inventories is
flatter in the region of the two equilibria for the second experiment, the implied difference
in prices is smaller. When inventories are small, the rapidly declining marginal value of

inventories, coupled with the large changes in expected future price with respect to changes



in inventories, combine to make price changes large and inventory changes small. When
inventories are large, more of the equilibrium adjustment is accommodated by inventory
changes.

Beyond the effects of inventories, the futures prices response will depend upon the time
between when the shock is observed and when the futures contract matures. The price
response of a futures contract to a shock should be smaller when its delivery time is farther
away due to greater elasticity of supply and demand curves over longer runs. We generically

model these effects as:

ln Pt — ln Pt—]. = Qa —l— b(St, TTDt)At + Et,

where S; is the physical inventory level on day ¢, TT D, is the number of days remaining
to contract expiration on day t, and b(S;, TTD;) is a function of inventories and time to
delivery. For an announcement that naturally increases equilibrium commodity price, we

should expect to find:

3(lnPt —In Pt,l)/@At = b(St, TTDt) >0
82(11’1 Pt —1In ]Dt_l)/aAtaSt = ab(St, TTDt)/ﬁS't <0

O*(In P, —In P,_1)/0AOTTD, = 0b(S;, TTD,)/0TTD; < 0.



3. Econometric Methodology for Multiple Contracts

Time series of futures contracts partially overlap. As time passes, some contracts expire
and others begin trading. Figure 2 is a graphical depiction of overlapping futures contracts;
each line represents the trading life of a contract. On any given day, we observe price
data on multiple contracts. As an example, on September 15th 1992, the date that the
September 1992 contract expires, three other futures are traded and so quotes exist for four
contracts. As seen in the figure, no two contracts cover the same period. To combine all
of these contracts, and account for contemporaneous correlations among the observations
from the same trading day, we develop a GLS method, which is explained in detail in the
appendix. The method corrects for contemporaneous correlation among contracts and also

for delivery-horizon-specific heteroskedasticity.

4. Empirical Measures of Returns, Inventories, Announcements,

and Market Expectations

4.a. Futures Returns

We analyze daily settlement prices of lumber futures from the Chicago Mercantile Exchange
(CME) in Chicago, from 1992 to 2005. Trading takes place on Monday through Friday
between 9:00 am and 1:05 pm (CT) in an open outcry trading pit. Lumber futures contracts
expire every two months and the delivery months are January, March, May, July, September,
and November. The last trading day for any contract is the last business day prior to the

sixteenth calendar day of the contract’s delivery month. A new contract is listed on the day



after the front month expires, and a total of seven contracts are listed at any point in time,
each with a different delivery date up to 14 months into the future. However, in the data
we analyze there are price observations on a maximum of five contracts on any given day.
Our sample period, in which total of 77 futures contracts are traded, covers the period from
July 14, 1992 to November 15, 2005. There are 170 observations for each contract, resulting
13,090 observations in total (see appendix for details). The prices of each of these futures

contracts are presented in figure 3.

4.b. Inventories

We employ inventory data from Monthly Wholesale Trade reports published by the U.S.
Census Bureau from January 1992 to December 2005. Because they are not seasonally
adjusted and stated in current dollars we convert inventory data into real dollar values by
using not seasonally adjusted monthly lumber Producer Price Index (PPI) published by the
Bureau of Labor Statistics. We interpolate the resulting monthly series, which are now in
1982 (PPT’s base year) dollars, by a cubic spline method to obtain daily inventories. Figure

4 presents these daily inventory data.

4.c. Housing Starts Announcements

For announcement data we use housing starts estimates released by the U.S. Census Bu-
reau in monthly New Residential Construction reports along with the estimates of building
permits and housing completions. Housing starts is a measure of the initial construction

of single-family and multi-family residential units. The start of construction is defined as



the beginning of excavation for the footings or foundation of a building. New Residential
Construction reports are released between the 15th and 20th of each month at 8:30 am (ET).
Thus, the lumber futures market is closed when the announcement is made and opens one-
and-a-half hours later. The announcements contain statistics for the previous month. For
instance, the report released on August 16, 2005 contains information during the month of
July 2005. Market participants know the release date and time of the current reports in ad-
vance because these are always listed in the prior release. We consider the news component
of the announcements of housing starts estimates by measuring the difference between the
actual numbers in the releases and the numbers expected by the market. The selection of

market expectation data is discussed in the following section.

4.d. Market Expectations of Housing Starts

For market expectations data, we construct three different forecast series and then compare
their forecasting accuracy by Root Mean Square Error (RMSE) measure. Money Market
Services (MMS) surveys are conducted every Friday unless it is a holiday. Survey participants
include economists from major financial institutions and universities, and are asked to predict
the economic variables that will be released during the following week. Survey results are
available commercially before the announcements. For more detailed information on MMS
survey data, see Aggarwal, Mohanty, and Song (1995).

The first forecast series we consider is the median response of the MMS surveys. For
the second forecast series, we assume that the best forecast of the housing starts that will

be released in current month is the actual housing starts number released in the previous
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month. So, the forecast is the housing starts lagged by one month. The third forecast series
is constructed by analyzing the released housing starts series through standard time series
techniques. This analysis suggests a moving average of order one for the first difference
of housing starts, which implies an exponential smoothing forecast. Therefore, the third
forecast series takes the following ARIMA(0,1,1) form: HS,, = HSp 1 — 0.57177(H Sp—1 —
f[g'm,l), where HS,, is the released housing starts in month m, and H.S,,_; is the previous
month’s released housing starts.

Table 1(a) shows summary statistics of housing starts shocks, which are computed as
the difference between the actual number and the forecasted number. In our sample period,
there were 159 monthly announcements of housing starts. As seen in the table, the smallest
RMSE is obtained from the forecast errors of the MMS survey. These median responses
of market expectation data perform better than the other two forecast series in predicting
housing starts.

The rationality of the MMS survey data has been widely studied in the literature. Studies
that support the unbiasedness and efficiency of the MMS survey data include Pearce and
Roley (1985), Pearce (1987), and Balduzzi, Elton, and Green (2001). To further analyze the
performance of these survey data in forecasting housing starts announcements, the following

regression is performed:

lnFt—lnE_l :ﬁ(HSt—MMSt>+’7MMSt+5(HSt_1 —MMSt_1)+€t

= ﬁht + /}/MMSt + 6ht_1 =+ Et, (3)

where In F} is the natural logarithm of futures contract on day ¢, HS; is the released housing
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starts on day t and M M.S; is the median response of the MMS survey for housing starts on
day t. The variables HS; and M M S; are defined as zero on nonannouncement days. Efficient
market hypothesis states that 3 should be nonzero, meaning that unanticipated information
should cause a price movement. Further, v and ¢ should be zero, implying that anticipated
part of an announcement and the past forecast error should not cause a price movement.
The results from equation (3) are presented in table 2(a). As seen, the estimate for
is positive and statistically significant, showing that the unexpected part of housing starts
announcements is positively related to daily return on lumber futures contracts. The estimate
for ¢ is negative and statistically insignificant. This shows that yesterday’s forecast error
does not affect today’s price change. The negative and significant estimate of v is somewhat
puzzling. It seems that the expected component of the announcements has an explanatory
power in explaining daily price changes. However, the magnitude of the coefficient is quite
small compared to the magnitude of the shock coefficient (approximately 39 times smaller).
The table also gives the F statistic and its p-value for the null hypothesis that both v and
are zero. We do not reject the null hypothesis with a p-value of 0.13, which is slightly higher
than conventional 10% level due to the significant effect of 7. One possible reason that we
observe a significant estimate for the market expectations might be the timing difference
between the realization of survey results and the announcements.

The unbiasedness of the MMS data is tested in the following model:

HS,,=a+bMMS,, + e, (4)

where H S, is the released number of housing starts in month m and M M.S,, is the median
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response of the MMS survey forecast for housing starts that will be released in month m.
Unbiased expectations imply that a = 0 and b = 1. Results given in table 2(b) show that
the intercept estimate is not statistically different from zero, with a t-statistics of 0.87. Also,
the coefficient estimate for the MMS forecasts, b, is significantly different from zero but not
significantly different from one. The F-statistic of the joint test of unbiasedness is 2.02 with
a p-value of 0.14. Thus, we do not reject the null hypothesis and conclude that the MMS
forecasts are unbiased estimators of housing starts.

Another issue that has attracted economists’ attention is the possibility of an asymmetric
response to positive and negative shocks. See, for example, Li and Engle (1998), Andersen,
Bollerslev, Diebold, and Vega (2003), Pearce and Solakoglu (2006). We test whether or not
there is asymmetric response to positive and negative housing starts shocks by estimating
the following:

InF, —InFyoy =P py s by + 9 g * by + 2, (5)

where p; is a dummy variable that takes the value of one if the housing starts shock on day
t, hy, is positive, and zero otherwise. Similarly, n; is a dummy variable that takes the value
of one if housing starts shock on day t, hy, is negative, and zero otherwise. Table 2(c) shows
that both positive and negative shock coefficients are positive and statistically significant.
The null hypothesis that the response to positive and negative shocks is the same is not
rejected and has a p-value of 0.49. We conclude that lumber futures contracts respond by a
similar magnitude to positive and negative housing starts shocks.!

Based on these results, we use the MMS survey data in the rest of the empirics to represent

!The equations (3) and (5) were estimated with intercepts as well. The intercept estimates were insignif-
icant and therefore dropped from the equations.
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expected housing starts by market participants. Figure 5(a) shows the actual housing starts
and the MMS survey forecasts. Figure 5(b) shows the forecast errors, or news component of
announcements, which are computed as the difference between the actual number and the

forecasted number.

5. Housing Market Shocks and Expected Return: Measures of the

Dependence on Time-to-Delivery and Inventories

In this section we explore the price effects of the unexpected component of housing starts
announcements and their dependence on inventories and time to delivery. Housing starts
shocks are computed as the difference between the released housing starts number and the
median response of the Money Market Services (MMS) survey. These announcements are
made between the 15th and 20th of each month and lumber contracts expire on the last
business day prior to the 16th calendar day of the contract’s delivery month. Therefore
when the announcement is made in a contract’s delivery month, that month’s contract has
already expired. Because lumber contracts expire every two months and announcements are
made every month, the nearest contract on any announcement day will be either one month
out or two months out. As a result, the distribution of the time to delivery (TTD) variable
is such that it does not take values close to zero on announcement days. Figure 6 shows
the distribution of TTD on announcement days. As the figure shows, there are eight TTD
clusters on announcement days.

The clusters in figure 6 will be important to our empirical specifications. Figure 7 gives a

graphical explanation of the clusters of the T'TD variable on announcement days. In the data,
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at most four contracts were traded on announcement days. When an announcement is made
in a delivery month, TTD takes values near 40, 80, 120, and 160 for the four contract traded.
Because the contracts expire before the announcements, the nearest delivery contract is a
two-month-out contract, and the next contract is four months out. When the announcement
is not made in a delivery month, then TTD takes values near 20, 60, 100, and 140. So, the
first two nearby contracts are one-month and three-month out contracts. Therefore, on any
announcement day, the contracts that are closest to delivery will have TTD values near 20,

40, 60, and 80.
5.a. A Nonparametric Model of Time-to-Delivery Effects

Given the data structure just noted, a reasonable model for the conditional mean of lumber
futures returns might include some function of inventories and a linear combination of eight
dummy variables for the TTD categories, all interacted with housing starts shocks. Such a

specification would look like

lnﬂ —In Ft—l = BSt * ht + blTl,t * ht + bQTQ,t * ht + b3T37t * ht + b4T47t * ht
(6)
+05T5; % hy + T * hy + b7 17, % hy + bgTgy * hy + &4,
where In F; is the natural logarithm of the futures price on day ¢, S; is the lumber inventory

level on day ¢, and h; is the difference between released housing starts and the market

expectation on day t. The dummy variables are defined as follows:
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1, f15<TTD, <21 1, if31<TTD; <42

0, otherwise 0, otherwise

1, if57<TTD, <64 1, if 75 <TTD, <86

T3 = Ty =
0, otherwise 0, otherwise

1, if98 <TTD; <106 1, if117<TTD; <128
Tt =

0, otherwise 0, otherwise

1, if140 <TTD; <150 1, if158 <TTD; <169
T7: = Ty = )

) )

0, otherwise 0, otherwise

where TT D, is the number of days remaining to delivery on day t. The dummy variables are
constructed according to the minimum and maximum TTD observed on announcement days
for each one of eight T'TD categories. The h; variable is defined as zero on nonannouncement
days. Table 1(b) presents summary statistics of the key variables.

Estimates of specification (6) are presented in table 3(a). Both OLS and GLS estimates
of all dummy coefficients are positive and statistically significant. The GLS estimate of
B, which is the partial inventory effect of housing starts shocks, is negative and statistically

significant at the 10% level (one-tailed). This implies that as inventory levels become smaller,
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housing starts shocks affect expected return on lumber contracts by a larger amount. As
inventory levels increase, the effect of housing starts shocks on expected return is smaller.
To see the overall effect of housing starts shocks on expected return, one needs to compute
the derivative d(In F; — In F,_1)/0h, for each one of eight TTD categories and evaluate the
derivative at a particular value of inventories. Table 3(c) shows the marginal effects of housing
starts shocks computed by using the GLS estimates of parameters. The marginal effect of
housing starts shocks is positive for each TTD category in all cases. While these effects are
significant for medium and low levels of inventories, they are statistically insignificant when
the derivatives are evaluated at the maximum value of inventories.

Figure 8 shows predicted daily return from the table 3(a) GLS estimates for each TTD
category separately. The predicted returns are computed using the mean values of inventories
and housing starts shocks and so answer the following question: on a typical announcement
day, with inventories equal to their sample, how does expected return on a futures contract
vary with its time to delivery? From figure, it appears that after the first four categories
(TTD > 86), the effect of housing starts on the expected return on lumber futures contracts
starts to decline. The nearby contracts have a higher response to h; than do the distant ones
for a given shock and inventory level. This suggests a more parsimonious version of equation
(6), with a parametric dependence on TTD. This, in turn, suggests performing F-tests of
the equality of the parameters from equation (6). Table 3(b) shows such tests.

The hypothesis that all TTD dummy coefficients are zero is rejected at the 10% level
with GLS estimates. The F-statistic for the hypothesis that the average of the first four
TTD dummy coefficients is equal to the average of the last four dummy coefficients also

is rejected at the 10% level. Although the hypothesis of the equality of all eight dummy
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coefficients is not rejected with a p-value of 0.16, the equality of averages is rejected. The

clustered pattern of predicted price changes seen in figure 8 can be tested by the hypotheses:

The first null hypothesis, Hj, is not rejected with a p-value of 0.88. The second null hy-
pothesis, HZ, is also not rejected with a p-value of 0.80. Further, the joint test of these null
hypotheses is not rejected with a p-value of 0.67. Given these test results and the visual
pattern evident in figure 8, we define two dummy variables: one for the first four TTD
categories and one for the last four TTD categories.

To this end we define the following new model:

In E —In Ft—l = BSt * ht —+ b174T1747t * ht + b5,8T5,8,t * ht + Et, (7)

where Ty 4y = Th s +Toy + 154 + Ty and T58, = T54 + Ty + T4 + Tgy. In this model, the
effects of housing starts shocks are the same for the first four contracts and for the last four
contracts. However, the effects can change between the two groups.

Estimation results for equation (7) are given in table 4(a). Once again, we obtain neg-
ative estimates for B, and positive estimates for the dummy coefficients. The estimate of
B is statistically significant at the 10% level (one-tailed test). The estimates of by 4 and bs g
are also significant with t-values of 2.62 and 2.37. To see the overall marginal impact of

housing starts on expected return, the derivatives d(In F; — In F;_1)/0h; for both TTD cate-
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gories are computed with GLS estimates. These are presented in table 4(b). As before, the
marginal impact of housing starts is positive for each TTD category, however, insignificant
at the maximum value of inventories. The estimated d(In F} —In F;_;)/0h, for the first TTD
category (T4 = 1) is larger in all cases. This reflects that housing starts shocks have larger
impacts on nearby contracts than the distant ones. As evidenced by the sign of B, the effect
of housing starts shocks on expected return declines with inventories.

When we consider the GLS estimates and evaluate the marginal effect of housing starts
shocks at the mean value of inventories (second row of table 4(b)), a change in shocks from
their minimum value, -273,000 housing units, to their maximum value, 200,000 housing units,
causes a 3.6 percentage point increase in the expected returns of contracts that have 86 or
less days to delivery. The same change in shocks causes a 2.9 percentage point increase in the
expected returns of contracts that have 98 or more days to delivery. The respective increases
in the expected return with the minimum value of inventories are 4.7 and 4.0 percentage
points. These results show that supply and demand curves are inelastic in the short run, so
that housing starts shocks, a demand shock, have a larger price impact on nearby contracts.
On the other hand, supply and demand curves become more elastic in the long run, hence the
price impact of housing starts shocks is smaller for more distant contracts. Also note that,
as the theory of storage predicts, we obtain larger price response to shocks when inventories
are small.

The results of F-tests performed on parameter estimates from the model with two dummy
variables are given in the bottom part of table 4(a). The hypothesis that both dummy
coefficients are equal to zero is rejected. The equality of by 4 and bs g is also rejected with a
p-value of 0.01.

19



5.b. A Piecewise Linear Model of Time-to-Delivery Effects

The results in the previous section suggest that the effect of housing starts shocks on expected
return is different across contracts, and the effect declines with contract horizon.

To further analyze this time-to-delivery pattern we construct a new model that captures
the time-horizon effects discussed above with a piecewise linear spline function of time to

delivery. We define expected return as

E[hl Ft —1In Efl] = (A + BSt) * ht + g(TTDt) * ht, (8)

where g(TTD;) = (1 —dy) * (a +bTTDy) + dy * (c + eTTDy)

and d, = 1 it TTD; > T*, zero otherwise. A graphical depiction is given in figure 9. At T™,
a+bT™* = c+ eT*. So, we can solve for a and substitute in g(7'7'D;) to ensure that the
two linear pieces are connected at T™*. Solving for a gives us a = ¢+ (e — b)T*. When we

substitute the solution for a into the function g(7"7'D;), we obtain:

— c+b[(1 — d)(TTD, — T*)] + e[(1 — d)T* + d,TTD,].

Substituting this into equation (8) yields the new regression model:
IF, —InFyy = (A+ BS,) % hy + {c 4 B[(1— d)(TTD, — T%)]
Fel(l—d)T + dtTTDt]} « Iy
= (A4 c)hy+ BS;xhy + b(1 — d)(TTDy — T") * hy

+ 6[(1 — dt)T* + dtTTDt] * ht + &;.
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Given the results from the previous section, we set T* = 90 because this splits the eight
clusters of TTD variable observed on announcement days in half. Moreover, TT'D never
equals 90 on announcement days (see figure 6).

Regression results from the piecewise linear model are presented in table 5(a). The
estimates of A 4+ ¢ and b are positive but only the former is statistically significant. The
insignificance of b (the slope before 7%) is in accordance with what we expect. For contracts
that have less than 90 days to delivery, the effect of housing starts shocks does not change
with TTD. The four nearby contracts respond to shocks by similar amounts. On the other
hand, the estimate of e (the slope after T*) is negative and statistically significant. This
shows that when contracts have more than 90 days to delivery, the effect of housing starts
shocks decreases with TTD. Among these contracts, the one with nearest delivery is affected
by more than ones with more distant delivery. After some critical value of TTD, we observe a
declining impact of housing starts shocks with time to delivery. The estimate of B is negative
and statistically significant at the 10% level (one-tailed test). This confirms that the effect
of housing starts shocks on expected return declines with inventories. When inventories are
small, housing starts shocks have more impact on expected returns, whereas when inventories
are large, shocks have less impact on returns.

Interest centers on the overall impact of housing starts shocks on expected returns. Once
again, we need to compute the derivative d(In F; — In F;_1)/0h; and evaluate it at some
predetermined values of inventories and time to delivery. Table 5(b) shows the marginal
effects computed at the minimum, mean, and maximum value of inventories for the cases
when TTD takes its maximum value, the region beyond 7%, and its minimum value, the
region before T*, by using the GLS estimates. The second derivatives do not depend on any
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variable; they are simply the estimates of B, b, or e. We see that the expected return is
positively related to housing starts shocks in each case. Once again, this marginal effect is
insignificant at the maximum value of inventories. For the contracts that have more than
90 days to delivery, a change in the housing starts shocks from their minimum to maximum
value results in a 2.3 percentage point increase in the expected return when the derivative is
evaluated at the mean value of inventories. The same change in shocks causes a 3.5 percentage
point increase in the expected return for contracts that have less than 90 days to delivery.
When the derivative is evaluated at the minimum value of inventories, the respective changes
are 3.4 and 4.6 percentage points. The second derivative 9*(In F; — In F}_;)/0h;0S; is equal
to B. As discussed before, the effect of housing starts shocks on expected return decreases
with inventories. The second derivative 9?(In Fy — In Fy_1)/0h0TTD; is equal to b for the
values of TTD that are less than 90. As seen in the table, it is positive and insignificant.
The effect of housing starts shocks on expected return does not significantly change with
time to delivery for TT D < T*. The second derivative 9*(In F; —In F}_;)/0h;0TT D, is equal
to e for the values of TTD that are equal or greater than 90. The estimate of e is negative
and statistically significant. Therefore, the effect of housing starts shocks on expected return
declines with TTD for more distant contracts. The marginal effect of housing starts shocks,
O(In Fy — In F,_1)/0hy, is plotted against TTD in figure 10 using the GLS estimates and
evaluating the predicted effect at all sample points in the data.

The bottom part of table 5(a) gives results from the F-tests performed on parameter
estimates. The hypothesis of no TTD effect on housing starts shocks, b = e = 0, is rejected
with a p-value of 0.04. The hypothesis that the effect of housing starts shocks is the same

for both TTD categories, b = e, is rejected with a p-value of 0.10.
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6. Conclusions

The expected return on lumber futures is positively related to housing starts shocks. Hous-
ing starts convey important news to lumber markets. When market participants over- or
underestimate housing starts, these forecast errors result in a price movement. In this anal-
ysis, we conclude that the effect of announcements on daily returns declines with physical
inventories. As inventory levels become larger, these shocks cause a smaller change in return.
This provides empirical evidence for a central implication from the theory of storage. It is
the first such evidence, to our knowledge, that connects announcement effects in futures
markets with measured commodity inventories.

The dependence of the effect of housing starts shocks on time to delivery is analyzed in
different settings. All models we investigate lead to the conclusion that the effect of shocks is
not the same for all contracts, and what differs across contracts is their delivery horizon. The
most nearby (one to four-month out) contracts respond by a larger magnitude to housing
starts shocks than do the more distant (five to eight-month out) contracts, which we interpret
as reflecting a greater elasticity of supply and demand response at more distant horizons.
Further, the decline is found not to be linear. The response to news does not differ among
the nearby contracts (up to four months out), but does vary among more distant contracts.
Among contracts more than four months out, housing starts effects are more pronounced for
contracts with the shortest time to delivery, and less pronounced for those with longest time
to delivery. These results from the lumber market are quite similar to those found by Smith

in the corn market.?

20ur work is closely related in two ways to the work of Smith (2005) and his Partially Overlapping Time
Series (POTS) model. Methodologically, we and he develop econometric models that exploit the information
available from simultaneously traded futures contracts. Substantively, we both study the economics of futures
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Our results suggest that the information embodied in housing starts announcements is
short term. Other information sources may have different time profiles, suggesting further

research using multiple futures contracts to characterize the term structure of information.

price movements and how they are affected by time-to-delivery and physical inventories.

There are, however, important differences between his work and ours. Smith studies time series of futures
contract prices without reference to exogenous observables. He models unobservable information flows using
a purely time series methodology—a sophisticated factor analytic model, incorporating the Kalman filter
and cubic splines to specify the dependence of futures price movements on unobserved new- and old-crop
information shocks. GARCH effects are included as well. To estimate the model, he uses an approximate
EM algorithm in cooperation with more standard numerical methods to maximize the Gaussian likelihood
function. In contrast, we relate futures price movements to observed information flows—Housing Starts
announcements relative to survey forecasts of them—and condition the reaction to market news on observed
measures of physical inventories. Because our measures of news and inventories are observable we are
naturally led to a different empirical model, a Generalized Least Squares regression methodology based on
the unbalanced panel structure of futures contracts. Our method has some advantages in its transparency
and ready adaptability to other partially overlapping times series contexts with observable covariates.

With regards to economic results, the obvious contrast with Smith is that he studies corn and we study
lumber. But despite the difference in commodities, and far from taking POTS shots at Smith’s results, we
find that our empirical results are quite consistent with his. We estimate the effect of inventories on the
futures market’s response to information and confirm directly the indirect inference that Smith draws from
his time series factor model: that volatility (in our case, the size of the market response to news) is inversely
related to inventories. We also find that volatility increases as time to delivery approaches (the Samuelson
effect, also studied by Anderson and Danthine (1983), Anderson (1985), Milonas (1986), Leistikow (1989),
and Black and Tonks (2000)). Also similar to Smith’s findings, for contracts with more than about four
months to delivery volatility is roughly constant with respect to time to delivery. We find this result both
for observed announcement effects and for daily volatility due to unobserved factors.
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APPENDIX

A. Econometric Methodology for Multiple Contracts

To combine simultaneously traded contracts we choose futures contracts according to the
availability of lumber inventory data, which are available from January 1992 to December
2005. Therefore, we only consider contracts that started trading after January 31, 1992 and
ones that matured before December 31, 2005. This results in a sample period of July 14,
1992-November 15, 2005. Within this time interval there are 77 contracts. Because each
contract has a different number of active trading days, the maximum TTD varies somewhat
among contracts. For consistency, we trimmed the data set to include only those observations
for which TTD is equal to or less than 169, which is the shortest TTD in the sample. The
resulting data set has 170 observations on each of 77 contracts (13,090 observations in total).
During the sample period, at most five contracts were traded on a given day and on some
days three or four were traded.

We organize the observations into five groups, according to the number of contracts

traded on a given day. We denote the groups as:

/
y1=
_yl,t} Y1,¢l yl,t}LI ’
’
V2T Y1z Y2u2 Yiaz Yau3 o Yiae2, Y22 |0
/
y3*_y17t§ Yo7 Yz} Y13 Y2ud Ysad ot Yieg, Y2l Vs, |
/
y4_>y1,t‘% Youd Yzt Yaud  Yred Youd  Ysad Yasd 0 Yied o Youd o Ysad o Yaud |
y5__y1,t§) Ya,68  Useb  Yaud Useh Y143 Y2 Yzl Yaul Ysel v Vil Yaeh Usab. o Yaub. Ysil

where t{; refers to the kth day in the j-contract group; for example t3 refers to the second day
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during which only one contract was traded, 2 refers to the fifth day during which exactly two
contracts were traded. The variable Yiu refers to the change in the price of the ith-nearest-
delivery contract in the j-contracts-a-day group on day ti; for example, Yo,ua, 18 the price
change on the second-nearest-delivery contract (two to four months out) in the group with
four contracts traded per day, on the 17th day in that group. The variable n;, 7 =1,2,3,4,5
is the number of trading days with j contracts traded in total. There are 3,365 trading days
in the data and ny + ng + n3 + ng + n5 = 3,365. Specifically, n; = 86, ny = 85, n3 = 96,
ng=2,944, ny = 154: y1isny X 1,y2i82-ny X 1, y3is 3-ng x 1, ygis4-ny x 1, and y5 is
5-ng5 x 1.

The five grouped vectors are stacked to compose a single data vector:

Y=ly/ y yi yid y5|>

Once the column vectors are stacked, the resulting vector is 13,090 x 1. We organize the
entire data set in this way to have column vectors for each variable ordered according to the
number of contracts traded on a given day.

Because information flows to the market affect, to some degree, all lumber contracts, price
observations from the same calendar date will be correlated with each other. Simply pooling
the time series and ignoring contemporaneous correlation would falsely imply that each
observation provided an independent observation on the relationship between prices, TTD,
and inventories. To deal with correlation among observations from the same day, we first run
a regression for the model of interest like In F; —In F; | = a+dhy+ S xhy +YTT Dy x hy +¢4.

The variable In F} is the natural logarithm of futures price on day ¢, h; is the difference
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between the released housing starts and market expectation on day ¢, S; is the inventory

level on day ¢, and T'T'D, is the number of days remaining to delivery on day ¢. From any such

regression we obtain the residual vector ordered as above. Then we construct submatrices

from this residual vector. The residual submatrices are:

el =
L= leru
€1,¢4
€2,¢4

e4 =
€3,14
| €4t

€1t}

€1,¢4
€2,t4
€344

3,t4

€414

€142

€2,12

€115
€945
€35

€445

(%513

€12

€2,12

€1,63
€215
€3,t3
€485

€5,t5

61,t2

no

€212 5

€145

s'ng

€9 5

s'ng

€315

s'ng

€4 5

'ng

€5 ¢5

ns

€143

€213

| ©3,63

€143
€213

€33

61,1‘%3

€263,

(A-1)

In the preceding matrices each row represents a trading day. The first column of each

submatrix shows residuals associated with the first nearby contract. Similarly, the second

columns are associated with the second nearby contract, the third columns with the third

nearby contract, and so on. Using these submatrices, we compute the sample means of

squared residuals by column to obtain variance estimates of first nearby contracts, second

nearby contracts, etc. We also estimate covariances between first and second nearby con-

tracts, between first and third nearby contracts, etc. by computing sample means of the

products of related residuals. The variance estimate of the ¢th-nearest-delivery contract is
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computed as:

5 nj
1
A2 Z 2
0-7, - - (61 tj )
— n;
Jj=t k=1
More specifically, the variance estimates are
5 nj 5 nj 5 nj
1 1 1
2 a2 2 : N2 a2 2 : \2
E - 61tj>a 09 = - (€2t7)’ 03 = - (€3t1),
n] Wk - n] W - /n/] W
5 1 7 1 ns
Z 2 42 Z
— e J O = — 65 5
— ;L 4,t ) ) 5 ns 4 ( )
j=4 = k=1

The estimate of the covariance between the ith-nearest-delivery and ¢th-nearest-delivery

contracts is computed as:

Oie = 2 : 2 : zt]eét]

j=max{i,0} j k=1

For example,
5
. 1
o :E — €y 1 Ca i
23 ] 2,t) 3,81

or

1 & 1 1 &
23 = E €243€343 + o E €o,44€344 + . E €245 €345 -
3 k=1 4 k=1 % k=1
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Using these estimates we construct a 5 X 5 variance-covariance matrix as

This method allows variances to change for the five contract types and covariances to vary
among contracts that have the same discrepancy in delivery month. Even though there are
two-month delivery discrepancies between the first and second nearby contracts and between
the second and third nearby contracts, the covariance between the first and second contracts
(612) is not assumed to be the same as that between the second and third contracts (53).
For all the models discussed in this paper, it is observed that variance estimates decline with
time to delivery. That is, the variance estimates of distant contracts are smaller than those
for nearby contracts. Further, the covariance estimates between contracts decrease as the
discrepancy in contract delivery times becomes larger.

Once the variance-covariance matrix from a regression is obtained, its Cholesky decompo-
sition can be used to apply a GLS transformation to the data to eliminate contemporaneous
correlation among residuals and to adjust the observations to be homoskedastic. To accom-
plish this we construct five submatrices for each variable like the ones in equation (A-1).

We then compute the Cholesky factors, C;s, of the five submatrices of ¥ using the

following:
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6% 612 013
5‘% 012
2120101:&%, EQZCIQCQZ ) 23:0303: 012 5’% 5’23 ’
12 5%
613 G2 03
- . 61 G612 613 614 O1s
5’1 019 5’13 014
612 03 G233 024 O
612 63 Go3 0o
2420204: ) 2520305: &13 &23 OA';% 6—34 6'35
613 O3 03 O34
614 Goa O34 063 Ouas
614 G O34 03
) ) (015 O25 035 045 6%_

Then we premultiply the variable submatrices by the associated (C;)™', i =1,2,3,4,5. For

example, for the data group during which four contracts were traded on a given day, the

GLS transformation to the variable x is performed as:

)71

(Ci

Xi' = (C}) ',

where (C})™! is 4 x 4 and x/, is 4 x ny.

With this method, we obtain new data that are corrected for the contemporaneous cor-

Tipd L1l

4 4
Logd  Topd

L3pd T34

T4 Ty 44
4,t7 4,t5

1’1 t4

k) 77.4
L2tk
5173 4

Ymy

fL‘4 4

stny

relation among contracts and for delivery-horizon-specific heteroskedasticity.
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Figure 1: Equilibrium in Storable Commodity Markets
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Figure 3: Lumber Futures Contract Prices ($ per 1,000 board feet)

36



Inventories (in million dollars)

8000

7500

7000

6500

6000

5500

5000

4500

4000

3500

3000

Jan92

\
kY
Vi

g
.

Jan94

Jan96

Jan98 Jan00 Jan02 Jan04
Trade Date
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Tables

Table 1: Summary Statistics

(a) Summary Statistics of Monthly Housing Starts Shocks

HSpm — MMSy,  HSm — HSm—1 _HSm — HSm

Mean 12.57 5.94 13.01

Median 10 10 19.35

Min -273.00 -358.00 -264.85

Max 200 233 221.96

Std. Deviation 82.50 99.85 87.53

RMSE 83.20 99.71 88.22

N 159 158 159

(b) Summary Statistics of Daily Variables

N=13,090 InFy —InFy_1 |InFy —InFy_1| Inventories TTD Housing Starts Shocks |Housing Starts Shocks|
Mean -0.00010534 0.01243 4,615.40  84.50 0.6226 3.0610
Median 0 0.00974 4,383.50  84.50 0 0
Min -0.0786 0 3,105.40 0 -273 0
Max 0.1419 0.1419 7,5633.70 169 200 273
Std. Deviation 0.0161 0.0102 954.15  49.08 17.8192 17.5654

Notes: Panel (a):

HSy, is the released number of housing starts in thousands in month m, M MS,, is the median forecast

of the Money Market Services (MMS) survey for housing starts that will be released in month m, HSy,—1 is the previous
month’s released number for housing starts, HS,, is the forecast of housing starts constructed by an ARIMA(0,1,1) model
HSp = HSpm_1 — 0.57177(HSpm—1 — fITS'mfl)A RMSE is the Root Mean Square Error measure of forecasting accuracy. Panel
(b): Inventories are measured in millions of dollars. Inventory statistics are computed with all 13,090 observations. As a result,
inventory levels repeat themselves when multiple contracts were traded on any day. The mean of unrepeated inventory series
is 4,651.62 million dollars. Housing starts are measured in thousands. Shocks are computed as the difference between the
released housing starts and the median response of the Money Market Services (MMS) survey. Housing starts shocks statistics
are computed with zeros on nonannouncement days and with repeated shocks on announcement days if multiple contracts were

traded.
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Table 2: Market Efficiency Tests and Asymmetric Effects

(a) Market Efficiency

N=13,090 Ayt = Bhy + yMMSt + dhi—1 + &
Ié; 5.09 x 10~°
[1.26 x 1073]
(4.04)
v —1.31 x 10~6
[6.55 x 10~ 7]
(-2.00)
5 —3.71 x 10~
[1.24 x 1079]
(-0.30)
Hyp:v=6=0
F 2.0387
Pr>F 0.1302
(b) Unbiasedness (¢) Asymmetric Effects
N=159 HSpm =a+bMMSm + em N=13,090 Ayr = YPpyx hy +9pNng x hy + &4
a 40.44 PP 3.97 x 1075
[46.29] [1.64 x 1075]
(0.87) (2.42)
b 0.98234 N 5.72 x 1075
[0.02904] [1.92 x 1073]
(33.83) (2.98)
Hop:a=0 b=1 Ho : P =N
F 2.0237 F 0.4827
Pr>F 0.1356 Pr>F 0.4872

Notes: In panel (a), the model is Ay; = Bhy + YMMS; + 6hi—1 + €¢. Ay is the log price differences and computed as
In Fy — In Fx_1, where In F} is the log price of futures contract on day t. h¢ is the difference between released housing starts
and the market expectation on day t and computed as HS; — M MS;, where HS; is is the released number of housing starts
in thousands on day t and MM S; is the median forecast of the Money Market Services (MMS) Survey for housing starts on
day t. In panel (b), the model is HSy, = a+bMM Sy, 4+ em, where HS,, is the released number of housing starts in thousands
in month m and M M S,, is the median forecast of the MMS Survey for housing starts that will be released in month m. In
panel (c), the model is Ay, = wppt * hy + wNnt * ht + &¢. pt is a dummy variable that equals one if h: is positive on day
t, zero otherwise. n; is a dummy variable that equals one if h; is negative on day ¢, zero otherwise. In panels (a) and (c),
housing starts shock, h¢, is computed with zeros on nonannouncement days and with repeated shocks on announcement days if
multiple contracts were traded. The parameter estimates in panels (a) and (c) are obtained using the Generalized Least Squares
(GLS) method explained in the appendix. In panel (b), only data on announcement days are used and parameter estimates are
obtained through Ordinary Least Squares (OLS) method. Standard errors and t-values of estimates are given in the brackets

and parentheses, respectively.
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Table 3: Housing Starts Effects on Expected Return

(a) Parameter Estimates

Least Squares Generalized Least
Estimates Squares Estimates
B —8.44 x 10~9 —1.64 x 10~8
[6.74 x 10~9] [1.06 x 10~8]
(-1.25) (-1.55)
b1 1.07 x 104 1.47 x 10~*
[4.15 x 1079] [6.17 x 1075]
(2.57) (2.38)
b 1.18 x 10~4 1.56 x 10~*
[4.12 x 1079] [6.05 x 1075]
(2.86) (2.57)
b3 1.08 x 104 1.54 x 10~4
[4.14 x 1075] [6.01 x 10~5]
(2.61) (2.57)
by 1.32x10~% 1.63 x 10~%
[4.09 x 1075] [5.83 x 107°]
(3.24) (2.80)
bs 1.01 x 10~* 1.47 x 10~4
[4.13 x 1079] [5.89 x 1075]
(2.44) (2.49)
be 9.88 x 1075 1.38 x 107*
[4.06 x 10~5] [5.67 x 1075]
(2.44) (2.43)
b7 9.35 x 10~° 1.40 x 10~4
[4.12 x 1075] [5.84 x 1077]
(2.27) (2.39)
bg 9.15 x 10~5 1.30 x 10~*
[4.05 x 1075] [6.57 x 1075]
(2.26) (2.33)
(b) F-tests
Least Squares Estimates Generalized Least Squares Estimates
Hy F Value D.f.(N) D.f(D) Pr>F | FValue Df(N) Df(D) Pr>F
by =bo=-- - =bg=0 1.4567 8 13,081  0.1675 | 1.9118 8 13,081  0.0538
b1 =bo=---=bg 0.3395 7 13,081  0.9361 | 1.4975 7 13,081  0.1629
(b1+b2+b3+bs)/4=(bs+bs+br+bg)/4 | 1.6041 1 13,081  0.2053 | 3.2878 1 13,081  0.0698
by =by=b3=by4 0.2709 3 13,081  0.8464 | 0.2194 3 13,081  0.8830
bs=be=br=bg 0.0379 3 13,081  0.9902 | 0.3327 3 13,081  0.8017
by =ba=b3=by and bs=bg=by=bg 0.1548 6 13,081  0.9882 | 0.6683 6 13,081  0.6753
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Table 4: Housing Starts Effects by Time to Delivery

(a) Parameter Estimates and F-tests

Least Squares Generalized Least
Estimates Squares Estimates
B —8.88 x 1077 —1.50 x 10~8
[6.66 x 1079 [1.04 x 1078]
(-1.33) (-1.44)
bi,a 1.17 x 1074 1.46 x 1074
[3.61 x 1075] [5.60 x 10~5]
(3.25) (2.62)
bs,s 9.85 x 1075 1.31 x 107%
[3.56 x 107°] [5.52 x 1075]
(2.77) (2.37)
Ho:b14=b58=0
F 13087 5.3643 5.6432
Pr>F 0.0047 0.0035
Hg:b14=0bs538
Fy 13087 1.4483 6.4787
Pr>F 0.2288 0.0109
(b) Marginal Effects
%| %| %ys
Bhy 1Ty 4,0=1 dhy | Ts 8 4=1 Ohi0S;
Simin 9.99 x 1075  8.40x 1075 —1.50 x 10~8
(3.80) (3.39) (-1.44)
Smean | T.72x 1075  6.14x 107 —1.50 x 10~8
(4.75) (4.43) (-1.44)
Smaz 3.35x 1075  1.76 x 1075  —1.50 x 10~8
(1.15) (0.63) (-1.44)

Notes: In panel (a), the model is In Fy —In Fy_1 = BSt xht +b1,4T1,4,¢ * h + b5, 8T5 8.+ * ht +€¢. In F} is the log price of futures
contract on day t, St is the lumber inventory level on day ¢, h¢ is the difference between released housing starts and the market
expectation on day t. Ty 4 = 1if 15 <TTDy < 21, or if 31 < TTDy < 42, or if 57 < TT Dy < 64, or if 75 < TTD; < 86;
0 otherwise. T55¢ = 1 if 98 < TTDy < 106, or if 117 < TTDy < 128, or if 140 < TTD; < 150, or if 158 < TTD; < 169; 0
otherwise. TT' Dy is the number of days remaining to delivery on day ¢. Standard errors and t-values of estimates are given in
the brackets and parentheses, respectively. In panel (b), yt =InF; —InFy_1 = BSt * ht + b1,aT1,4,t * ht + bs 8T5,8,¢ * ht + &¢.
Derivatives are computed by using the GLS estimates of parameters and evaluated at the minimum, mean, and maximum value

of inventories. t-values of the derivative estimates are given in parentheses.
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Table 5: Housing Starts, Inventory, and Time-to-Delivery Effects on Expected Return

(a) Parameter Estimates and F-tests

Least Squares

Generalized Least

Estimates Squares Estimates
A+tc 1.56 x 10~4 1.85 x 10~*
[5.92 x 1075] [6.05 x 10~5]
(2.64) (3.05)
B —8.98 x 10~° —1.59 x 10~8
[6.67 x 10~9] [1.05 x 10~8]
(-1.35) (-1.52)
b 1.24 x 107 4.10 x 10—8
[3.76 x 10~7] [1.80 x 10™7]
(0.33) (0.23)
e —4.07 x 1077 —3.74 x 1077
[3.75 x 10~7] [1.47 x 10~7]
(-1.08) (-2.54)
Hop:b=e=0
F 13086 0.6806 3.2348
Pr>F 0.5063 0.0394
Ho:b=e
F1,13086 0.6168 2.7532
Pr>F 0.4323 0.0971

(b) Marginal Effects

TTD¢ =TT Dmas = 169

TTDy = TTDypin = 0

Byt /8ht 82yt/8ht8TTDt 82yt/8ht85t Byt/ﬁht 62yt /6ht8TTDt B2yt/8hz 851

Smin 7.21 x 10~° —3.74 x 1077 —1.59 x 1078 | 9.79 x 10~° 4.10 x 10~8 —1.59 x 108
(2.92) (-2.54) (-1.52) (3.14) (0.23) (-1.52)

Smean | 4.81 x 1075 —3.74 x 1077 —1.59 x 10~8 | 7.40 x 10~® 4.10 x 10~8 —1.59 x 108
(3.46) (-2.54) (-1.52) (3.20) (0.23) (-1.52)

Smaz 1.84 x 106 —3.74 x 1077 —1.59 x 1078 | 2.77 x 10~® 4.10 x 10—8 —1.59 x 108
(0.06) (-2.54) (-1.52) (0.84) (0.23) (-1.52)

Notes: In panel (a), the model is In Fy —In Fy_1 = (A+ BSt)xhe +[(1 —dt)(c+ (e —b)T* +bTTD¢)+di(c+eTTDy)] xht +e¢ =
(A4c)ht +BStxhy +b(1 —de)(TTDy — T*) xhe +e[(1 — de)T* + di TT D¢] * hy + €¢. In Fy is the log price of futures contract on

day t, St is the lumber inventory level on day ¢, h¢ is the difference between released housing starts and the market expectation

on day t, TT D, is the number of days remaining to delivery on day t, and d; is a dummy variable, which takes the value of one

when TT Dy > T*, zero otherwise on day t. T™ is set equal to 90. Standard errors and t-values of estimates are given in the
brackets and parentheses, respectively. In panel (b), ys =InFy —InFy_1 = (A+ BSt) xhe + [(1 —d¢)(c+ (e —b)T* +bTTDy) +
di(c+eTTDy)|xht+et = (A4 c)he + BSt % he +b(1 — de)(TT Dy — T*) x h + e[(1 — d¢ )T* 4+ di TT D¢] * ht + €¢. Derivatives are

computed by using the GLS estimates of parameters and evaluated at the minimum, mean, and maximum value of inventories.

t-values of the derivative estimates are given in parentheses.
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