%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Semiparametric Estimation of Consumer Demand
Systems with Micro Data

Abdoul Sam
Assistant Professor
Department of Agricultural, Environmental and Development Economics
The Ohio State University
Contact: sam.7@osu.edu

Yi Zheng
Ph.D. student
Department of Agricultural, Environmental and Development Economics
The Ohio State University
Contact: Zheng.485@osu.edu

Selected Paper prepared for presentation at the American Agricultural Economics
Association Annual Meeting, Portland, OR, July 29-August 1, 2007

Copyright 2007 by Abdoul Sam and Yi Zheng. All rights reserved. Readers may make
verbatim copies of this document for non-commercial purposes by any means, provided
that this copyright notice appears on all such copies.


mailto:sam.7@osu.edu
mailto:Zheng.485@osu.edu

Abstract

This article proposes a semiparametric two-step procedure for estimating a censored con-
sumer demand system with micro data. The semiparametric estimator considered in the
first step is suggested by Klein and Spady (1993). This estimator, used as a counterpart
of the probit estimator in a conventional two-step model, does not make any distributional
assumptions about the disturbances and so is exempt from model misspecification and plau-
sible heteroscedasticity. In the second step, we motivate the choice of the Almost Ideal
Demand System (AIDS) as an economic representation of consumers’ demand behavior. Im-
plementing our proposed semiparametric two-step procedure as well as Shonkwiler and Yen
(1999)’s two-step model to a household meat consumption dataset from China generates the
price and expenditure elasticities of demand. We also conducted the Horrowitz and Hardle

(1994)’s specification test to our data and reject the null.

Key words: censoring, semiparametric estimator, consumer demand system, food expen-

ditures.



1 INTRODUCTION

The increased reliance on cross-sectional household-level micro data to estimate consumer
demand equations has spawned a growing literature on the econometric treatment of the
censoring of dependent variables, which occurs when one or more commodities have a signif-
icant proportion of zero expenditures. Theorists have proposed full information maximum
likelihood (FIML) models which account for the left censoring of the dependent variables in
a system of equations (Wales and Woodland (1983), Lee and Pitt (1986, 1987), Amemiya
(1974), Chiang and Lee (1992)). However, the practical potential of the FIML approach
for the estimation of demand systems is limited by its computational cost when censoring
occurs for several commodities, as it requires the evaluation of multidimensional integrals.
Less efficient methods in the same realm as Heckman’s two-step sample selection approach
(1979) have been proposed as computationally expeditious alternatives to FIML estimators
(Heien and Wessells (1990), Shonkwiler and Yen (1999), Yen (2005), Yen and Lin (2006)).
In these methods, probit regressions which determine the probabilities that households will
make a purchase are obtained from a binary censoring rule. These probit regressions are used
to compute the inverse mill ratio for each household, which are then inserted in the second
step as instrumental variables. These methods are straightforward to implement and thus
have gained significant attention in applied work. However, these Heckman-type approaches
rely on a critical assumption that the error processes follow a joint normal distribution to
recover consistent estimates of the demand system and therefore are prone to distributional

misspecification. Specifically, when the underlying distribution between the error processes



is normal then these methods yield estimates that are \/n-consistent. On the other hand, if
the wrong joint distribution is assumed then the parameter estimates are O(1). Furthermore,
these Hackman-type models assume homoscedasticity in the disturbances, which is not al-
ways true especially in cross-sectional data. If heteroscedasticity emerges in the error terms,
not surprisingly these approaches may yield erroneous elasticity estimates with potentially
significant economic implications.

Drawing from recent advances in the nonparametric econometrics literature, this article
proposes a semiparametric approach for the estimation of censored demand systems that is
similar spirit to Heckman-type estimators but is exempt from distributional misspecification
and accounts for potential heteroscedasticity in the disturbances. The suggested semipara-
metric approach consists of two steps of estimation. In the first step, a semiparametric esti-
mator proposed by Klein & Spady (1993) is adopted as a counterpart of the probit estimator
used in conventional Hackman-type procedures. The Klein and Spady (1993)’s estimator is
both consistent and achieves the semiparametric efficiency bound, thus it has been applied
in several empirical studies (Newey, Powell, and Walker (1990), Martins (2001)). Similar
to Shonkwiler and Yen (1999)’s two-step method, in the second stage, the semiparamet-
rically estimated link function as well as the index computed from the latent parameter
estimates are incorporated in the demand equations which are then estimated by seemingly
uncorrelated regression (SUR).

This paper is organized as follows. Our proposed semiparametric estimation model is con-

structed and explained in Section 2. Section 3 presents an empirical analysis of a consumer



demand system with censored data. Specifically, the proposed semiparametric two-stage
procedure as well as Shonkwiler and Yen (1999)’s parametric procedure are implemented
using a cross-sectional dataset of 1,237 households from the Hainan province in China. Elas-
ticity estimates are computed with respect to two procedures and then are comparatively
discussed in aspects of their economic implications. Concluding comments are presented in
Section 4. Introduction and explanation about Horrowitz and Hardle (1994)’s test are in

Appendix B.

2 METHODOLOGY

We consider the standard empirical framework for a censored demand system, i.e.

Y;j = dij (g(Xijaﬁj)_'_Gij)

dij = I(VVZ/J")/J +Uij > 0), for i = 1,2, ey N ] = 1,2, e J

where /(w) denotes an indicator function of the event w, X;; and W;; are vectors of design
. th . .

variables for the j'* equation, Y;; and d;; are the response variables, §; and 7; are the

model parameters, and ¢;; and v;; are zero-mean and finite variance error processes. The

unconditional mean of Y;; is
E(Yi| X5, Wiy) = E(Yi|Xij, Wij; dig = 1) Prob(di; = 1)
= (9(Xija/3j) + E(eit|vij > —Wi/ﬂj)) Fj(Wij'v;)

= (9(Xij, ;) + AWyj'v;)) Fi(Wis'y;) (1)



where F;(W;;"y;) is the unknown cumulative distribution function (link function) of the error

term v;;. It follows from (1) that

where n,; = Yi; — E (Y| Xy, Wij). Let ®(-) and ¢(-) denote respectively the standard normal
cumulative distribution and probability density functions. If the errors, €;;,v;; are assumed
to follow a bivariate normal distribution with covariance 6, the system of equations (2)

becomes

¢(I/Vij,7j)

Yi; = (9<Xij,5j) + GJW) SWij'v;) +my 1=1,2,.m5=1,2,..0 (3)
1] J

which corresponds to the system of demand equations derived by Shonkwiler and Yen. They
propose that the 3;’s in (3) be estimated in two steps. First, estimate 7, by Probit to obtain
7;; then estimate the J equations (3) jointly as a system of seemingly unrelated regressions
(SUR) after substituting v; for 7,. As mentioned above, Shonkwiler and Yen’s approach
produces inconsistent estimates when the true unknown joint distribution departs from the
normal.

Instead of assuming joint normality of the disturbances, our proposed approach utilizes
Klein and Spady (1993)’s semiparametric method in the first step to estimate both the link
function Fj(.) and the parameter vector 7, for each censored equation. The Klein and Spady
estimator is semiparametric in that it does not make any assumption about the distribution of
the error term in the binary selection equation, instead it estimates the distribution function

nonparametrically using the Kernel method. However, it assumes a linear index function to



circumvent the curse of dimensionality common to nonparametric approaches. Briefly, the

Klein and Spady estimator of v, is obtained by maximizing the quasi-likelihood function
() =t S (dy Tog(F (W ;) + (1 — diy) log(1 — F5 (W 7))

=1

where

- > ey A K (v — vij) )
Fi(vg:) = = , i = W 7., K =1/h K(u/h
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and h is a non-stochastic smoothing parameter (see Klein and Spady for technical details).
Klein and Spady show that the resulting estimator, 7;, is both consistent and efficient.
What’s more, the KS estimator accommodates a certain form of heteroscedasticity by which
the probit model is inconsistent.

Our two-step approach to estimate the demand system (2) proceeds as follows. First,
obtain the estimates of v, and the link function Fj(.) using Klein & Spady’s (1993) method for
each censored equation. Second, 7; and E(@) are substituted for v and Fj(v;;) respectively
in (2), and following Newey (1991) and Fraga and Martins (2001) A(v;;) is approximated with
a series based on orthogonal polynomials of the first-stage index, i.e. A\(;;) ~ > sz1 ak@k_l

where {a;} are unknown coefficients. Hence, the second step consists of estimating the

following system of nonlinear equations

K
Y = <g(Xij,ﬁj)+Zak@§k‘1> Fi(vg) +&;, i=1,2,.m;j=1,2,..0 (4)
k=1



3 EMPIRICAL ANALYSIS

3.1 The Data Set

In this section we apply our proposed econometric model developed in section 2 using a
survey of household meat consumption carried out by the National Statistical Bureau in
China (2003) over a one-year period. The survey, which was undertaken in Hainan Province
of China, contains information on the purchases of various types of meat by each household,
together with information on the characteristics of the household members. As in Yen & Lin
(2006), we limit our empirical analysis to four popular meat products: beef, pork, fish, and
poultry. The resulting sample data set contains 1,237 urban households. Pork and poultry
are consumed by nearly all (over 99%) households in the sample, while about 93.5% of sample
consume fish and 50.8% of the sample consume beef during the year. From the reported
expenditure and quantity of each meat product consumed, price was derived as the unit
value. Missing prices for nonconsuming households were replaced by regional averages as in
Yen and Lin (2006). In addition to expenditure and prices, we also have three demographic
variables which are respectively the number of wage earners in a household, educational
level of household head, and household size. Definitions of variables and sample descriptive
statistics are presented in table 1. It appears that pork is the most consumed food while

beef is the most expensive one on average.



3.2 Empirical Results for the Selection Equations

We estimate two selection equations, one for beef, and the other for fish by Probit and KS
estimators respectively. The dependent variables in the selection equations are dichotomous
variables that take the value 1 if the household makes a purchase and zero otherwise. Beside
of the expenditure and price explanatory variables, we also include the three demographic

variables. Consequently, the specification of the first step selection equations are given by

w; = o logx+, log py+,log pp,+73logps +v,log e +ys NOWE g HSIZE 4, EDUC

()
where j represents beef and fish for which censoring occurs substantially (50.8% and 93.5%
respectively). The estimation results are presented in table 2.

The probit estimates of the three demographic (non-price) variables are not significant
at any conventional level except that the estimate of the education of household head is
significant at the 5% level in the selection equation for fish. It is plausible that educated
people consider the dietary benefits of eating fish. On the other hand, the Klein and Spady
results indicate that the number of wage earners and household size are significant at the
1% level for purchase of beef. Besides, the KS estimate of the number of wage earners is also
significant at the 5% level for purchase of fish. Both probit and KS estimates suggest that
the household expenditure on meat and the price of beef are significant at the 1% level in
the selection equation for beef and also for fish. Additionally, it appears that whether or not
to consume fish does not depend on the price of fish instead it depends on the price of beef

and the household total expenditure, however whether to consume beef depends on almost



everything.

Compared to the probit estimation results, the KS estimates have considerably small
variances which reveals higher efficiency of the KS estimator, but both two types of estimates
suggest that the total expenditure has a positive below unity coefficient which indicates that
the increasing total expenditure raises the probability of consumer purchasing beef and fish
but more effectively with fish rather than beef. The significant (suggested by KS estimates)
demographic variable, the number of wage earners in households brings down the probability
of consumers purchasing beef but promotes the probability of purchasing fish. Another
significant (also suggested by KS estimates) demographic variable, the size of household has
a negative below unity coefficient to the selection of beef, which demonstrates that larger-size
households have less probability to purchase beef.

To determine whether the normal distribution assumption made by the probit model
is consistent with our data, we utilized the specification test proposed by Horrowitz and
Hérdle (1994). The test is based on the distance between the KS estimator and its probit
counterpart, specifically the difference between the probit link, ® and the nonparametric
regression curve, F'. Under the null hypothesis that the link function is specified correctly

as a standard normal cumulative distribution function, the test statistics has the form

L=y (@ B){Z; — (B M Fi(}B) — ®(«}5)}

and asymptotically follows a normal distribution with zero mean and variance o2 (see Ap-

pendix for details). As mentioned above, ﬁz(a:;B) is the CDF estimated by the KS method,
®(z3) is the CDF estimated by the probit model, / is the bandwidth used in the semi-
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parametric regression and chosen by cross validation, u(wﬁ) is a weighting function that
downweights extreme index values, and Z; is the binary dependent variable. The asymptotic
variance o2 is replaced by a consistent estimate (see Appendix for its estimator).

The test results are presented in table 3. As expected, the probit link is clearly rejected
at the 1% confidence level for both selection equations of beef and fish. Additionally, visual
implication of the CDF and PDF plots (figure 1 and 2) show differences between the probit
and KS estimates. Noticeably the plot for beef is bimodal based on KS estimates, a feature
that cannot be captured by probit estimates. We conclude that the normality assumption
of the probit model is not consistent with our data. In this way, using more sophisticated
(semiparametric) approaches is necessary and can be more informative and reliable than a

standard parametric approach.

3.3 FEstimated Demand Flasticities

In the second stage, we estimate equation (2) using the AIDS functional form of the demand

system g(Xi;, 3;), specified as follows.

J
wy; = a; + bj(log%) + ;fyjk logpi, fori=1,2,..n; j=1,2,...J;k=1,2,...J (6)
J J o
logP = ao—i-Zaj 1ogpj+.5ZZij log p, log pi, (7)
= j=1 k=1

where w;; is the ith household’s expenditure share of commodity j, z; is the ith household’s
total expenditure, p; stands for the price of jth commodity, and P is a price index specified

as in (7). Incorporating equation (6) into (3) and (4) respectively gives the two estimating



systems as

¢(VV1/’7) I~
wfj = (a] + b; (log Iz )+ Z’ij log pix, + 0, @(W—j/%) o(Wyy'v;) + ffj (8)
1] ¥

k=1

wi; = (aﬂrb 1og +Z%klogpm+2ak ) )F(WW T)+E (9)

where & = wy; — E(wy;) and & — E(wj;).We choose the number of polynomials
contained in A(7;;) to be 2 by cross-validation method. Estimating (8) and (9) by Iterated
Seemingly Unrelated Regression (ITSUR) yields parameter estimates which can be used to
derive the demand elasticities.

Because of the two-step estimation procedure, it is well known that the standard errors
need to be adjusted to account for the added randomness due to the first step estimation.
We circumvent this issue by bootstrapping our sample. Specifically, we obtained 100 boot-
strap samples from our data; performed our multi-step estimation for each sample; and
constructed standard error estimates for our parameters from the resulting distribution of
bootstrapping parameter estimates. Table 4 presents the parametrically estimated elastici-
ties and their standard errors, calculated by the bootstrap method. The semiparametrically
estimated elasticities and their bootstrapping standard errors are in table 5.

As seen in table 4, Shonkwiler and Yen’s parametric estimation results suggest that all

uncompensated own-price elasticities are negative, below unity (except that pork has a sub-

tly above unity own-price elasticity), and significant at the 1% level. All significant (at the

'Demand elasticities are calculated by differentiating the unconditional mean of expenditure shares.
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10% level or lower) uncompensated cross-price elasticities are negative (except between beef
and pork), suggesting gross complementarity among the meat products. The uncompen-
sated cross-price elasticities between pork and fish, and between pork and poultry are not
significant. Expenditure elasticities are below unity for beef, pork, and fish but above unity
for poultry, which indicates that the first three meat products are normal goods but isn’t
poultry. Unlike uncompensated cross-price elasticities, the significant (at the 1% level) com-
pensated elasticities indicate net substitution between beef and pork, between fish and pork
and between poultry and pork, and net complementarity between beef and fish and between
beef and poultry. All compensated own-price elasticities are negative and significant at the
1% level, and also smaller than their uncompensated counterparts due to the positive ex-
penditure elasticities. The semiparametric estimation results shown in table 5 suggest very
similar statements about both the uncompensated and compensated price elasticities but
very different expenditure elasticities, i.e. the total expenditure elasticities are above unity

for beef, fish, and poultry but only below unity for pork.

4 CONCLUDING REMARKS

The use of micro survey data has been popular in estimating consumer demand equations,
thus interest in censored data has continued to grow. For the application such that zero ob-
servations occur in one equation, direct ML estimation of the Tobit model would be straight-
forward under the normality assumption. For a large system with many censored equations a

two-step estimator though statistically inefficient, is a computationally expeditious alterna-
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tive to the full information ML estimator as it avoids evaluating multidimensional integrals.
However, the conventional two-step procedure generates inconsistent estimates if wrong joint
distribution is assumed. This paper contributes to the censored demand system literature by
incorporating the recently advanced semiparametric estimation methodology to the conven-
tional two-step econometric framework. This semiparametric methodology appears particu-
larly attractive in model specification regarding the underlying distribution generating the
disturbances and in its ability to accommodate a certain form of heteroscedasticity which
likely happens in cross-sectional data.

The proposed semiparametric two-step model is applied to an empirical analysis with a
survey data set of meat product consumption in China (2003). For the demand system where
only a subset of equations is censored (beef and fish), selectivity terms are included only for
equations with zero observations. The AIDS functional form of the demand system was
used to obtain elasticity estimates. Although the proposed semiparametric and Shonkwiler
and Yen’s procedure produce very similar price elasticities for the current application, the

differences among these models are worthy of further investigation in other applications.
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5 APPENDIX A: Tables and Figures

Table 1. Variable Definitions and Sample Statistics (Sample Size: 1,237)

Variable Mean | Std Dev

Quantities (Kg. per person per annum)
Beef (Consuming households: 50.8 % of sample) | 2.64 5.60

Pork 4290 | 27.32
Fish (Consuming households: 93.5%of sample) | 11.76 | 13.33
Poultry 18.34 | 17.52
Expenditures (Yuan per person per annum)
Beef (Consuming households: 50.8% of sample) | 36.66 | 77.46

Pork 461.82 | 290.69
Fish (Consuming households: 93.5% of sample) | 83.29 | 97.97

Poultry 208.67 | 187.75

Prices (Yuan/Kg.)

Beef 14.38 | 2.404
Pork 10.83 | 1.12
Fish 7.32 1.96
Poultry 12.16 | 3.75
NOWE (number of wage earners) 1.48 0.89
HSIZE (size of household) 3.05 0.87
EDUC (educational level of household head) 5.34 1.63

Source: Urban Household Survey, China’s National Statistical Bureau, 2003.
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Table 2. Estimates for the Sample Selection Model

Probit Klein-Spady
Beef Fish Beef Fish

Variables Coeft. S.E. Coeft. S.E. Coeft. S.E. Coeft. S.E.
Intercept | -3.740%** | 1.053 | -0.562 | 1.739

Ix 0.600*** | 0.065 | 0.735%** | 0.096 | 0.163*** | 0.015 | 0.505%** 0.056

Ipb -0.836™** | 0.200 | -0.768** | 0.404 | -0.073*** | 0.009 | -0.365%** 0.112

Ipp 0.623* | 0.391 | -0.287 |0.598 | 0.037* | 0.023 | -0.092 0.109

Ipf 0.675%%* | 0.175 | -0.379* | 0.285 | 0.113*** | 0.011 | -0.103 0.110

Ipt -0.261** | 0.134 | 0.111 | 0.199 | -0.019*** | 0.007 0.041 0.043

NOWE -0.025 | 0.050 | 0.001 | 0.083 | -0.020*** | 0.004 | 0.059** 0.028

HSIZE 0.000 0.049 | 0.090 | 0.086 | -0.036*** | 0.004 0.003 0.021
EDUC -0.011 | 0.024 | 0.073** | 0.038

Note: 1. Triple(***), double(**), and single(*) asterisks indicate significance at the 1%, 5% and 10% levels, respectively.

2. The intercept cannot be identified by nonparametric estimators; the last predictor variable is fixed at its probit estimate.

Table 3. Results for Horrowitz and Hardle Test

Beef

Fish

Statistic

—2.37

935

p-value
0.01

0.00
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Table 4. Parametric Elasticity Estimates

Price of Total
Product Beef Pork Fish Poultry | Expenditure
Uncompensated elasticities
Beef -0.73**% | 0.46%* -0.06 | -0.37*** 0.68%+*
(010) | (0.21) | (0.17) | (0.13) (0.10)
Pork 0.04% | -1.02%** 0.02 -0.01 0.97%*
(0.03) | (0.06) | (0.02) | (0.03) (0.02)
Fish -0.39%** | -0.09 | -0.62%** | -0.33*** 0.96%**
(0.13) | (0.13) | (0.10) | (0.07) (0.05)
Poultry -0.15%**F | .0.08 | -0.11%#F | -0.71%** 1.06%**
(0.05) | (0.08) | (0.03) | (0.07) (0.05)
Compensated elasticities
Beef -0.70%** | 0.87*** 0.01 -0.19*
(0.10) | (0.21) | (0.16) | (0.13)
Pork 0.08%#% | -0.44%F*F | 0. 12%1FF | (.24%**
(0.03) | (0.06) | (0.02) | (0.03)
Fish -0.35%*% | 0.48%** | -0.53*** | -0.08
(013) | (0.13) | (0.10) | (0.07)
Poultry -0.11%* | 0.55%** 0.00 -0.43%***
(0.05) | (0.08) | (0.03) | (0.07)

Note: Bootstrapping standard errors are in parentheses. 1I§iple(”‘*"‘)7 double(**), and single(*) asterisks indicate

significance at the 1%, 5% and 10% levels, respectively.



Table 5. Semiparametric Elasticity Estimates

Price of Total
Product Beef Pork Fish Poultry | Expenditure
Uncompensated elasticities
Beef -0.94%*% | 0.51%F* -0.89% | -0.42** 1.05%**
(017) | (0.27) | (0.58) | (0.19) (0.10)
Pork 0.04*% | -1.01%** 0.01 -0.01 0.97%*
(0.03) | (0.06) | (0.02) | (0.03) (0.02)
Fish -0.06 -0.10 | -0.69%** | -0.36%** 1.03%%*
(0.10) | (0.13) | (0.10) | (0.07) ( 0.06 )
Poultry 017 1 2010 | -0.14%FF | 0.69%** 1.10%**
(0.06) | (0.08) | (0.03) | (0.07) (0.06 )
Compensated elasticities
Beef -0.89%** | 1.13*** | _0.78%* -0.15
(0.17) | (0.26) | (0.59) | (0.19)
Pork 0.09%#% | -0.44%F% | 0. 110FF | 0.24%**
(0.03) | (0.06) | (0.02) | (0.03)
Fish -0.01 0.51%#% | -0.59%** | -0.10*
(010) | (0.13) | (0.10) | (0.07)
Poultry -0.13%*% | 0.55%** -0.03 | -0.40%**
(0.05) | (0.07) | (0.03) | (0.08)

Note: Bootstrapping standard errors are in parentheses. 1I@iple(”‘*"‘)7 double(**), and single(*) asterisks indicate

significance at the 1%, 5% and 10% levels, respectively.



Figure 1: Cumulative Distribution Function

Beef
mimimi Fish
4 Std.Nor.

0.9}

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2: Probability Density Function

0.9
Beef
Q .
0.8} _"l mimimi Fish
i"! +  Std.Nor.
0.7} i !
: o
; o
0.6 !
-
|
0.5} ] ;‘
!
.
- 1
i 4
L
4
L
1
L
s
K

17



6 APPENDIX B: Horrowitz and Hardle Test (1994)

Horrowitz and Héardle (1994) proposed a procedure for testing the adequacy of a probit
(parametric) model against a semiparametric alternative that can be used for binary response
models. In this paper, the authors suggest testing the specification of a single-index model

according to the hypothesis:

Hy :  FEZ|X'B=v)=F(v)

Hy, : E(Z|X'S=v)=H@) where H(v) is an unknown function

When the link is a probit one, under the null and some regularity conditions the test statistic
has the following property

VI u(@lB){Z — ®(«iB)HF(18) — ®(«5)}
_ i=1

205, N~ {u(@]B) By (2 B)[1—Fy (z5)]}2
V5

~ N(0,1)

T,
T:X
ar

Py («B)

where

Cy = /: K(z)*dr = /_Z o(x)2dx = /:( L e 27 )2dy = b

/B) (1 if 98% of /B

’U/(.%z — L0 else

Note: F},(«/f) is the nonparametric CDF estimator:; E(wé@) is the nonparametric estimator

of the probability density function
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