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Introduction 
 

When it comes to invasive species management, economists have focused on the tradeoff 

between prevention of potential invasions and management of established populations.  The 

intermediate step—detection of established populations on the landscape so that management 

can commence—has only recently received attention in the economics literature.  A recent paper 

(Mehta et al., 2007) explores how biological and economic parameters affect optimal detection 

spending, recognizing that greater expenditures on detection can lead to smaller and more 

manageable population sizes upon detection because populations are discovered early.   

 

We build upon this framework by considering the optimal spatial allocation of detection effort 

when it is impossible to stop the advance of the main front of an invasive species, yet it is 

beneficial to detect and control sub-populations of the species that erupt ahead of the front.  This 

is true in the example of the gypsy moth, where managers have given up hopes of eradication yet 

still detect and treat sub-populations that establish ahead of the front due to the transport of eggs 

on vehicles.  One paper (Sharov and Liebhold, 1998) solves for the optimal spatial pattern of 

traps in this context, and finds that it is best to have the highest intensity of traps closest to the 

front, with diminishing intensity as the distance from the front increases.   

 

In this paper, we use an alternative approach to solve for the optimal pattern of detection 

intensity ahead of an advancing front.  Our approach recognizes that the duration of management 

of sub-populations is constrained by the amount of time remaining before the main front arrives.  

Locations close to the front have less time remaining than locations that are more distant.  These 

differences imply different levels of potential benefit from early detection; in particular, shorter 



management horizons translate into lower benefits from intervention.  The optimal intensity of 

detection effort varies over space along with this variation in the benefits from management.   

 

Model Development 

We envision a situation where an invader is spreading throughout a landscape.  The front of the 

advance moves according to a spread coefficient, and this spread is inevitable.  The main 

population throws off sub-populations ahead of the front.  These are transported by humans 

through, for example, transport of eggs or larvae on vehicles.  Although the spread of the front is 

inevitable, treatment of sub-populations is possible.  Sub-populations can only be treated once 

they are detected, and the intensity of detection determines the date at which management can 

start. 

 

Optimal Management of a Sub-Population 

We start with a model of optimal management given some starting population (x(τ)) at date τ 

(time of detection), and ending date Tmax.  Tmax is the date that the main population will catch up 

to the sub population. Damages are linear in the stock of the pest (x).  Control costs are quadratic 

in the removal level (R).  The unmanaged stock grows exponentially, and management modifies 

the growth of the population by removing pests.  The management problem at date τ is to 

minimize the stream of discounted control and damage costs:  
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The parameters are: damages caused by the pest (p), management costs (c), the interest rate (r), 

and the exponential growth rate (a).   

 

We solve this problem using optimal control theory, finding the optimal paths of removals 

(R*(t)) and stock (x*(t)).  We insert these into the integral to get an expression for the optimized 

cost—including damage plus removal costs.  This value function is a function of the starting 

stock level (x(τ)) and the amount of time in the horizon (Tmax-τ):   

 

 

We have inequality constraints on the ending time and the ending state, so the solution procedure 

is to solve first with the transversality conditions with a free ending time and ending state:  

λ(T)=0 and H(T)=0.  If either constraint is violated, we impose the constraints one by one, 

evaluating the value functions with a free ending state and a constrained ending time (λ(T)=0 

and T=Tmax), and with a constrained ending state and a free ending time (X(T)=0 and H(T)=0).   

If the terminal constraints are satisfied in both cases, we choose the case with the smallest overall 

cost.  If constraints are violated in both cases, we impose both constraints to determine the 

overall cost.   

 

Optimal Search 

The next step in our model development is to look at search.  In this setting, search (s) affects the 

date of detection (τ) in a deterministic manner.  We adapt the probabilistic model of Mehta et al. 

by using the expected date of detection so that  
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τ=1/(k s),    

where k is the “detectability” coefficient.  A higher k and a higher s lead to earlier date of 

detection and a smaller stock size when detection occurs.    

 

The management problem, then, is to choose search intensity to minimize total costs.  There are 

three components to total costs: search costs, damages caused by the pest before detection 

occurs, and optimized costs as summarized in the value function. The first cost component is the 

cost of search.  Instantaneous search costs are equal to bs2, so that the stream of search costs until 

detection occurs is: 

C1(s)= bs2(1-e-rτ(s)). 

The second cost term is the stream of damages caused by the pest before detection occurs: 

C2(s)= px0(e(a-r)τ(s))-1),  

where x0 is the stock level at the beginning of the time horizon.  The third cost term is the cost 

once the pest is detected as summarized by the value function found above, discounted back 

from the date of detection τ to 0:    

C3(s)=e-rτ V(x(τ(s)), (Tmax-τ(s))).   

These terms are all functions of the search level through the date of detection.  The total cost 

with search (TCS) is equal to the sum of these three terms: 

TCS=C1+C2+C3. 

To find the optimal search level, we find the level of search that maximizes benefits of search, 

defined as the difference between doing nothing undertaking search.  The costs without search 

(TCNS) are the damages caused by the pest from time 0 to the time the front arrives (Tmax): 

TCNS=px0(e (a-r)Tmax-1). 



Figure 1 is a graphical depiction of the population of the pest at a given distance from the front, 

from the perspective of time 0.  Different search intensities correspond with different dates of 

detection, with earlier dates of detection like τ1 associated with high search intensities and late 

dates of detection like τ3 associated with low search intensities.  The dynamically optimal paths 

of the pest once detection occurs are represented by the lines that depart from the no-

management stock path at the alternative dates of detection.    These paths are summarized in the 

value functions that depend on detection intensity through the date of detection, τ(s), and the 

stock level at the time of detection, x(τ(s)).   

 

 

Figure 1: Stock paths with alternative dates of detection.  For early detection, stocks are 

optimally driven to zero.  With late detection, ending stock levels can be positive.  
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Different distances from the main front are characterized by different dates at which the front 

will arrive.  The spatial component is incorporated with a diffusion model, with which we can 

calculate the spread rate of the species as a function of the diffusion coefficient and the growth 

rate.  The spread rate can then be used to calculate the date of arrival (Tmax) at any distance from 

the front.  To find detection intensities for different distances from the front, we re-solve the 

problem for the alternative levels of Tmax.   

 

We observe that the optimal ending date of the management horizon may easily occur before the 

front arrives at Tmax.  For any given starting stock level, the optimal path may be identical with 

different levels of Tmax because the H(T)=0 transversality condition will imply the same optimal 

management horizon.  However, the optimally chosen detection level may easily differ with 

distance, as the benefits to management can be significantly higher with a larger distance from 

the front.  This is because the maximum size of the unmanaged population is greater with greater 

distances, leading to higher benefits to management, tipping the balance towards earlier detection 

even if that means higher expenditures for search activities.   

 

Gypsy Moth (Lymantria dispar) Management 

The gypsy moth is an invasive pest that defoliates a wide variety of host trees.  It was introduced 

accidentally from Europe to Massachusetts in 1869, and is now found throughout the Northeast 

United States.  It is currently spreading south and west toward the Midwest and the Southeast 

United States.  Efforts to eradicate the gypsy moth have failed, and the spread of the species to 

its suitable host range is considered inevitable.  Though adult female gypsy moths fly only very 

short distances, larvae are carried by wind currents to new locations.  Human travel can assist 



dispersal of gypsy moths: egg masses can be deposited on vehicles at, for example, infested 

camp grounds.  When these vehicles move, sub-populations of gypsy moths can emerge beyond 

the existing range of the population, speeding the natural dispersal of the pest.   

 

Management of gypsy moth populations starts with detection through the placement of 

pheromone traps—tent-shaped boxes containing female pheromones and a sticky trapping 

substance.  These traps are monitored to see if male gypsy moths have entered.  Once the moths 

are detected, pesticides or mating disruption methods are used for control.  Pesticides are 

effective, but only recommended for small infestations due to collateral impacts on other species.  

Table 1 shows the parameter values we will use in our simulations to show how optimal density 

varies with distance from the advancing front.   

 

Parameter Value Source 

a: growth rate 4.6 Liebhold, Halverson, Elmes 
1992 

b: cost of detection $54.38 per trap USDA, 2005 

c: cost of treatment $6,200 per square kilometer Sharov and Liebhold, 1998 

r: discount rate 0.04 
0.10 

 

p: damages $380/square kilometer/year Sharov and Liebhold, 1998 

natural spread rate 2.5 km/yr Liebhold, Halverson, Elmes 
1992 

 
Table 1.  Preliminary parameter values for gypsy moth detection model.   

 



Discussion 

While large portions of budgets are spent on detection activities (NISC, 2006; MDA 2005), very 

little economic analysis has been devoted to finding out how these funds should be allocated.  To 

our knowledge, only one paper examines the optimal spatial distribution of detection efforts.  

Our paper yields very different conclusions about how the intensity of detection should vary over 

space.  In particular, we show that optimal detection intensities increase with distance from the 

front due to increased benefits from management.   
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