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When Should Uncertain Nonpoint Emissions be Penalized in a

Trading Program?

Abstract

When nonpoint source pollution is stochastic and the damage function is convex, intuition might
suggest it is more important to control a nonpoint pollution source than a point source. Earlier
research has provided sufficient conditions such that the permit price for a unit of ex-ante
expected emissions should be higher than the permit price for a unit of certain emissions. Herein
we provide a set of necessary and sufficient conditions such that this is the case. An approach to

testing for the validity of the condition set is available, and has been applied to a related problem.

Keywords: agricultural pollution, multiple inputs, permit trading, social optimality, trading ratio,

water quality.

JEL classification: Q1, Q2, D2, D8



The categorization of pollutant emission sources into point and nonpoint has proven to be useful
in large part because point sources are generally viewed as being more certain, more readily
monitored, and more readily controlled. Nonpoint sources, such as nitrogen and phosphorus
entering waterways from cropland, can depend on such random events as rainfall and
temperature. A question that has been raised in the literature is how these distinctions should
affect the use of instruments to optimally manage the expected damage from pollution. In
particular, suppose point source emissions and expected nonpoint source emissions are both
subject to permit requirements where free trade in permits is allowed. Then should the permit
price for a unit of expected emissions from a nonpoint source exceed the price for a unit of
emissions from a point source?

The issue is important because nonpoint emissions can dominate loadings in watersheds.' A
focus on point sources creates economic distortions and can severely limit the ability to control
overall emissions. A variety of point-nonpoint trading schemes have been implemented over the
years. These have achieved only limited success, in part because of problems with specifying
what is to be traded and the terms of trade.” The issue is also important because, in practice, the
implemented point-nonpoint trading ratio has tended to place a higher price per unit of pollution
on point source emissions permits.” By contrast, theoretical models to date lean toward a higher
price per unit (expected) pollution on nonpoint source emissions permits (Horan 2001).

Aspects of the impact of the existence of emissions uncertainty on optimal incentives have
been addressed in Shortle (1990, p. 794), in Malik, Letson, and Crutchfield (1993, p. 964), in
Zhang and Wang (2002, p. 171), in Horan and Shortle (2005, p. 346), and elsewhere. The intent
of this article is to provide definitive conditions under which emissions uncertainty should

induce a larger price on expected emissions from nonpoint sources. To make our point we study

' See Table 2 in Horan, Shortle, and Abler (2002) on nitrogen loads in the Susquehanna River
Basin.

* Further discussions on design issues can be found in Horan et al. (2001), Horan, Shortle, and
Abler (2002) and Farrow et al. (2005).



a version of the standard model (Shortle 1990; Horan and Shortle 2005).

Model
Our model is as in Horan and Shortle (2005). In it there is a single point source, labeled as
‘firm,” and a single nonpoint source, labeled as ‘farm.” The regulator seeks to minimize the
expected total cost to society as represented by the sum of the i) cost of reducing point source
emissions, ii) cost of reducing the level of an input associated with nonpoint source emissions,
and iii) expected damage done by emissions. The regulator controls emissions by imposing a
binding maximum total level of point source emissions, imposing a binding maximum total level
of expected nonpoint source emissions, allocating permits as property rights and allowing trade in
these permits. Permits in point source and nonpoint source markets can be converted to the other
at an exchange rate determined by the regulator. As a special case of the Horan-Shortle (H&S)
framework, we assume that the total levels of point source and nonpoint source expected
emissions permits are set at their socially optimal levels. Equilibrium permit prices can be
compared to identify the regulator-determined exchange rate, what is known in the literature as
the trading ratio.

The firm produces point source pollution to the amount e. This firm can control the extent

of emissions, but at cost c(e). It is costly at the margin to do so but the marginal cost of control
decreases as the emission level increases, i.e., C,(e) <0< c,(e) where subscripts indicate

derivatives. The farm’s emissions are stochastic, but do depend on a single input choice made by
the farm. Actual emissions cannot be observed by the regulator. With input choice level x>0,

farm emissions amount to r(X,d). Here @ is a reference random variable with finite support
[6,,6,], distribution F (&) and density f(8). The consequence of an increase in € for nonpoint

emissions is held to be adverse, or 1,(X,0) >0V 0 €[6,,0,],Vx=0.

* Horan (2001) provides evidence on this and suggests a reason why it is so.



The input-conditioned mean value of farm emissions is x(X) = E[r(X,8)]= I:u r(x,0)drF(9).

Quantity u(X) is the expected load from the nonpoint source and it is assumed that the input
increases expected load, x, (X)>0. The nonpoint source can reduce use of the input in order to
reduced expected emissions, but at profit loss g(x) where ¢,(X) <0< g, (X). The social
damage function is of form D(z), z=e+r(X,8), where the argument is the additive sum of
point and nonpoint emissions. Damage is strictly increasing and weakly convex in emissions, or
D,(z)>0 and D,,(z)>0.

The regulator sets point emissions and expected nonpoint emissions permit levels such that
the equilibrium permit prices are  and p, respectively. These prices are set to support the
socially optimal point and expected nonpoint emissions levels. Price ratio p/q can be viewed as
the number of units of point emissions that can be exchanged for one nonpoint emission in permit
markets that allow these permit conversions.”

Suppose the point source has initial allocations amounting to €’ units of point source
emissions permits and zero units of nonpoint source expected emissions permits. Suppose too
that the nonpoint source has initial allocations amounting to r’ units of nonpoint source expected

emissions permits and zero units of point source emissions permits. The private optimality

problems under permit market price-taking are:

min, S”(e),  S™(e)=c(e)+qx(e—e");

(1
min, S™(x),  S™(X)=g(X)+ px(u(x)—r°).
The regulator seeks to align incentives with the social optimality problem of minimizing the sum

of private costs and expected social damage.

The social objective function and first-order optimality conditions are:’

* For example, were p/q=1.1 then eleven units of point source pollution emissions would trade

for ten units of nonpoint source units of pollution emissions.
> An alternative objective function that appears to find favor with policy makers is the



Tuncer(e’ X)=c(e)+ g(x)+ J.:u D(Z*)dF(H),

2) , )
c.(e)+], D, (2)F(O)=0; g, (x)+] D, )r(x,0)dF(6)=0;

where (e",X") is the socially optimal choice vector, z° =e" +r(x’,8), and c,(e") is understood

to mean the obvious derivative evaluated at the point € =€ . Bear in mind that choosing X is

equivalent to choosing x(X). From (1) and (2) it is clear that the socially optimal permit prices,

g=q and p=p’, and optimal trading ratio, 7 = p"/q’, are®

I, (L 0)dF(0)

q :J: D,(Z)dF(9)=-c,(e'); p = _9,(x).

4,(6) ()
SR N M S B Ie.u D, ('), (', 0)dF (6) 1t Cov(D,(z").5,(x",0)) .
T a0OGE) 40O DEAFO) (O, D2 )IFO)

©)

By contrast, the objective function to be minimized and first-order conditions under certain
nonpoint pollution at level u(X) are

T (e,x) =c(e)+g(x)+ D(e+ u(x));
c.(e)+D, (e +u(x))=0; g, (x)+D, (e +u(x))u(x)=0.

In this case the optimal trading ratio is

, g,(x)
5 :%:
O T e )

9

i Cov(ng(Z ) T (X ,9)) SEHCOV(DZ(Z*),VX(X*ﬁ))-
#, ()], D, (2)dF ()

minimization of costs subject to a maximum specified probability of exceeding a threshold
damage level. We chose to follow the present specification because the threshold model will
only maximize social welfare under certain circumstances.

5 In other studies the trading ratio is defined as t = ¢/ p’, but the algebra and intuitive
interpretations are more direct under the inverse ratio we consider.



So whenever the covariance is positive then 7~ >1. This means that the optimal ratio of the

permit price for an expected unit of uncertain nonpoint emissions to the price for a unit of certain

point emissions exceeds that when nonpoint emissions are certain. That is, if z* >1 then
comparatively stronger incentives are provided to control nonpoint sources. Whenever the
covariance is negative then the reverse is true.

To summarize, our structural assumptions are:

SA:1) c,(e)<0<c,(e)Ve=0,ii) g,(x)<0<g,(X) Vx>0, iii) damage is of form D(z), z=

e+r(x,0), where D,(z)>0 and D,,(z) >0, iv) nonpoint pollution level r(x,é) satisfies
rL,(x,0)20v0e[6,6,],Vx=>0,and V) @ has distribution F(&) such that dJ-:u r(x,0)dF(8)/dx

>0VXx=>0.

Results in the Literature

Our eqn. (6) is a variant of eqn. (10) in H&S.” Although the model is slightly different, our eqn.
(6) is analogous to the expressions given in (6) and (7) of Shortle (1990). The well-known
covariance, or Cebysev, inequality (Mitrinovié¢ 1970) asserts the following sufficient conditions

to sign covariance; if m(#) and n(#) are increasing functions of random variable 6 then
Cov[m(#),n(€)]=0. We will present findings from the literature in context with the covariance
inequality.

With m(@) =D,[e" +r(x",0)] then m,(0)=D,[e" +r(X,0)r,(x",0) Siin r,(x',0). With
n(@) =r(x"',0) then n,(8)=r,(x,0). So, given assumptions SA, eqn. (6) implies that 7" > 1
at equilibrium choices whenever Ri) r,(x,8) >0V 8 <€[6,,6,]. On the other hand, 7" <1 at

equilibrium choices whenever Rii) r,(x",8) <0V e[6,,6,]. This captures the essence of

7 Bear in mind that z° =1/t", see footnote 6.



statements made in Shortle (1990), H&S and others on the role of emissions uncertainty in
determining whether some penalty should be placed on expected emissions. Appendix A

provides further details, as well as some clarifications, on conclusions in the literature.
Ri) and Rii) are sets of sufficient conditions to sign 7~ —1 for all increasing and convex
damage functions. But they are not necessary conditions since, as we shall show, monotonicity

on r (x",8) in the sense of (say) r,(x,0) >0V 68 e[6,0,] is not required. Neither are they

particularly weak conditions since, for example, condition set Ri) is likely to be quite onerous in

practice. The main intent of this article is to provide a complete characterization of conditions
such that z° —1 can be signed for all increasing and convex damage functions. We will also

point to empirical methods for doing so.

Analysis
With E[r (x",0)|6 < 8] as the expected value of I (X",8) given that & <@, the following is
demonstrated in Appendix B:
Proposition 1. Under SA, then the optimal trading ratio satisfies 7~ > (<)1 for all considered
damage functions if any one of the three condition sets i)-iii) are satisfied: i)
(7)  E[r(x,0)|0<0]1<(>)E[r(x,0)] VOe[b,6,].
i) r(x,0)=(<)E[r(x,0)0<01v0e[6,6,].
i) r,(x",0)>(<)0vOe[f.0,].
Condition set i) is both necessary and sufficient. Condition set iii) implies condition set ii)

and ii) implies condition set i).

For E[r (x",0)|0 <] <E[r (x",0)] VO e[6,,6,], the interpretation of (7) is that the

expected marginal nonpoint emissions conditional on € < 0 is less than the unconditional



expected marginal nonpoint emissions.® The condition captures a weak form of conditional
dependence between the nonpoint emission and the source of randomness. So, for the <
direction, at low @ values the marginal contribution of input X to nonpoint emissions is low on
average. This is unfortunate, bearing in mind the convex damage function. The marginal
contribution of the input to nonpoint emissions tends to be low when marginal damage is low
(when @ is low) and high when marginal damage is high. So the input tends, on average, to
cause more emissions under states of nature such that additional damage at the margin is more
costly. Relation (7) is necessary in the following sense. If the inequality in the < direction does

not apply for some interval on [6,,6, ] then there exists an increasing and convex damage

function such that 7~ <1. Part iii) is the standard application of the covariance inequality, as
discussed earlier.

From a policy perspective, Proposition 1 is interesting because it is not clear to the authors
why (7) in the < direction should be considered to be more reasonable than in the > direction.
If (7) is true in the > direction, then 7~ <1 and the socially optimal price of a permit to emit an
expected unit from a nonpoint source is lower than the socially optimal permit price to emit a
unit from a point source. Suppose, for the sake of concreteness, that € is rainfall and that X is
nitrogen. Using iii), the case could be put forward that more nitrogen makes nonpoint emissions
more sensitive to rainfall so that r,(-)>0V@#¢e[6,,0,] and " >1. But the case is very much
dependent upon context. If nitrogen promotes plant survival then more plants survive to absorb
soil nitrogen in high rainfall states and less nitrogen enters waterways.

A special damage function warrants attention. Suppose that D(z2) =&, + o,z + a,2°,, >0,

sign
a, >0, s0 that Cov(D,(2),1,(x",0)) = Cov(r(x",0),r,(x",0)). The latter is the condition

studied in Shortle (1990). Although r,(X,8) >0 has been assumed, the covariance still cannot be

¥ From a study of Shaked and Shanthikumar (2007) and elsewhere, we cannot identify a



signed unless further assumptions are made on how r,(x",8) changes with €. Turning to when

(7) does not apply in either direction over all Oe [6,,6,], then the only recourse is to attempt to
refine one’s beliefs about D(z) and r(x,8). Stronger conditions can allow for a weaker
condition set to replace (7). The authors do not have beliefs about D(z) and r(x,6) beyond

those outlined in SA.

Plural different inputs are generally applied in nonpoint production activities, so it would be
reassuring to establish that condition (7) has multivariate analogs. We will confirm this to be true
for just two inputs, where the multi-input extension is then straightforward. Let there be a second

nonpoint input labeled as y. The input-conditioned mean value of farm emissions is now

gLI . . . . .
H(X,y)=E[r(x,y,0)]= L r(x,y,0)dF(8), with the obvious extension in notation. The second
input also increases expected load, g, >0. The profit decline associated with this second

nonpoint source is g(X, y) where g, <0<g, . The social objective function and optimality

conditions become:

T (6., Y) = ¢(&) + 9%, y) + [ Dz )dF (0);
®)  c.(e) +j: D,(Z)dF(0)=0;  g,(X, y*)+j;“ D, (2)r(x",y",0)dF(6) = 0;

* * gu * * *
9,(x.y)+ [, D2 (XY .0)dF (9) =0.

The socially optimal permit prices (g, p*,p*)=(q,p"*,p"’) and optimal trading ratios

(7)) =(p™/q,p™/q"), are

stochastic dominance relation that is equivalent to condition (7).
’ Perform a further integration-by-parts on (B2) in Appendix B.
' Second-order sufficient convexity conditions are assumed to hold.



'@y .odF©)

o
0 =[ 'D,(2)dF(@);  p= — ;
L" M (XY )
["D,@)r,(x".y".0)dF (0)
© pr== — ;
My (X,y)
Cov(D,(z),r.(x",y',0 . Cov(D,(z"),r,(x",y",0
1, OVE 1( )( - )); R OVE *( )( Y )
4.y, D,(2)dF (6) #,(Xy")], D (2)dF ()

A faithful adaptation of the Proposition 1 proof shows that 7' > (<)1 for i e {x,y} and all
convex damage functions if and only if E[r(X",y ,0)|8 < é] <(>)E[r(x,y",0)] Voe [6,,6,]
for the chosen i € {Xx,y}. Itis interesting that, beyond ensuring convexity, interactions between

X and Yy in u(X,Yy) are not relevant for these qualitative results.

Discussion

Can condition set (7) be tested to provide statistical evidence in either direction? Empirical
estimates of E[r (x",0)] and E[r (x",8)|0 < é] could be arrived at using observations from

experimental plots. Or they could be estimated by simulation using agronomic models that seek
to account for rainfall and nitrogen, such as the Soil & Water Assessment Tool (SWAT). There
are, however, likely to be violations of (7) in one direction or the other due to sampling error.
Some formal structure on errors will be necessary if statistical tests of the hypotheses generated
by (7) are to be conducted. Concerning a different problem, signing the marginal risk premium
of an input under uncertainty, Roosen and Hennessy (2003) have used nitrogen application and
corn yield data when testing a condition that is almost identical to (7)."" They applied methods
from the literature on testing stochastic orderings. These methods have seen significant advances

in recent years, in particular to allow for dependence across observations.'> Dependence is likely

"' See especially their equations (5) and (7).
12 Early work includes Tolley and Pope (1988), while Davidson and Duclos (2000), Zheng



to exist in any agronomic application. Thus, tests for (7) are possible if the data are available.

Conclusion

This article has identified a set of necessary and sufficient conditions under which the existence
of nonpoint emissions uncertainty motivates a price on a permit to emit a unit of expected
pollution that is larger than the price on a permit to emit a certain unit of pollution. The
condition set is testable using existing empirical methods. Tests are warranted because in
practice trading ratios are not consistent with the preponderant belief in the literature that

emissions from nonpoint sources should be penalized.

(2002), and Linton, Maasoumi, and Whang (2005) have provided increasingly robust models.
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Appendix A

Using our model notation, i.e., paraphrasing, Shortle (1990) states (p. 794) “The assumption that

the damage cost function is convex ( D,, > 0) implies that the sign of Cov( D,(z"),0z / 8X) is the
same as that of Cov(z*,az* / 8X) .” This is not true because all convex damage functions must be
considered. It is true that statement Cov( D,(z"),0z"/ 8X) <(2) 0 for all convex damage
functions’ implies statement Cov(z*,éz* / 8X) <(>)0." This follows because D(z) = ("2)z> is

convex. But statement ¢ Cov(z*,az* /8X) <(2) 0’ does not imply ° Cov( D,(z"),0z" /ax) <(>)0

for all convex damage functions.” This can be demonstrated by counter-example. Let there be

three equi-probable states of nature. In ordinate form the firstis (z°,0z /0x) =(1,1). The

ordinates for the other two states are (2,3) and (3,0.8). Then Cov(z",6z"/6x)=-0.066"<0.

But consider also some other function, say D(z)=(Ys)z’. This is convex on z>0. Then
Cov (( ') ,0r 6X) =1.133" >0, i.e., the inequality is not valid for a different convex function.

Appendix B

Proof of Proposition 1. Part i): To establish sufficiency, write

(B1) Cov(D,(e" +r(x",0)).5,(x",0)) :j: D,(e" +r(x",0)(r,(x'.0) - E[r,(x",0)])dF (6),

where _[ :“ (rX (x",0) - E[rx(x*,H)])dF(G) =0. Using an integration-by-parts, eqn. (B1) may

alternatively be written as

Cov(D, (e +r(x",0).5,(x".0))=D,(e" + r(x*,é))jj(rx(x*,e) — E[r,(x",0)])dF (0) h

6=6

(B2) —j: Dzz(e*+r(x*,é))rg(x*,é)jj(rx(x*,e)—E[rx(x*,e)])dF(e)dé

= —j: D,(e" + r(x*,é))rg(x*,é)jj(rx(x*,e) —~E[r,(x",0)])dF (6)d4,

13



4

where L (rx(x*,e)— E[rx(x*,e)])dF(Q)=I:“(rx(x*,«9)— E[rx(x*,é?)])dF(G):O has been used to

simplify. Thus, from (6) and D, (e" +r(x",0)r,(x",0) >0 (by SA), it follows that 7" > (<)1 if

j:(rx(x*,e)—E[rx(x*,e)])dF(e)S(Z)ovée[el,eu] or
(B3) jjrx(x*,e)dF(e)S(Z)IjE[rx(x*,e)]dF(9)=F(é)E[rX(x*,e)] v0e[6,.0,].

Upon rearrangement, i.e., use of E[r (x",0)|0 < é] = I: Elr (x,0)]dF(0)/ F(é) , (B3) is shown

to be as in (7) above.

The standard approach to demonstrate necessity in i) is taken. For condition set (7), suppose
the sign of I:(rx(x*,ﬁ) —E[r, (X*,O)])dF(Q) in (B2) is reversed and non-zero on a positive

measure set Ac[6,6,]. The value of D, (e" +r(x",0)) could be arbitrarily large, but still
finite, on a positive measure subset of A such that the sign of the covariance in (B2) is reversed.

Part ii): Note that E[r (x",8)|0<6,]1=E[r (X ,0)] so that E[r (X ,0)|6 < é] increasing
(decreasing) in @ implies E[r (x*,0)|0 < 0]< () E[r (x",0)]VO<[h,0,], i.c., relations (7) as
given in part i). Differentiation establishes r (x",0) > (<) E[r (x",0)|0< 8]V <[4,,0,]
whenever E[I’X(X*,Q) |6 < é] is increasing (decreasing) in 0.

Part iii): If r (X",6) is increasing (decreasing) in @ then it follows that I’X(X*,é) >(2)
E[r,(x",0)|0<8]V0e[f,0,], as given in part ii).

As for the statements that iii) implies ii) and ii) implies i), it is clear that condition T, (X",6)
>0 V6 e[b,6,] implies condition r (x*,0) > E[r (X",0)|0 < 0]V e[6,,6,] while we have
shown above that this latter condition implies E[r (x*,0)|6 <] <E[r (x,0)]V0e[6,.6,].

Implications in the other direction follow similarly.
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