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Abstract

The threat on the survival of animal species due to intensive use of natural

resources is incorporated within resource management models, paying special

attention to uncertainty regarding the conditions that lead to extinction. The

manner in which the potential benefits forgone due to the species extinction

(denoted extinction penalty) induce more conservative exploitation policies is

studied in detail. When the extinction penalty is ignored, the optimal policy

is to drive the resource stock to a particular equilibrium level from any

initial state. When the extinction penalty is considered and the conditions

that lead to extinction are not fully understood (i.e., involve uncertainty),

an interval of equilibrium states is identified, which depends on the penalty

and the immediate extinction risk.
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Endangered Species and Natural Resource Exploitation:
Extinction vs. Coexistence

I. Introduction

In August 1973, the $100 million Tellico dam was almost complete when a

University of Tennessee zoologist discovered that the Little Tennessee River (soon

to be turned into a reservoir) is home to the snail darter-a previously unknown

species. At the same year, the Endangered Species Act (ESA) was enacted to

protect endangered (under risk of extinction) and threatened (likely to become

endangered in the foreseeable future) species. The snail darter was soon enlisted

as endangered and a lawsuit (Hill v. Tennessee Valley Auth.) was filed against the

Tennessee Valley Authority that owned the dam. Observing that "Congress...had

chosen the snail darter over the dam," the Supreme Court had no choice but to rule

against Tellico (Littell, 1992, p. 3), turning the incomplete dam into a giant

monument of the "extinction vs. coexistence" dilemma and changing forever the

landscape of wildlife protection law.

The Tellico project remained in limbo until rescued by Congress in 1978. The

1978 amendments to the ESA directed the Secretary of the Interior to designate a

"critical habitat" to newly enlisted species and to consider economic impacts

(Littell, 1992, p. 11). An important provision of the amendments allows for

exemption of a federal project from the Act if it is determined (by a cabinet-

level Endangered Species Committee) that "...the benefits of the proposed federal

actions clearly outweigh the benefits of preserving the species." (US-GAO, 1992,

p. 8). It is with this amendment in mind that we set to study the exploitation of

a natural resource that serves a dual purpose: first, it serves human needs and is

therefore exploited for beneficial use (however defined); second, it serves as a

habitat for an animal population whose existence depends on adequate quality and

quantity of the resource, without which the species faces an extinction risk.
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The Tellico story has a happy end: The dam was exempted from the Act and

completed in 1979; soon after, the snail darter was found in other rivers, where

it flourishes today, and was reclassified as threatened. But a Tellico-like

situation,, in which resource exploitation for human needs comes at the expense of

habitats essential for the existence of other species, is often encountered and

will become more pervasive as the competition for the world's finite resources

grows fiercer with the growing human population compounded with a rising standard

of living.

* In California, water diversion from the Sacramento and San Joaquin Rivers

had been restricted to protect fish and wildlife in the Delta Estuary (Fisher,

Hanemann and Keeler, 1990). Coming at the expense of water entitlements for farms

and cities in the Central Valley and Southern California, these restrictions lead

to intense political struggles between environmentalists, farmers and city

dwellers.

* In North America, the American Fisheries Society lists 364 species of fish

as endangered or threatened, most are at risk due to habitat destruction. Only

four adult Snake River sockeye salmon managed to reach their spawning ground in

1991, swimming from the Pacific Ocean, through eight dams in the Columbia River

basin, to Idaho's Redfish Lake (Apostol, 1993).

* Reclamation of swamps and wetlands comes at the expense of habitats for

migrating birds, some of which are already on the Endangered List (Weitzman,

1993).

* At the current rate, a forest area about the size of England is being

cleared every year (Hartwick, 1992), leading to the extinction of incalculable

number of species (Colinvaux, 1989).

* In 1988, the world population of the Chinese river dolphin, found primarily
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in the Yangtze River in east central China, was estimated at 300 individuals. The

population decline is attributed in part to river construction (Thompson, 1988).

In the above examples the species under extinction risk may not contribute

directly to human well being, yet a benefit is assigned to their very existence -

a benefit often referred to as existence or nonuse value. The species may also

contribute to recreational activities, so elimination entails the loss of a

recreational option, and their survival contributes to biodiversity (Weitzman

[1992, 1993]; Polasky, Solow and Broadus [1993]). While economists may disagree

on how to measure such extra-market benefits (Hausman [1993]; Hanemann [1994]),

the notion that preserving genetic diversity is desirable commands a wide

consensus (about one half of medicine prescriptions originate from organisms found

in the wild [Littell, 1992, p. 5, Bird, 1991]).

In this study we incorporate extinction risk within resource management

models, paying special attention to uncertainty regarding the conditions that lead

to extinction. As a metaphor, we consider an animal species that requires a

minimal level of the resource stock to maintain its livelihood. Below this

critical level the species is doomed to extinction. The critical level at which

extinction occurs is incompletely known, reflecting our partial ignorance of the

species ecology.

We investigate how the threat on the existence of an animal population should

affect the way nature is exploited for human needs. We shall not be concerned

with moral or ethical issues regarding whether or not to preserve, nor shall we

deal with how to measure the benefit of preservation (this has been done by

others, of which some are mentioned above). We simply assume that preservation is

valuable or, alternatively, that extinction entails a penalty represented by a

fine (exogenously determined) to be incurred at the time extinction occurs. It is



hardly surprising that the size of this penalty has a profound effect on the

optimal exploitation policy, though less obvious is how this effect is manifested.

We derive below the precise manner in which the extinction risk and penalty affect

optimal exploitation policies. This should help focus environmental debates on

the main issues, away from groundless rhetoric.

The present work draws on the analysis of Tsur and Zemel (1994a), who extended

earlier works of Cropper (1976) and Heal (1984) to study groundwater extraction

under uncertainty with regard to the occurrence of an event (such as salt water

intrusion) that irreversibly ruins the aquifer. The analysis was later extended

to consider events that are partly reversible (i.e., their damage can be fixed at

a cost) and used to incorporate global warming risks within models of fossil fuel

usage (Roe, Tsur and Zemel, 1994; Tsur and Zemel, 1994b). The present effort

extends the partly reversible model to situations where resource exploitation for

human needs comes into conflict with other species survival. The extent of

reversibility is different in the present model, since, apart from the penalty,

event occurrence removes further extinction-related constraints on future plans.

Similarities with the previous models allow us to refer to the above mentioned

works for some of the more technical derivations.

II. The problem

To be concrete, we discuss the problem in the context of a water stream that

supports a wildlife habitat if left instream, e.g., by improving spawning of some

fish population, and that is also demanded as an input of production by irrigators

and other manufacturers. Let S denote the state of the water stream, measured,

say, by the water level at some crucial point along the river. Net natural

replenishment - inflows from surface streams and springs minus outflows--is

represented by R(S), and off stream diversion rate is denoted by g. These two

4



processes determine the time evolution of S:

dS/dt St = R(S) - gt. (2.1)

At the state level S net recharge is nil, i.e., R(S) = 0. The cost of

diverting g at the state S is C(S)g, where C(S) is the unit diversion cost, and

the benefit of consuming g is Y(g). The net benefit of consuming g at the level S

is Y(g)-C(S)g.

The following assumptions are made: (i) R(S) is decreasing and concave; (ii)

C(S) is non-increasing and convex; and (iii) Y(g) is increasing and strictly

concave with Y(0) = 0. The properties of C and Y are common. The properties of R

are typical of a resource stock that is recharged from exogenous sources (i.e.,

does not reproduce itself), such as a water stream.

An exploitation policy (or plan) consists of the extraction process gt and the

associated state process St, t 2 0. A plan is feasible if, for all t, gt is

piecewise continuous and nonnegative, and St > 0.

Excessive off stream diversion may lead to species extinction. To retain

simplicity, we assume that only one species is at risk. When extinction occurs, a

penalty of size \ is inflicted and the exploitation process proceeds thereafter

with no further extinction risk. The penalty y, represents benefits forgone due to

extinction and is treated here as an exogenous parameter.

Let VP(S) denote the post-event value function, starting from So = S. Since

no further risk is to be considered after occurrence, VP(S) is given by
Co

VP(S) = Max f[Y(g)-C(St)gJe-P tdt (2.2)
{gJ}

subject to: St = R(St)-gt, gt 2 0, St 2 0 and So = S, where p is the time rate of

discount. VP(S) is also the value corresponding to the pre-event problem with no

extinction penalty (i.e., when W = 0).



Let X represent the minimum state level of the resource required to maintain a

viable population: when S falls below X, the extinction event occurs. Suppose

that X is known with certainty and the event has not yet occurred (i.e., So > X)

and let VC(So,X) denote the corresponding value function. The case VC(X,X), when

So = X, is of particular interest, because the planner must decide immediately

whether to cross the critical level, enjoying the benefit VP(X)-y, or to stay at

or above it, avoiding the penalty. The conditions for either decision are

analyzed in the next section, and the corresponding optimal benefit (p(X) = VC(X,X)

is derived.

The problem when X is known with certainty can now be formulated in terms of

(p(X). Let T > 0 be the first time the state process reaches the level X (if X is

never encountered, T = oo). Then,

T

Vc(S,X) = Max f[Y(gt)-C(St)ge-Ptdt + e-PT(X) (2.3)
{gt,T} 0

subject to: St = R(St)-gt, gt 2 0, St > X, ST = X (if T < oo), So = S > X.

The critical state level needed to maintain a viable population is in general

incompletely known and can be specified only in terms of the distribution and

density functions F(S) = Pr{X<S} and f(S) = dF/dS. The distribution F is assumed

to be continuously differentiable over [S,S], where S 2 0 is the highest instream

level at which extinction is bound to occur.

Under this type of uncertainty, it is convenient to let X represent the state

level at which the event occurs, so that T becomes the occurrence date. The

distribution on X induces a distribution on the occurrence time T as well. Given

that the event has not yet occurred, we search for the exploitation policy

corresponding to
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T

V(So) = Max E f[Y(g)-C(SJ dt + e-pT p(ST)- I T>o0 (2.4)
{g'} f

subject to St = R(St-gt, gt 2 0, St 2 0, and So given. In (2.4), Er represents

expectation with respect to the distribution of T. We assume that an optimal

solution exists.

As the process evolves in time, our assessment of the distributions of X and T

is modified, as X must lie below St = Min {ST}. The expected benefit (2.4),
T E [0o,t]

thus, involves St which depends on all history to time t, unless St evolves

monotonically in time, in which case St = St or St = So if St is non-increasing or

St is non-decreasing, respectively. It turns out (see Appendix A for a proof)

that:

Property 2.1: At least one of the optimal S-trajectories corresponding to (2.4)

evolves monotonically in time.

We therefore restrict attention to monotonic trajectories.

For non-decreasing S trajectories, it is known with certainty that the event

will never occur and the exploitation problem reduces to (2.2). For non-

increasing state processes, the distribution of T is given by

l-FT(t) = Pr{T>t T>0} = Pr{X<StIX<So} = F(St)/F(So) (2.5)

with the density fr(t) = dF,(t)/dt = f(S)[gt-R(S)]/F(So). The hazard rate

associated with T is fT(t)/[l-FT(t)] = X(St)[gt-R(S)], where

X(S) - f(S)/F(S). (2.6)

It is assumed that h(S) is non-increasing.

Express the expectation in (2.4) as

oo
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with I(.) = 1 or I(.) = 0 when its argument is true or false, respectively. Since

ET{I(T>t) T> 0} = 1-F,(t) = F(S)/F(So), the objective function for non-increasing

trajectories becomes

00

f{Y(gt)-C(St)gt +(S)[gt-R(St)][VP(St)-V]}e -p t F dt. (2.7)

o

The allocation problem for which (2.7) is the objective is denoted the auxiliary

problem. It is verified in Appendix A that the optimal state processes

corresponding to the post-event and auxiliary problems evolve monotonically in

time.

In the following section we use the optimal post-event plan to characterize

the optimal exploitation policy under certainty--when the critical state level X

is completely known. Using the optimal state processes of the post-event problem

and of the auxiliary problem, we characterize, in Section 4, the exploitation

policy under uncertainty--when X is known up to a probability distribution.

HI. Certainty

The post-event value function VP(S) plays important roles in both the

certainty and uncertainty problems: it affects the allocation problem under

certainty in that it determines the terminal value (p(X) at time T (see Eq. (2.3)),

and it directly enters the uncertainty objective function (see Eq. (2.7)). The

post event problem is similar to the certainty problem analyzed in Tsur and Zemel

(1994a). We summarize below its main properties. A differential equation for the

evolution of the optimal extraction rate is presented in Appendix B. The value

function VP(S) is calculated given the optimal extraction trajectory.

Define J(S) = (S)R(S) and L(S) = [p-R'(S)][Y'(R(S))-C(S)-J(S)], and let S

be the state level satisfying
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S = 0 if L(O) > 0
) = S if L(S) < 0 * (3.1)

L( = 0 otherwise

Since p-R'(S) > 0, the roots of L(S) are the same as the roots of Y'(R(S))-C(S)-

J(S). The properties of Y, R and C ensure that the latter function increases with

S, hence S is unique. It follows (see Appendix B and Tsur and Zemel, 1994a),

that:

Property 3.1: S is the unique steady state to which the optimal state process

corresponding to the post-event problem converges from any initial state.

At equilibrium, the post-event value reduces to the equilibrium benefit W(S)

where W(S) = [Y(R(S))-C(S)R(S)]/p. Outside equilibrium, the determination of

VP(S) requires the optimal trajectory (see Appendix B).

Turning to the certainty problem (2.3), where the critical level X is known in

advance, we consider initial states at or above X, for otherwise the event has

already occurred and the post-event analysis applies.

Next, we assert that the optimal state process Sc cannot decrease when

starting at So < S. For if it does, the monotonicity of St requires it to

approach some value below S. However, according to Property 3.1, Sc yields a

lower benefit than the optimal post-event process SP (initiated at the same level

So) even when Sc carries no penalty. Moreover, the non-decreasing process SP

yields the same value for both the certainty and the post-event problems, hence it

must be optimal for the former problem as well.

For the same reason it cannot be optimal to trigger the event when X < S.

Thus, the certainty problem may differ from the post-event problem only when

S < X < So, which we maintain for the reminder of this section.

Define



S= S if VP(X)-W(X) > (3.2)
X if Vp(X)-W(X) < N

(The singular case VP(X)-W(X) = y will be discussed separately.) We show that

Property 3.2: When S < X _ So and VP(X)-W(X) `, S is the unique steady state to

which the optimal state process of the certainty problem converges.

Proof: Consider any state S > X. We show that S cannot be an equilibrium state

by constructing a plan, initiated at S, that yields a higher value than the

equilibrium benefit W(S). For some arbitrary small constants h> 0 and >0, define

the extraction plan, starting at the state S

8h R(S) + 8, 0 t < h
gt ) h (3.3)

t R(Sh) , th

When the product h6 is small enough, the new equilibrium level Sh lies above X and

the event does not occur. Under these conditions, the benefit V h(S) associated

with g8h is found to be (Tsur and Zemel, 1994a):

vh(s) - W(S) = L(S)8h/p + o(6h). (3.4)

Since S > S, L(S) > 0 and there exist h > 0 and 6 > 0 such that

V8h(S)-W(S) > 0. Thus, the steady state plan that yields the value W(S) is not

optimal, ruling out the possibility that S is a steady state.

A state S < X can be reached only during the post-event period, for which

Property 3.1 implies that only S can be a steady state. It follows that only S or

X may qualify as steady states. Now, to reach S, the optimal plan must pass

through X. While at X, it is always possible to enter a steady state and enjoy

the benefit W(X). Proceeding towards S entails triggering the event and enjoying

the benefit VP(X)-N. Thus, it pays to proceed to S if and only if

VP(X)-W(X) > V.,
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The above consideration implies that if VP(X)-W(X) = W, both S and X are

optimal steady states, and the choice between the processes leading to each of

them is arbitrary. This singular case marks the transition from the equilibrium

state S, typical of the post-event (or penalty-free) problem, to the critical

level X. We call the function VP(X) -W(X) the implicit penalty. When the actual

penalty W exceeds the implicit penalty, extinction cannot be optimal.

Since the steady-state policy is always available, VP(S) 2 W(S), equality

holding at the equilibrium state S. Hence, also VP'(S) = W'(S). Above S, it is

verified in Appendix B, the implicit penalty cannot decrease:

VP'(S) - W'(S) 2 0 for all S > S. (3.5)

Thus, populations with larger critical levels X require higher penalties W to be

saved from extinction.

In view of (2.3), The optimal state process of the certainty problem St is

characterized as follows:

(i) X < S: Here, St = SP, which is the optimal state process of the post-event

problem. In this case extinction is not desirable even with vanishing penalty and

the certainty solution is the same as that of the post-event problem.

(ii) S < X 5 So and VP(X)-W(X) • W: Here, St, t e [0,T], and T are found by

solving

T

Vc(So,X) = Max f[Y(gt)-C(St)g]e-Ptdt + e-PTW(X)
{g,,T} o

subject to St = R(S)-gt, gt > 0 and Sr = X. For t 2 T, St = X. In this case the

penalty is sufficiently high to prevent extinction, and <p(X) = W(X).

(iii) S < X < So and VP(X)-W(X) > \y: Here, St , t e [0,T], and T are found by

solving
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T

V(So,X) = Max f[Y(g)-C(St)gj]ePtdt + e-PT[VP(X)-M]
{gt,T}

subject to St = R(St)-g t, gt > 0, and ST = X. For t Ž T, St is the same as S'

that departs from X. In this case the penalty is not sufficiently high to prevent

extinction, and <p(X) = VP(X)-y.

Under certainty, the most dramatic effect of inflicting a penalty upon

extinction is seen to be the shift of the equilibrium state from S to the critical

level X when the extinction penalty W exceeds the implicit penalty VP(X)-W(X). We

proceed to show, in the following section, that under event uncertainty the

penalty effect assumes a very different nature.

IV. Uncertainty

In characterizing the optimal policy of the uncertainty problem (2.4) we make

use of the optimal policies of the post-event and the auxiliary problems. The

former has been studied above. The latter, in light of (2.7), is formulated as:
00

Va(S) = Max {Y(gt)-C(St)gt+X(S)[gt-R(St)][VP(St)-]}e-pt ) dt (4.1)
{g'f o

subject to St = R(St)-gt, St 2 , gt > 0, and So 2 S given. As will soon become

apparent, the auxiliary problem is relevant only for state levels in [S,S], hence

the constraint St 2 S.

Define

Lw(S) = L(S) + pX(S)[VP(S)-W(S)-W] (4.2)

where it is recalled that L(S) = [p-R'(S)][Y'(R(S))-C(S)-J(S)]. Let SW be some

equilibrium state of the auxiliary problem (i.e., at S = SW, the optimal off-

stream diversion rate corresponding to (4.1) equals R(S) and it remains at this

level forever). Then, following the analysis of the post-event problem (see

appendix B), it is verified that:
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Property 4.1: Any equilibrium state Sy of the auxiliary problem satisfies:

S = S if L(S) < 0 (4.3)
L(Sw) = 0 otherwise

According to (4.3), any equilibrium state in [S,S) must be a root of Lw. In this

respect, the function Lw generalizes L(S) of the post-event problem. Indeed,

under certainty, when X(S) vanishes, the two functions coincide. (Interestingly,

when W vanishes, i.e., when extinction entails no penalty, Lw does not reduce to

L, but satisfies Lw > L, equality holding when S = S. Therefore, both functions

have the same unique root in [S,S), namely S, yielding the same equilibrium

state.)

Can the auxiliary problem admit multiple equilibria in [S,S]? The answer, in

light of Property 4.1, depends on whether (4.3) has more than one solution. It

turns out that SW of (4.3) is unique. To see this, differentiate (4.2) to obtain

L4(S) = L'(S) + pX'(S)[VP(S)-W(S)-y] + pX(S)[VP'(S)-W'(S)]. (4.4)

Recalling that VP(S)-W(S) = L(S) = 0, we see that LW(S) = -pk(S)w < 0, assuming

that both W and X(S) are positive. Clearly, for states S > S satisfying

VP(S)-W(S) > W, we have LW(S) > L(S) > 0 and such states cannot be roots of Lw.

Thus, attention can be restricted to states S > S for which VP(S)-W(S) < w. Now,

since L(S) is increasing and X(S) is non-increasing, the sum of the first two

terms on the right-hand side of (4.4) is positive, while (3.5) ensures that the

last term is nonnegative. It follows that Lw(S) must increase in the relevant

interval, and there exists a unique state level SW in (S,S], satisfying (4.3).

Property 4.1, then, implies that SW is the unique equilibrium state of the

auxiliary problem. Being monotonic (cf. Appendix A) and bounded, the optimal

state trajectory of the auxiliary problem (henceforth denoted St) must converge to

an equilibrium state. We have thus established:
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Property 4.2: SY is the unique steady state to which the optimal state process

corresponding to the auxiliary problem (4.1) converges from any initial state in

[S,S].

Note the similarity of this result and Property 3.1. The role of VP(S)-W(S)-y

in shifting the equilibrium state is obvious. Unlike the certainty problem, the

equilibrium state does not jump abruptly from S when the penalty y exceeds the

implicit penalty. Rather, the auxiliary equilibrium state Sv changes continuously

as y is increased.

The optimal state process under uncertainty can now be characterized using the

optimal processes of the post-event and auxiliary problems in the same way it is

done in Tsur and Zemel (1994a-b). We briefly sketch the main idea, avoiding

technical details that can be found in these works. We denote by St the optimal

state process under uncertainty and recall that S, and St are the optimal state

processes of the post-event and auxiliary problems.

First, note that starting at S _• S, it can never be optimal to extract above

recharge, decreasing S. Such a policy is not desirable even without a penalty (SP

does not decrease when it lies at or below S). Following the post-event path,

then, involves no occurrence risk (with its associated penalty) and cannot be

outperformed by some decreasing path that involves a positive risk of triggering

the event and having to pay the penalty. With no extinction risk, the optimal

plan coincides with the post-event (or certainty) solution and St = SP.

Next, observe that St cannot increase when departing from an initial state at

or above S. This is so because for the post-event problem, the steady state

policy yields a higher benefit than any increasing plan starting at S > S. Now,

uncertainty does not affect the benefit associated with nondecreasing plans, hence

the steady state policy outperforms all increasing plans under uncertainty as
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well, and St cannot increase.

It turns out that St decreases when it departs from S > Sm and it is in

equilibrium when initiated at S e [S,S,]. To verify the former requires only

showing that states for which S > S, cannot be equilibrium states. This is done

by comparing the value V6h(S) generated by the extraction plan gsh of (3.3) with

the equilibrium benefit W(S) and finding that

Sh(s) - W(S) = Lw(S)8h/p + o(8h).

(The difference with (3.4) is due, of course, to occurrence risk during t<h.)

Since LW(S) > 0 for S > Sw, it is possible to obtain a value higher than the

equilibrium value W(S) (when 6h>0 is small enough). Thus, the equilibrium plan

cannot be optimal.

To show that [S,S.] consists of the equilibrium points of St, requires to show

that St cannot decrease in this interval (it has already been established that it

cannot increase). If S t decreases, it should coincide with Sa. But below Sm, the

latter is increasing. Thus, St cannot decrease.

The above discussion is summarized in

Property 4.3: Let St be the optimal process corresponding to the uncertainty

problem (2.4). Then: (i) St increases while passing through S levels below S;

(ii) St decreases while passing through S levels above SA; (iii) the interval

[S,S ] consists of the equilibrium states of St.

Indeed, parts (i) and (ii) verify our intuition that St should follow the

auxiliary path when it decreases and it should coincide with the post-event

trajectory when it increases. Together, parts (i) and (ii) imply that St

converges to the boundaries of the equilibrium interval [S,Sm] from any initial

state outside this interval. Entering the interval cannot be optimal because the
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expected loss due to event occurrence outweighs the potential gain. The optimal

state process under uncertainty is now completely defined in terms of the optimal

process SP and St .

Clearly, the equilibrium interval depends on the difference between the

implicit and actual penalties and on the extinction risk through the expected loss

term X(S)[VP(S)-W(S)-W]. In fact, for a very high penalty, when LW(S) < 0, every

state above S must be an equilibrium state, and the policy of extracting above the

recharge rate is never optimal. Comparing with the results of the certainty

problem, the dramatic effect of uncertainty is apparent: rather than a mere shift

of the equilibrium state, a full equilibrium interval emerges. This behavior is

typical of the class of problems involving uncertain events studied by Tsur and

Zemel (1994a, 1994b).

V. Closing Comments

Hardly a day goes by without one reading or hearing about some environmental

disaster creeping at our doorstep or a natural catastrophe of that sort or another

soon to occur. While some of these alarms turn out to be premature or even false,

others pose real threats on the well-being of the living species on this Earth,

and even more so, of future generations. It appears that we have been exploiting

our natural environment beyond its regenerative capacity, leaving a lesser,

degraded part of it from year to year. This process is irreversible to the extent

that parts of the environment are lost forever. The possibility of irreversible

losses requires prudent management because mistakes cannot be fixed. This is the

essence of the "extinction vs. coexistence" dilemma considered in this work.

As so much is at stake, environmental debates are often loaded and tend to be

long on emotion and short on economic rationale. Our aim in this work is to

contribute some to the latter: We offer a framework for analyzing a situation in
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which natural resource exploitation may lead to the extinction of other species

that do not contribute directly to human well-being. The species very existence,

however, entails a biodiversity value as well as other "nonuse" benefits, hence

its extinction inflicts an economic penalty.

When the extinction penalty is ignored, the optimal policy is to drive the

resource stock to a particular equilibrium state (S) from any initial state. When

the penalty is considered and the state at which extinction occurs is known (and

lies above S), extinction occurs only if the benefit associate with it (penalty

included) exceeds the benefit of maintaining the resource state just above the

extinction level.

Extinction conditions, however, are often incompletely known and may be

specified in terms of a probability distribution on the critical state level

needed to maintain the species. For this case, we identify an interval of

equilibrium states whose lower bound is S. The upper bound SW depends on the

extinction penalty and on the immediate extinction risk. Processes initiated

above the equilibrium interval converge to Sm rather than to S. This behavior

manifests how the economic value of preservation, as well as our partial ignorance

of the associated ecology, should affect the way we deal with our natural

resources.

The choice of the appropriate value of the extinction penalty allows for the

great flexibility of the model under study. Its limiting values correspond to the

extreme views that preservation must be guaranteed at all cost, or conversely,

that only direct human benefits should determine exploitation policies. For a

sound discussion of concrete situations, a rationale evaluation of the extinction

penalty is clearly called for.
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Appendix A: Monotonicity of the state processes

In this appendix we consider the monotonicity properties of the optimal state

processes associated with the various optimization problems introduced in Section

2. For each of these problems, we show

Proposition (Monotonicity): At least one of the optimal state trajectories

evolves monotonically in time.

The proposition implies that if any of the optimization problems (2.2), (2.4) or

(2.7) admits a unique solution, the corresponding state process must be monotonic.

For problems with multiple solutions, at least one solution must be monotonic.

Proof: We begin with the simpler post-event and auxiliary problems. Consider

first the case in which the optimal trajectory corresponding to (2.2) or (2.7) is

unique. Suppose that St is not monotonic. For concreteness, consider three

distinct time values, t, < m < t2, such that Sq < Sm and St < Sm. Since St is

time-continuous, there must exist some t3 e (t,,m), at which St increases, and

some t e (m,t2), at which St decreases, such that St3 = St4. However, Y, C, R, F

and p do not depend on t explicitly, hence the same decision problem is

encountered at t3 and at t . Thus, one cannot arrive at conflicting decisions

concerning the sign of gt-R(S) at these times, since the optimality of both

decisions violates the uniqueness of the optimal plan. This argument applies also

when Sm corresponds to a minimum rather than to a maximum.

For problems with multiple optima, some optimal S trajectory may not be

monotonic. We shall show, however, that it is possible to construct a monotonic

plan from a non-monotonic one. Observe, first, that the optimality of the

decisions at t3 and t4 implies that one can choose either gt3 or g 4 at t3 and t4

and obtain the same value. Furthermore, this freedom of choice prevails at any
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state level between St3 and Sm. Thus, the existence of a local extremum of S

implies the existence of a continuum of feasible plans, all yielding the optimal

value. To construct a monotonic plan, one specifies, for any state S permitting

several optimal diversion rates, a particular selection rule to ensure that

whenever S is encountered, the same diversion rate is adopted. For example, one

can demand that among the optimal diversion rates, the minimal optimal diversion

rate is selected. The ensuing plan is optimal and monotonic, because non-

monotonic plans involve conflicting choices of diversion rates at the same state

levels.

The uncertainty problem (2.4) differs from the post-event and auxiliary

problems in that decisions may depend on history. This means that passing through

the same state at different times may lead to conflicting decisions.

Nevertheless, we show that monotonicity is preserved.

Consider again problems admitting a unique solution, and observe that no new

information is gained (i.e., St = Min {S,} does not change) while passing
TE [0,t]

through a local maximum. Thus, the argument used above applies, implying that a

local maximum conflicts with the assumption of a unique solution, and once St

starts increasing, it cannot decrease at later times.

The analysis of a possible local minimum is more involved. Suppose that

diversion exceeds recharge at t3 < m but falls short of recharge at t4 > m, yet

St = St4 and Sm is the minimum level obtained during [t ,t4]. Although the state

level is the same, the decision problems at t and t may differ, since St4 = S <

St3 . To rule out such situations, observe first that since local maxima are

excluded, the local minimum Sm is, in fact, a global minimum. We can also

restrict attention to minima satisfying Sm > S, where S is the state level at

which the event is bound to occur. This is so because monotonicity refers only to
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the pre-event component of the uncertainty plan and by the time S is reached, the

event will have occurred with probability one. Thus if Sm 5 S, the pre-event

trajectory is trivially monotonic.

Let S* and gt represent the optimal processes corresponding to the uncertainty

problem (2.4), and p(S) = VP(S)-t be the value at the occurrence date T if the

critical level turns out to equal S. The pre-event value is

T

V(S) = Er{[Y(g)-C(St)g]e-ptdt + e-PT p(S) T T> ,
00

while U(S) = [Y(gt)-C(St)gt]e-Ptdt is the benefit associated with the

0

uninterrupted plan. In the expressions for V(S) and U(S), time is measured

relative to the passage time through the state level S. For notational

convenience we suppress the possible explicit time dependence of U and V

representing differences in histories and future plans as S is encountered at

different times. We now show that if the process St is not designed to reach S,

then unintentional occurrence cannot be advantageous, that is

Lemma Al: If Inf{St} > S, then U(S) 2 V(S).

proof: The relation among the benefit measures is expressed as

00 00

V(S)= Ef [Y(gt)-C(St)g]e'P tdt+e-PT{p(S)- f[(gI+T)-C(S tT)gt]e-ptdt}TT> 0)

o 0

or

V(S) = U(S) + Fe-ePT[p(S) - U(S )]T>o}. (Al)

Since the plan corresponding to VP(S) is feasible, V(S) > p(S), which together

with (Al) implies U(S) + ETe{PTkp(Sq) - U(S)] T>. > Ž p(S). In terms of

0(S) = U(S) - qp(S), this result is written as
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9(S) Ere-pT )(S*) T > 0}. (A2)

Define 0 = Inf {0(S*)}. Clearly, the lemma follows from (Al) if we show that
tE [o,oo]

0 2 0. For every e > 0 there exists some time q for which 0(S*) < 0 + e.

Inequality (A2) applies for every S along the optimal plan. In particular, for S*

it implies that 9(S) EePT(Sq+T)I T> 0 OE e-piT I T> 0. In terms of

dq E=eePT T>0 < 1, this results reduces to 9(1-dq) > -s. Since the state

process never comes too close to S, dq does not approach unity as e - 0.

Moreover, since s can be made arbitrarily small, it follows that 0 > 0.0

This result can be used to eliminate the possibility of a local minimum by

comparing the benefit expected from the four feasible plans:

a) S33, starting at t and following the path S* ; (optimal).

b) S34, starting at t3 and following the path S* ; (suboptimal).t 3 t+t4
c) S43 , starting at t and following the path S* ; (suboptimal).

t 4 t +t 3

d) S44, starting at t and following the path S* ; (optimal).
t 4 t+t4

Note that the time index t of SiJ measures the time elapsed from the

corresponding start time t.. In fact, S33 = S43 for all t, and the two plans
I t t

differ only with respect to the prior information involved: S4 3 = Sm and S43 is
t t

carried out knowing that the event will never occur, whereas S 33 > Sm and S33 is
0 t

planned under the risk that it will be interrupted by an event before the minimum

level Sm is arrived at.

Let V(Sii) denote the benefit expected from each path, evaluated at its start

time t.. Judging by the decisions taken, V(S33) > V(S 34) and V(S44) > V(S43). We

also know that S34 = S44 and these paths are increasing, hence V(S 34) = V(S").
t t

(For increasing plans the probability of non-occurrence reduces to unity and does

not affect the value.) It follows that V(S 33) > V(S43). However, V(S 33) = V(St3)
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while V(S4 3) = U(St3), hence the latter inequality contradicts Lemma Al.

For problems admitting multiple optima, the strong inequalities of the

previous paragraph may be replaced by equalities, and the non-monotonic plan

cannot be ruled out. Yet, the construction of a monotonic optimal path from this

non-monotonic plan follows the discussion of the post-event and the auxiliary

problems: One chooses a selection rule according to which, for each state level,

a particular diversion rate is chosen among all optimal rates. The resulting

optimal plan is monotonic, because conflicting decision at the same state levels

are not allowed.,

Appendix B: Properties of the Post-Event Plan

The current-value Hamiltonian and Lagrangian functions corresponding to the

post event problem (2.2) are

H(St,gt,Pt,t) = Y(g) - C(St)gt + pt[R(St)-gt]

and

£(St,8t,Ptaty,t), = H(St,gt,Pt,t) + ytgt + aSt

where Pt is the current value costate variable, and Yt and at are the current

value Lagrange multipliers associated with the constraints gt 2 0 and St 2 0.

Denoting optimal quantities by the superscript p, the necessary conditions include

(Arrow and Kurz, 1970, pp. 48-49): a /ag = 0, giving

Y'(gp) - C(St = p, - Y, (Bl)

and pt-ppt = -a-t/aSt, yielding

Pt = t[p-R'(St)] + C'(St)g t - a,.  (B2)

The slackness conditions read:

y, > 0, a, 0, ygt = 0, atSt = 0. (B3)

Using (B1) to eliminate Pt from (B2), we obtain

Pt = [Y'(gt)-C(St) +Y,] [p-R'(S't)] + gtC'(SZ) - a,, (B4)
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which reduces, since gP = R(S) - SP, to

Pt = {-C'(SP)-[p-R(SP)]Y"(g)}$S + L(SP) + y,[p-R'(SP)] - at. (B5)

In (B5) g is some value between gP and R(SP), L(S) = [p-R'(S)][Y'(R(S))-C(S)-J(S)]

and J(S) = -C'(S)R(S)/[p-R'(S)], as defined in Section 3. For an equilibrium

state S, p and S must vanish and (B5) implies

L(S) + y[p-R'(S)] - a = 0, (B6)

from which, using (B3), Property 3.1 is deduced.

Next, we derive a first-order differential equation for the optimal process

whose solution permits the evaluation of the value function VP(S). For

simplicity, we consider the case of an interior equilibrium point, so that L(S) =

a = y = 0. Taking the time derivative of (B1), we obtain

Y"(g)g - C'(SP)SP = pt. (B7)

Comparing with (B4) we find

Y"(gt)g = [Y'(gP)-C(SP)][p-R'(SP)] + R(SP)C'(S). (B8)

As the problem is autonomous, gP can be expressed as a function of S only:

gP = gP(S). With gPF(S) dgP/dS and gP = gP'(S)[R(S)-gP], (B8) is rewritten as

gP'(S) = L(S) + [Y'(gP)-Y'(R(S))][p-R'(S)] (B9)
Y"(gP)[R(S)-gP]

The boundary condition associated with (B9) is gP(S) = R(S). Note that (B9) is

not singular at S, because the numerator also vanishes at this state. Indeed,

taking the limit S - S, the right-hand side of (B9) reduces to

L'(S)/{Y"(R(S))[R'(S)-g P'(S)]} - [p-R'(S)]. Solving for gP'(S)-R'(S), noting that

this quantity must be positive to allow the equilibrium level S to attract the

optimal state process, we find

gP'(S) = R'(S) + • p2 - 4L'(S)/Y"(R(S)) - pJ. (B10)

With (B10) providing the starting step, (B9) is conveniently treated numerically.
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Once (B9) is solved for gP(S), S' can be determined via

SI dSs
t = f d(B11)

J R(S)-gP(S)

Given gP(S) and using VP'(S) = p(S) = the costate variable at the passage time

through S (see, e.g., Arrow and Kurz, 1970, p. 35), the post-event value function

VP(S) can be evaluated from the Dynamic Programming relation

pVP(S) = Y(gP(S))-C(S)gP(S) + VP'(S)[R(S)-gP(S)]

= Y(gP(S))-C(S)gP(S) + [Y'(gP(S))-C(S)][R(S)-gP(S)]. (B12)

Our next task is to establish the monotonicity of the implicit penalty

VP(S)-W(S) for S > S, as stated in relation (3.5). Since the steady-state policy

is always available, VP(S) 2 W(S), equality holding at the equilibrium state S.

Thus, VP'(S) = W'(S). With pW(S) = Y(R(S)) - C(S)R(S), we find

pW'(S) = [Y'(R(S))-C(S)]R'(S) - R(S)C'(S) = L(S)R'(S)/[p-R'(S)] + pJ(S).

Since L(S) > 0 for S > S and R'(S) 5 0,

W'(S) 5 J(S) for all S > S. (B13)

We now show that

p(S) 2 J(S) for all S > S, (B14)

where it is recalled that p(S) is the costate value at the passage time through S.

From (B2)-(B3) we find

Pt = p,[p-R'(SP)] + C'(SP)gp  = [p-R'(S)][pt-J(S)] - C'(S)[R(S)-g]

or

d[pt+C(SP)]/dt = [p-R'(StP)[pt-J(SP)]. (B15)

The optimal state process that departs from S > S must decrease (cf. Property

3.1), hence C(SP) and J(SP) cannot decrease. Suppose that po = p(S) < J(S).

According to (B15), p,+C(S') decreases with time, hence p, must decrease. It

follows that the (initially positive) difference J(SP)-pt cannot shrink as S(
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approaches S. In particular, J(S) > po p(S). But according to (Bl), at S we

must have po > J(S), equality holding if S > 0. Hence, p(S) 2 J(S) as stated by

(B14). Recalling that VP'(S) = p(S), (B13) and (B14) imply (3.5),

Another interesting consequence of (B15) is the monotonicity of the control

variable gP (to be distinguished from the monotonicity of the state SP). As

gt > 0 at S > S, (Bl) and (B15) give dY'(gP)/dt = [p-R'(SP)][pt-J(SP)] 0,

implying (since Y is strictly concave) that gP cannot increase with time. One can

establish, in a similar manner, that gP cannot decrease along processes initiated

at S < S.
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