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INCOMPLETENESS IN INSURANCE: AN ANALYSIS OF THE MULTIPLICATIVE CASE

I. INTRODUCTION

When there are multiple risks threatening the loss of an asset,

insurance schemes contingent on one risk alone are incomplete. In the analysis

of such insurance schemes, two issues have received attention in the

literature. The first issue relates to the consequences of incompleteness for

the optimal amount of insurance. This is studied here by answering two

questions. First, how does the existence of a background uninsurable risk

modify the optimal amount of insurance and second, how do risk attitudes of

individuals influence the optimal insurance? The second issue concerns the

incentive implications of incomplete insurance. In this paper, both of these

issues are examined for the case of multiplicative risks.

The specification of multiplicative risks is natural in contexts where

the assets that are insured against physical loss are also subject to

uninsured fluctuations in unit value. Some examples of multiplicative risks

are:

(a) when a firm (as in agriculture) faces price and output uncertainty but

can obtain insurance against only one risk (e.g., crop insurance).

(b) when a work of art can be insured against loss of theft but not against

changes in its market value.

(c) when an exporter can obtain insurance against exchange rate risks but not

against fluctuations in world market price.

In the complete market case, and in the absence of informational

IThis example is due to Turnbull



asymmetries, optimal risk sharing between a risk averse individual and risk

neutral insurance firm involves equalization of marginal utilities and hence

net incomes across the different states. If there is, however, a second source

of risk on which insurance is not contingent then the above proposition need

not hold and marginal utilities may no longer be equalized.

As a consequence, here it is shown, except when individuals have

quadratic utility functions, incompleteness has non-trivial effects on the

optimal insurance contract. First, when marginal utility is convex, the

existence of an uninsurable risk reduces the amount of insurance. An increase

in the variance of the individual's income (arising from greater uncertainty

about the uninsured variable) decreases the optimal level of insurance.

Second, the agent's risk preference and, in particular, the curvature of the

marginal utility function is important in determining the optimal level of

insurance. For a class of utility functions which includes some familiar

functional forms, increasing risk aversion reduces the optimal amount of

insurance.

As for the incentive implication, we find the optimal insurance to be so

limited for decreasing risk averse individuals that they strictly prefer those

states of the world where no indemnity is forthcoming to those where they

receive indemnities. For this reason, potential moral hazard is least serious

for this class of utility functions. In this case the incompleteness (due to

the uninsurable risk) of insurance helps to resolve the incentive problem.

Relatior to Previous Work

The problem of insuring against a risk x when an uninsurable

background risk y is present has been studied by a number of researchers (for

a survey see Schlesinger and Doherty). In Doherty and Schlesinger, and in
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Mayers and Smith, correlation between the two risks has been shown to be

critical in determining the level of optimal insurance. An implication is that

if risks are independent, the optimal insurance against risk x is independent

of risk y. As will be noted later, this result is a consequence of the

assumption of additive risks. If instead, the risks interact multiplicatively,

as assumed here, the flavor of the analysis is altered considerably. In the

model presented here, although the risks are independent, the optimal

insurance is not independent of the uncertainty about the uninsured variable.

The properties of optimal insurance when there are multiple risks has

also been studied in terms of the willingness to pay for the removal of a risk

x when a risk y is present. In such circumstances, individuals who are more

risk averse (in the Arrow-Pratt sense) may not necessarily be willing to pay

larger risk premiums (Ross; Kihlstrom, Romer and Williams; Turnbull). In much

the same vein, this paper identifies situations when higher risk aversion

reduces the optimal amount of insurance. Also for the case of multiplicative

risks, Turnbull found the individual's willingness to pay for the removal of a

single risk to decrease as a result of an increase in uncertainty about the

uninsured variable. This result is proved for decreasing risk averse utility

functions. This paper proves, for a larger class of utility functions, that

an increase in the riskiness of the distribution of the uninsured variable

decreases the optimal level of insurance.

In the complete market case, and in the absence of moral hazard, the

optimal contract is such that the insured individual is indifferent

between the various income states. If, however, the contract is not contingent

on the agent's actions, then such a level of insurance is not optimal because

it provides no incentive for the agent to take actions which will reduce the



probability of losses. Similarly, in an incomplete insurance context, the

optimality of contracts in the presence of moral hazard has been investigated

by Imai et.al and Ito and Machina. They consider unemployment insurance

schemes where severance payments are made to laid-off workers. But "since

severance payments usually do not depend on outcomes at alternative

opportunities after layoff, they are considered at best incomplete insurance

for layoff" (Ito and Machina). The issue that is investigated is whether the

laid off worker could be better off, in an ex-ante sense, than the retained

worker. If this were so, it would obviously introduce the moral hazard

problem. For a similar question in our model of multiplicative risks, we find

the incentive problem to be least serious for individuals with decreasing risk

averse utility functions. This is because the background risk reduces the

optimal insurance so much that moral hazard problems are considerably

moderated.

Plan of Paper

For a fairly general problem, the next section sets out a model of

incomplete insurance and derives the condition for optimal insurance. By

introducing more structure, we are able to specialize the model to consider

the case of additive and multiplicative risks. The results of Doherty and

Schlesinger are reviewed for the additive case. The multiplicative case is

pursed in Section III, where the effect of background risk on the optimal

insurance is completely characterized. In Section IV, the inverse

relationship between risk aversion and the level of optimal insu, nce is

demonstrated for a class of utility functions which includes some

familiar functional forms.

Sections V and VI consist of extensions to the basic model of Section II.



Since the incompleteness of insurance is intimately tied to the absence of

risk markets, Section V considers the effect on the optimal insurance due to

the introduction of a market for the uninsurable risk. Section VI allows

individual's actions to affect the probability distribution of insurable

losses. If the agent's actions are unobservable, the insurance contract cannot

be contingent on it. But the optimal contract must take into account the

agent's optimal actions in response to the insurance contract (described by

the incentive constraint). The analysis considers the situations in which the

incentive constraint is likely to be binding. This is shown to depend on the

nature of risk preferences and on the agent's disutility towards work. The

incentive constraint is least binding for decreasing risk averse individuals.

In fact, if the marginal cost to the individual of his actions is small, the

incentive constraint for decreasing risk averse individuals may not be binding

i.e., moral hazard does not alter the optimal insurance contract. The analysis

also reconsiders the effect of background risk on the optimal insurance in the

context of moral hazard. Concluding remarks are gathered together in

Section VII.

II. A MODEL OF INCOMPLETE INSURANCE

Let w be the value of owning an asset, w depends on the state of the

world w that is realized, where w is an element of the state space Q. An

insurance contract is a state contingent indemnity schedule I(w) and a premium

P that is paid in all states.

Let I(.) partition Q into Oc and nB such that

OG = (w e 2: I(w) = 0) and Bg = Gw e Q: I(w) = k) where k is any arbitrary

positive constant. We can think of IQ as the no-accident state of the world

(the 'good' state) and of Q2B as the accident state of the world (the 'bad'
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state). If Q contains at least three elements, a description of the state of

the world in terms of QG and Qg is incomplete since Qh or 2B or both contain

at least two elements.

Let a be an element of the probability vector TI on Q where IT is exogenous

to the individual seeking insurance . We suppose the insurance firm is risk

neutral and offers actuarially fair insurance, i.e., P = E [ (Wc)I()] =

IZWEB [x(w)] yI where 7 = Ze i](w) . From the set of actuarially fair

contracts the optimal insurance is found by maximizing the expectation of an

increasing and strictly concave von Neumann-Morgenstern utility function.

(1) Max n)(I) = [ (n)U(w(uw ) - YDl)1+ Z f()U(w() + (1 -+ )I)1

If an interior solution exists, it satisfies

0'(I) = (1 - 7)(E 2BC(w)U'(w(C) + (1 -r)I)- ) T I7(c)U'(w(() - XI) = 0

or

(2) (1 - y)y2e ((u)/y)U(w() + (1 - y)I) - E (n(w)/(17))U'(w() - YTI)= 0

For w E B, IW(c)/ = Prob(wcI e Rg) and

for w e QG, x(w)/(l-y) = Prob(wIW E C ).

Rewriting (2) in terms of the conditional probabilities, the optimal I

satisfies,

(3) q'(I) = (1 - X)yE[U'(w(c) + (1 - X)I)I |B] - E[U'(w(w) - yrl)Ij] = 0

The optimal insurance equates the expected marginal utility across the

accident and no-accident states of nature. While (3) is the basic

optimality condition of incomplete insurance schemes, different cases arise

ZThe exogeniety assumption is relaxed in Section VI



depending upon assumptions about Qc, B and II.

To introduce more structure, suppose that the randomness in w the value

of owning the asset is induced by randomness in two variables x and y. Then

the state of the world is described by the pair (x,y). Assume two point

distributions for x and y, with outcomes X1 ,X2 and Y1 ,Y 2 respectively. Also

let an insurance scheme be contingent on x but not on y and identify the

no-accident state as X, and the accident state as X2 , i.e., X1 > X2 . Or more

formally, C = {(Xi,YI), (XI,Y 2 )} and QB = {(X 2 ,Yi), (X2 ,Y 2 )}. Then (3)

becomes

(4) ~'(I) = (1 - )[E[U'(w(x,y) + (1 - I)I)X 2 ] - E[U'(w(x,y) - yI) Xz ] = 0

The Additive Case

The interaction of x and y or more generally the manner in which w

depends on x and y matters in the analysis of incomplete insurance

schemes. One specification, analyzed by Doherty and Schlesinger is when

w = x + y. In this case,

(5) 7'(I) = (1 - )yE[U'(X2 + y + (1 - y)I)IX 2 ] - E[U'(X1 + y - xI)|X1 ]]

If no background risk were present, i.e., if y was non-random, it would be

optimal to insure fully against the risk of X2 , i.e., I = Xi - X2 . The

optimal insurance in the presence of background risk is greater than, equal

to or less than full coverage depending upon whether -'(I) evaluated at X1 -

3
X2 is greater than, equal to or less than zero

If I = X1 - X2 , notice that

(6) X2 + Yi + (l-y)I = X2 + Y + X 1 - X2 - yl = Xi + Y, - I,.....i = 1,2

3 The strict concavity of the utility function guarantees the strict
concavity of q'(I).
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Using (6),

'(I)I =xX2 = (1 - X)yE[U'(Xi + y - y l)X 2 ] - E[U'(XI + y - yDl)IXl]

n'(I) i=x_ = (1 -)'Y Prob (YlIX 2 ) - Prob(YIIXi)] [U'(Xi + Yi - yI)

Since Prob(Y1IX2) - Prob(YjIX1) = Prob(Y2jXi) - Prob(Y2 JX 2 ),

1'(1) I=X -_X2

= (1 - y) [Prob(YiIX2) - Prob(YiXi)] [(U'(XI+YI- Il) - U'(XI+ Y2 - I))

Without loss of generality, suppose Yi > Y2 . Then,

='( I > 0 as Prob(YiIX 2 ) - Prob(Yi Xi) < 0.
I=X)-x2 Z 5

If x and y are positively (negatively) correlated, the background risk

increases (decreases) the optimal insurance compared to the no-background

risk situation. If x and y are independent random variables, the randomness

in y does not affect the optimal amount of insurance.

The Multiplicative Case

We now turn to the case of independent multiplicative risks, i.e., when

w = xy.

By the independence of x and y, the first order condition (4) becomes

(7) 7'(I) = (1 - )[EY[U'(w(X 2 ,y) + (1 - )I)] - EY[U'(w(X,y) - I)]] = 0

where the superscript on the expectations operator denotes that the

expectations are with respect to the distribution of y.

For the exposition it is convenient to regard x and y as output and

price respectively and to consider an insurance scheme contingent on

output . It is also a description of the ecr omic setting in agriculture

4 We could just as well have considered price insurance. The analysis
equally applies to the choice of optimal hedge under production uncertainty.



where crop insurance schemes (contingent on output) are. rendered incomplete

by price risks. Then it is natural to extend the discussion to consider the

existence of a futures market, i.e., a market for the uninsurable risk.

The uncertain elements are assumed to have independent probability

distributions of the following form

( Q with probability X
(8) q=

Q2 with probability (1-x)

and

SP 1 with probability A
(9) p =

SP 2  with probability (1-A)

where q is output and p is output price. Suppose Qi > Q2 and Pi > P2 . The

value of output is a random variable w distributed as:

W, = PIQI with probability (1-y)A

W2 = P2QI with probability (l-'))(1-A)
(10) w=

W3 = PiQ2 with probability yA

W4 = P2 Q2 with probability i(1l-y)

W can be ordered in one of two ways. Either W1 > W2 > W3 > W4 or W1 > W3 >

W2 > W4 .

Denoting as r, the revenue with output insurance, we have

R, = P1 Qi - 7I with probability (1-y)A

R2 = P2Q1 - yI with probability (l-7) (l-A)
(11) r =

R 3 = P1Q2 
+ (l-7)I with probability yA

R 4 = P2 Q2 + (l-y)I with probability y(l-A)

9



From (7), the optimal output insurance satisfies5

(12) EP[U'(pQ2 + (1 - y)I)1 = EP[U'(pQi - yI)]

An immediate consequence is the following.

Proposition 1 Let I* be the optimal level of insurance. Then

Ri(I*) > R3 (I*) > R4 (I*) > R2 (I*) or equivalently

P1(Qi - Q2) > I* > P2 (Q1 - Q2)

Proof From (10) note that R3 > R4 for all I. So what needs to be

shown is RI(I*) > R3 (I*) and R4 (I*) > R2 (*).

From the first order condition, I* satisfies

(13) XU'(R) + (1-UR ) = U'(R= ) + (1-A)U'(R )

where RI denotes Rj(I*) for j = 1,..,4.

Now let 7 i(I) = U'(R 3 ) - U'(RI) and )2 (I) = U'(R 2) - U'(R 4 ).

Substituting and rearranging terms, (12) becomes

(14) Ai 2 (I*) - (l-A)7 2 (I*) = 0

Clearly, %i(I*) and 02(I*) must both be of the same sign. Suppose they are

both negative.

71 < 0 4 R3 > R, PiQ2 + (l-7)I* > PiQ1 - 7yI

(15) I > P1 (Ql-Q 2 )

1)2 < 0 * R* >R P2 Q1 -l I * > P2 Q2 
+ (l-2)I*

(16) = P2(Q - Q2) > I*

Combining the two inequalities, we get P2 > P 1 which is not possible. For

a similar reason yz and )q2 cannot both be zero; so both of them have to be

5 The optimal output insurance is strictly positive because

7'(I)[ =0 = y(1-7)EPl[U'(pQ 2 )] - EP[ U ' (pQ)]} > 0 by the strict concavity of U

and from the fact pQ1 > pQ2 for all p.

10



positive. This means R3 < Ri and R < R4. Since R3 > R4, we obtain the

ordering RI > R3 > R4 > R2. Notice also that the inequalities in (15) and

(16) are reversed and so we obtain upper and lower bounds on the optimal

amount of insurance , i.e., Pi(Q1 - Q2) > I* > P2 (Q1 - Q2 )

The complete ordering of the Rj's is a direct consequence of risk averse

behavior and the first order condition (12). Recall, that in the absence of

insurance, we know that either W i > W2 > W3 > W4 or W i > W3 > W2 > W4 . In

either case the worst income state was W4 when both price and output are low.

With insurance, however, the ordering changes in a significant way; the worst

income state is R2 , when price is low but output is high. In this state,

premium payments have to be made, even though the individual suffers losses

due to low prices. For the individual seeking output insurance, its incomplete

nature creates a difficult trade-off between output and price risks. While

output risks are clearly reduced, the individual is worse off in the low

price-high output state R2 . Further the fact that R2 decreases with greater

purchase of insurance, suggests that I* cannot be "too high". The argument is

made more precise in the following propositions.

III. THE EFFECT OF PRICE RISK

Proposition 2 If pe is expected output price, then

(i) I* < pe(Qi Q2 ) if U"'(.) > 0

(ii) I* = pe(Q 1  Q2 ) if U"'(.) = 0

(iii) I* > pe(Q - Q2 ) if U"'(.) < 0

Proof We will consider the case when U"' is strictly positive. It is

straightforward to alter the reasoning for the cases when U"' is zero or

negative. The proof consists in showing 7'(I) to be negative for all I l

11



pe(Qi - Q2) 6

Let rc(p) denote the random income in the high output states and

rB(p) the random income in low output states. So

R1 = P1 Q1 - 'I with probability A
(17) rG(P) = PQi - I = R2 =P 2 Q - ;I with probability (l-A)

R3 = P1 Q2 + (l-y)I with probability A
(18) r(p) = PQ2 + (1-)I = R4 = P2 Q2 + (1-')I with probability (1-A)

Then r'(I) can be written more compactly as

'(I) = y(1-) {EPU'(rc(p)) - EPU'(rB(p))

The sign of 7)'(I) depends on the difference in expected marginal

utilities between low and high output states. Now,

rG(p) - rB(p) = pQ1 - yl - pQ2 - (1 - y)I = p(Q 1 - Q2 ) - I.

So EPU'(rc(p)) = EPu'(rB(p) + p(Qi - Q2 ) - I)

Let v(p) = p(Q - Q2 ) - p(Q 1 - Q2)

v(P1 ) > O, v(P2 ) < 0 and EPv(p) = 0. Then

EPU'(rG) = EPU'(rB + v + pe(Q - Q2) - I)

If I a pe(Q 1 - Q2), EPU'(rc) & EPU'(rB + v) > EU'(rB) where the second

inequality follows from the convexity of the marginal utility (U"' > 0)

and from the observation that (rg + v) is a mean preserving spread of rG

Therefore, the optimal insurance is less than the expected value of output

'oss.

6This is enough since 4r is strictly concave in I.
"(I) = y(1-y)(XAI 1 '(I) - (l-A)i 2 '(1)) where qi1'(I) = U"(R 3 )(l-y) + U"(R 1 )y < 0

and 7)'(I) = -yU"(R 2 ) - (1-y)U"(R 4 ) > 0.

12



The result for the complete market case is the following.

Proposition 3 If output price is certain at the mean (P 1 = P2 = pe),

then I* = pe(Qi - Q2)

Proof P1 = P2 =R R1 = R2 and R3 = R4 . The first order conditions reduce

to U'(R 1 ) = U'(R 3 ) or Ri = R3 which implies I* = pe(ql - q2 ).

If we refer to pe(Q 1 - Q2 ) as the complete insurance, then proposition 2

compares the optimal level of incomplete insurance to the complete insurance.

Under the reasonable assumption of a positive U", , incompleteness reduces

the optimal insurance.

The next proposition is concerned with the "marginal" impact of price

uncertainty i.e. the effect of making a given distribution "slightly more

risky". Following Rothschild and Stiglitz a mean preserving increase in price

risk is represented by a decrease in price which leaves the mean unchanged.

Since pe = APi + (1 - X)P2 , dP1/dP 2 = - (1 - A)/A.

Proposition 4 For the class of utility functions with a positive (zero,

negative) third derivative everywhere, an increase in price risk reduces

(leaves unchanged, increases) the optimal level of insurance.

The proof is in appendix A.

IV. THE EFFECT OF RISK AVERSION

If U1 and U2 are two utility functions, U1 is said to be globally more

risk averse than U2 if -U 1 "(x)/Ul'() : -U2"(x)/U 2 '(x) for all x. The

following theorem, proved by Pratt, is useful for later results.

Theorem (Pratt) The following conditions are equivalent

7The subset of the class of concave utility functions which
satisfies U'" > 0 includes all constant and decreasing absolute
risk aversion utility functions.

13



(a) -Ul"(x)/U 1 '(x) - -U 2 "(x)/U 2 '(x) for all x [and > for at least one x]

(b) Ui(y) - Ul(x) < U2(y) - U2 (x) for all v, w, x, y with v < w - x < y
U1(w) - U1(v) U2 (w) - U2(v)

Before we state the proposition, a little notation is helpful. Let Vj(.)

S-Uj'(.), Auj = -(Uj"/Uj') and Avj = -(Vj"/Vj') for j = 1,2, i.e., Auj and

Avj are the risk aversion functions with respect to the utility functions Uj

and Vj respectively. Also let I1 and 12 be optimal levels of insurance for

individuals 1 and 2 respectively. The proposition below makes use of a

condition about the change in the curvature of the marginal utility as risk

aversion increases. The condition is

(CMU) Aul(x) - Au2(x) for all x [and > for at least one x]

* Av,(x) 2 Av2 (x) for all x [and > for at least one x]

From Pratt's work, we know that when Aula Au2 , U1 is a concave transformation

of U2 . The CMU condition says that increasing risk aversion also results in

a concavifying transformation of the V (or -U') function. This property is

exhibited by the constant absolute risk aversion (CARA) and the constant

relative risk aversion (CRRA) utility functions. This is verified in

appendix B.

Proposition 5 For utility functions satisfying the CMU condition, an increase

in risk aversion reduces the optimal amount of insurance i.e.,

*8
Auj(x) Au2(x) for all x [and > for at least one x] = I1 < 1 .

Proof Let ^j denote the expected utility of the jth individual where

rij(I) = (l-'y)AUj(Ri) + (I-y)(l-A)Uj(R2 ) + XAUj(R 3 ) + y(l-X)Uj(R 4 )

8Note that if PI = P2 = p, i.e., a situation of complete insurance, then as
shown in Proposition 3, the optimal insurance is I* = p(ql - q2 ) which is
independent of the agent's risk attitudes.

14



Since Uj" < O, 7j"'(.) < 0 for all I. To prove I < I, it is then

enough to show -q2 '(.)I =i > 0.

If satisfies

l'(I) = y(1-)A(Ui'(R3 (I)) - Ui'(RI(I)))

+ (1-A)(U 1'(R 4(I*) - UI'(R2 (If)))} = 0

= (19) UI'(R3(*)) - U'C(Ri(I)) = (1-A)/A
U1 '(R 2 (1)) - UI'(R 4 1))

or Vi(Ri(It)) - V1(R3(I)) = (1-A)/A since Vj = -Uj',j = 1,2.
Vi(R 4 (Id)) - VI(R 2 ( I))

By the CMU condition A, 1 2 Av 2 . Applying Pratt's theorem to the V function,

(20) Vi(Ri(It)) - Vi(R3(Id)) < V2(R(It)) - V2(R3(I))
V1 (R4 (I )) - V(R 2(I1)) V2 (R 4 (I )) - V2(R 2 (1))

since, by Proposition 1, R1 (I ) > R3 (IR) > R4 (I ) > R 2 I).

(19) and (20) imply

(21) U2 '(R 3 (I*)) - U2 '(Ri(Ij)) > (l-X)/A
U2 '(R 2(I 1)) - (R4(I))

or

(22) A(U2 '(R 3 (I )) - U2 '(R1 (I9))) + (1-X)(U 2 '(R 4(I) - '(R 2 (I))) >

Therefore, 2 (I) = (1- (U2 '(R 3 (I)) -2'(R(I)))

+ (l-A)(U2'(R 4(Ia ) - U2'(R 2(I))) > 0 o

V. THE INTRODUCTION OF A FUTURES MARKET

The characterization of insurance schemes as complete or incomplete is

intimately tied to the presence or absence of the appropriate risk markets.

The incomplete aspects of crop/output insurance arise largely out of the

absence of the markets for price risk. But, of course, markets for price risk

(e.g., forward and futures markets) are available for some commodities. This

section examines the relation between crop insurance schemes and futures

15



markets 9 . This issue is also of policy interest because crop insurance schemes

are generally sponsored by the government, while, futures markets are

privately organized.

To introduce a futures market, consider a two period model where a

farmer makes hedging decisions (and crop insurance decisions if insurance is

available) at time 1. The futures contracts are for the duration of one

period - i.e., if the farmer buys a contract at time 1 he agrees to deliver

the specified quantity of the commodity at time 2. At time 2, output is

realized and the uncertainty about the spot price is resolved. If the

futures market is unbiased (as is the assumption here), pf the futures price

is equal to pe, the expected spot price . Let f denote the farmer's position

in the futures market.

In this section, it is convenient for the purpose of exposition to

specify the insurance to be of the form where I = p(q, - q2 ) where p is the

co insurance parameter. Since the size of loss is fixed, a specification of

the above kind is no restriction on I; choosing the optimal p is equivalent

to choosing the optimal I. Following crop insurance practice in the U.S.", p

9The distinction between futures and forward markets is ignored
here.

'1In other words, we are considering a pure hedger. Since pr = Epe, the farmer
who has a position in the forward market cannot expect to make any speculative
profits. The unbiasedness assumption is therefore a condition for
fair insurance and in this case the futures position exists only because of
hedging considerations. In general, the futures position consists of hedging
and speculative components. In a mean-variance context, the futures posit' n
can be quite easily be decomposed into its components (see Anderson and
Danthine or Newberry and Stiglitz, Ch 13). The empirical evidence on the
existence of bias in futures markets is mixed but unbiasedness is usually a
reasonable assumption for markets with active trading. See Peck for a
collection of papers on this subject.

1 For a description see the report by the General Accounting Office, 1984.
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can also be regarded as the "price-election" which is the price at which the

insurance company compensates the farmer for a unit loss of the commodity.

The farmer's revenue for a price election of p and a hedge of f is

distributed as

R1 = PiQ1 - p(Q1-Q 2 ) + (pe Pi)f with probability (1 - )A

(22) r = R2 = P2 Q1 - yP(Qi-Q 2 )+ (pe P 2 )f with probability (1 - ')(l - A)
SR 3 = PiQ2 + (1 - )P(Q 1-Q 2 ) + (pC - Pi)f with probability yA

R4 = P2 Q2 + (1 - n)p(QI-Q 2 ) + (pe _ P 2 )f with probability (1 - A)y

The farmer's problem is

Max 7(p,f) =  (1 - )AU(Ri) + (1 - )(l - A)U(R 2 ) + ~XU(R 3 )
pf

+ y(1 - A)U(R 4 )

It is easy to show that the optimal hedge and insurance are strictly

positive. Therefore, they satisfy the first order conditions

(23) - = (1 - y)y(Q1 -Q2)[RU'(R 3 ) + (1 - A)U'(R 4 )- AU'(RI) - (l-A)U'(R 2 )] = 0
P

and f = M(l - -)U'(R 1 ) + U'(R 3 )](pe - P)

+ (1 - A)[(l - ')U'(R 2 ) + yU'(R 4 )](p e - P2) = 0

Substituting for pe = AP1 + (1 - A)P2

(24)

f = X(1-A)(PI - P2 )[(1 - )U'(R 1 ) + TU'(R 3 ) - (1 - y')U'(R 2 ) - yU'(R 4 )] = 0

(23) and (24) can be expressed more compactly in terms of the conditional

distributions of r. As defined earlier, rG(p) and rB(p) are the random income

in the high output ("good") and low output ("bad") states.

Sf RI with probability ArQi r(p) - R2 with probability (1-A) and
r Q2 rB() R3 with probability (-

rQ " R3 with probability AR. with probability (1-A)
Similarly, the distribution of revenue conditional on price is

riP1  rH(q) _ f R1 with probability (1-) and
R3 with probability '
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rj L(p R2 with probability (1-Y)
rP2 rL(P) R 4 with probability z

rH(q) and rL(p) are the random income in the high and low price states

respectively.

Then the first order conditions become

(25) Tp = (1 - ')y(Qi - Q2 )[EPU'(rB(p)) - EPU'(rG(p))] = 0

(26) f = A(l - A)(P 1 - P2)[EqU'(r(q)) - EqU'(rH(q)) ] = 0

where the superscript indicates the random variable over which expectations

are taken. The optimal insurance equates the expected marginal utility

across the good and bad output states while the optimal hedge equates the

expected marginal utility across the high and low price states .

Proposition 6: Let p* and f* be the optimal insurance and forward position.

Then Qi > f* > Q2 and Pi > p* > P2-

For a proof please see appendix A.

The question that is of interest is whether the existence of hedging

opportunities affects the optimal insurance. To be more concrete, we wish

to compare the optimal insurance solved from (25) and (26) with the optimal

insurance when there are no futures markets. This is best achieved by

considering a model where the farmer's choice of the hedge is constrained

i.e.,

Maxf -(p,f) = (1 - y)AU(Ri) + (1 - y)(l - X)U(R 2 ) + yAU(R 3 )
(p, f)

+ y(l - A)U(R 4 )

1 Note that the optimality conditions do not equate the marginal utility
across all states of income. This means that some risk markets are still
absent. This is not surprising since the relevant state of the world, for
which contingent claims must exist to complete markets, is crop revenue,
i.e., w = p x q.
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subject to f - f

If f = 0, the situation corresponds to the absence of futures markets. By

the Kuhn-Tucker theorem, there exists a 1i - 0 such that

(27) EPu'(rB(p)) - EPU'(rG(p)) = 0

(28) A(1 - A)(P 1 - P2)[EqU'(rn(q)) - EU'(rH(q))] =

(29) A(f - f) = 0

(30) a 0

Since we want to investigate the effect of the opening up of a futures

market, suppose that f is small enough (less than the unconstrained optimum

f*) to be a binding constraint i.e., p > 0. Let pf and f4 denote the

constrained solution to (27)-(30). From (28),

EqU'(rL(q)) - EqU'(rH(q)) = g/[A(1 - A)(P 1 - P 2 )] > 0.

Because of insufficient hedging, the expected marginal utility in the low

price state remains higher than the expected marginal utility in the high

price states. The optimal crop insurance, however, equates the expected

marginal utility across the high and low output states. Consequently, from

the argument in Proposition 6,

Proposition 7: RI > R3 and R* > R2

Suppose f were to be increased i.e., the constraint is made less

binding. What is the effect on pf ? In the appendix (proof of Proposition 8

below) it is shown that pf responds positively to an increase in f. Since the

case of no futures markets corresponds to an extreme constraint, the existence

of futures markets leads to an increase in the optimal output insurance.

Proposition 8 The existence of futures markets increases (decreases, leaves

unchanged) the optimal insurance if the third derivative of the utility
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function is positive (negative or zero).

Since the problem of choosing the optimal hedge under production

uncertainty is conceptually equivalent to the problem of choosing the

optimal price election under price risk, a corollary to Proposition 8 would

be that the farmers choose larger hedge positions in the presence of crop

13
insurance .

VI. INCENTIVE IMPLICATIONS

The analysis so far has abstracted from any considerations of the

farmer's actions which may affect the probability distribution of output.

If insurance contracts are contingent on the farmer's actions as well as

output, then the optimal contract will once again equalize the expected

marginal utilities across the high and the low states of output and the

results of the earlier sections will go through unaltered. If, however, the

insurer cannot observe the actions of the farmer, the contracts remain

contingent on output alone and the optimal contract will have to be

consistent with the farmer's choice of action described by the incentive

constraint. This section studies how the introduction of the incentive

constraint alters the optimal amount of insurance. This also necessitates a

restatement of the effect of background risk.

Let z represent the farmer's choice of action. To be concrete, we could

consider z as the input or the effort used to produce the output q The

probability distribution of output depends on the chosen action,

' 3 For a treatment of hedging decisions under output uncertainty, see Losq
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i Qi with probability (1 - y(z))

q Q2 with probability y(z)

The probability of crop failure will be assumed to decline with greater

effort, i.e., y'(z) 5 0. Also the farmer's utility is taken to be

separable in income r and effort z, i.e., total utility is U(r) - C(z) where

U is increasing, concave and thrice differentiable and C(.) is the cost of

taking action z. It is assumed that the farmer dislikes working harder, i.e.,

C'(z) > 0.

The optimal contract is found by solving the following program

(31) Max A((1-y(z)U(RI) + y(z)U(R 3 )) + (1-A)((1-'(z))U(R 2 ) + y(z)U(R 4 ))
I

- C(z)

subject to

(32) "'(z){AU(R3) + (1-A)U(R 4 ) - AU(Ri) - (1-A)U(R 2 )) - C'(z) = 0

where the Ri's are defined in (11)14 and (32) is the first order condition for

maximizing the farmer's expected utility with respect to z. (32), which is

the incentive constraint15 ensures the consistency of the optimal

contract with the action chosen by the farmer. (32) can be rewritten as

(33) EPU(rB(p)) - EPU(rG(p)) = C'(z)/-X'(z)

Since the RHS of (33) is non-negative, the optimal contract, in order to

preserve incentives, is such that the expected utility in the low output

'4 Notice that the fair insurance condition is already embedded in the
objective function.

1sMore generally, the incentive constraint is z E argmax EU(r) - C(z'). This is
z'

equivalent to (29) if EU(r) - C(z) is strictly concave in z which is
guaranteed by the convexity of y and C, i.e., y"(z) > 0 and C"(z) > 0. See
Rogerson.

21



states is greater than the expected utility in the high output states.

Let I* be the solution to the unconstrained problem (i.e., the optimal

insurance without the incentive constraint) and I* be the solution to the

constrained problem. Then it is easy to see that I* - I**. The inequality is

strict if I* does not satisfy the incentive constraint. The following

result is helpful in assessing the circumstances in which I* violates the

constraint.

Proposition 9 The unconstrained solution I* has the following property

(i) EPU(rc(p)) > EPU(rB(p)) for decreasing absolute risk

aversion utility functions

(ii) EPU(rc(p)) = EPU(rB(p)) for constant absolute risk

aversion utility functions

(iii) EPU(rG(p)) < EPU(rB(p)) for increasing absolute risk aversion

utility functions

where the utilities are evaluated at I = I*

Proof: See Appendix A.

Thus, if I = I*, the incentive constraint is violated whenever the

utility function exhibits constant or increasing risk aversion. In such

instances, the optimal incentive compatible insurance (I**) will be smaller

than I*. In the case of decreasing risk aversion, the nature of constraint

depends upon the marginal cost of actions C'(z). For small C'(z), the

constraint will not be violated and the optimal insurance will still be that

which equates the expected m rginal utilities acro.s tht. two output states.

In general, the incentive problem is least serious for decreasing risk

averse individuals simply because their insurance coverage is already
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curtailed by price risk .

We now turn to the issue of the effect of price risk on the optimal

incentive compatible insurance. If the incentive constraint is not binding,

previous results are unaltered. So suppose now that the incentive constraint

is binding. The first order condition for maximizing (31) subject to (33) is

y(l - y)(EPU'(rB) - EPU'(rc)) - 1(yEPU'(rc) + (1 - y)EPU'(rB)) = 0

where pi is the Lagrange multiplier or

y(l - Y)(EPU'(rB) - EPU'(rC)) = y(~EPU'(rc) + (1 - y)EPU'(rB))

When the incentive constraint is binding, the optimal insurance does not

equate the expected marginal utilities. Instead, to preserve incentives, the

optimal insurance I** is less than I* and consequently EPU'(rB) > EPU'(rG).

Proposition 10 I* < Pi(Q1 - Q2)

Proof In Proposition 1 it was shown that I* < P1 (Q1 - Q2 ). Since I* : I**,

the result follows. Note the above result could also be rewritten as RT >

R3.

Proposition 11 Suppose the optimal amount of insurance is at least as great

16Imai, Geanakoplos and Ito report a result opposite to ours. They consider
unemployment insurance schemes where severance payments are made to laid-off
workers. But "since severance payments usually do not depend on outcomes at
alternative opportunities after layoff they are considered at best
incomplete insurance for layoff" (Ito). The issue that is investigated is
whether the laid off worker could be better off, in an ex-ante sense, than
the retained worker. This is indeed the case for individuals with decreasing
risk averse utility functions. Individuals with constant risk aversion
utility functions are indifferent between the two states while increasing
risk averse individuals prefer to be retained. So, the incentive problem is
most serious for decreasing risk averse individuals. The difference between
their model and ours lies in the assumption about the uninsured variable.
The uncertainty in the rehiring wage, in the Imai et.al model, affects only
the marginal benefit of insurance (the expected marginal utility if the
worker is laid off) and not the marginal cost (the marginal utility of the
sure wage net of premium payments). See Ito and Machina, and Ito for further
variants of the problem.
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as value of the crop loss in the low price state. Then, if U"' > 0,

increasing price risk reduces the optimal amount of insurance. If the

optimal insurance is smaller than the value of the crop loss in the low

price state, the effects of increasing price risk are indeterminate.

Proof The first order condition for optimal insurance is

(34) '(l - y)(EPU'(re) - EPU'(rc)) - g(yxEPU'(rG) + (1 - y)EPU'(rB)) = 0

Concavity of the utility function guarantees the satisfaction of second

order conditions. So the effect of price risk on I* depends on how

the LHS of (34) responds to changes in price risk.

Consider the case when I* > P 2(Q1 - Q2). Then R > R2. Combining with

Proposition 10, we have R1 > R3 > R4 > R2. This inequality and the positivity

of U"' is sufficient for increases in price risk to negatively affect the

first term of (34) (see Proposition 4). On the other hand, a mean preserving

increase in price risk increases (yEPU'(rc) + (1 - v)EPU'(rB)) which is a

linear combination of two convex functions. Therefore, the sum effect of an

increase in price risk is to decrease the the terms on the LHS of (34), and

hence the optimal amount of insurance is reduced.

If I* < P 2(Q1 - Q2 ), then it is not possible to sign the response of

the first term in the LHS of (34) to an increase in price risk. Therefore,

the net effect is indeterminate.

VII. SUMMARY AND CONCLUDING REMARKS

This paper has explored some properties of incomplete insurance

schemes. The basic idea motivating all insurance schemes is that the insured

individual pays premiums in "good" times in return for protection during "bad"

times. This idea is, however, weakened by an output insurance scheme which

does not make fine enough distinctions between the various income
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states. The optimality condition requires the equalization of the expected

marginal utility across the output states of nature. This reflects the fact

that the incomplete insurance scheme transfers income from the high

output to the low output states. The costs of this transfer are borne in the

high output states which includes the state of the world when output is

high but price is low. Insurance is, therefore, less attractive to

individuals who dislike the prospect of a cash drain (due to premium payments)

at a time of a loss in value of the output.

If the actions of farmers are not observable, optimal insurance contracts

have to be consistent with the incentive constraint. For decreasing risk

averse individuals, even without the incentive constraint, the insurance is so

weak that they prefer the high output states to the low output states i.e.,

EPU(rc(p)) > EPU(rB(p)). For this reason, the potential moral hazard

associated with an insurance contract that equalizes expected marginal

utilities, is least serious for this class of utility functions and the

incompleteness due to price risk helps resolve the incentive problem.

In general, moral hazard considerations may lead to a decline in the

amount of optimal insurance. If the resulting insurance coverage is so limited

as to be less than the value of output loss in the low price state, the effect

of increasing price risk is ambiguous. However, if insurance is at

"significant" levels, i.e., greater than P 2(Q1 - Q2), increasing price risk

will reduce the optimal amount of insurance.

The results of this paper extend to all insurance schemes which are

incomplete due to multiplicative risks. The implications of these results will

depend on the specific context in which multiplicative risks arise. In this

chapter, by way of example, we have highlighted the incompleteness in

25



crop insurance caused by price risk. In the U.S., crop insurance is an element

of agricultural policy and recent policies have emphasized federal crop

insurance as the most appropriate way for taxpayers to share farmers' risks

(Todd). The rationale for increasing government's financial commitment to

crop insurance rests on the presumed benefits to risk reduction. But, as we

have argued here, the incompleteness of crop insurance is a factor which

limits the transfer of risk from the agricultural sector to the government.

In this connection, there have been suggestions that the crop insurance

program be transformed into a scheme insuring crop revenue/income rather than

crop output (Farm Income Insurance Task Force, Offut). Apart from the

daunting complexity of administering such a scheme, the effects on private

risk markets (futures, options) must also be considered (Petzel). However, as

our results indicate, the same objective might be achieved by exploiting the

complementarity between crop insurance and hedging activity. As a policy

option, it might also be more feasible for the government agencies selling

insurance to work with the futures trading organizations and the managers of

the grain elevators in order to jointly market crop insurance and forward

contracts.

For the study of incomplete insurance schemes, the implications of our

analysis are principally to draw attention to the important role of

assumptions about utility functions and about the interaction between multiple

risks. Since the first order condition involves expected marginal utilities,

the impact of the background risk on the choice of optimal insurance will

depend on the third derivative of the utility function. In models with

mean-variance or quadratic utility functions, the effects of background risk

will wash out unless it is correlated with the insurable risk. As regards

26



the interaction of risks, the appropriate specification of risks will have

to be guided by the context. In this chapter, we contrasted the additive case

with the multiplicative specification. Many real world incomplete insurance

schemes may occur in settings which satisfy neither alternatives 7 . For this

reason, it might be worthwhile in future investigations, to consider more

general structures capable of accommodating a variety of cases.

7The unemployment insurance scheme considered by Imai, Geanakoplos and Ito is
an example
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APPENDIX A

Proof of Proposition 4:

Since q"(I) < 0, 81*/8P 2 is of the same sign as aQ'(I)/aP2 evaluated at I*.

a8'(I)/P 2 1 I = y(1-7) A(U"(R)Q 2 - U"(RI)Q 1)dP 1/dP2

- (1-A)(U"(R)Q - U"(R)Q2

Substituting for dPi/dP2

a'(I)/8P2 j* = (1-7)(1-A) {U"(R))Q - U"(R3)(Q 1 - (Q1 - Q2 ))

+ U"(R )(Qi- (Q1 - Q2 )) - U"(R2)Q 1}.

= y(1-y)(1-A) {(U"(R) - U"(R3))Qi

+ (U"(R ) - U"(R2))Q1 + (U"(R*) - U"(R ))(Q x - Q2

which is strictly positive (zero, strictly negative) because R* > R3 > R4 >

R2 and U"' > (=, ) 0.

Proof of Proposition 6:

Let R* denote Rj evaluated at the optimal insurance and hedge level.

(20) implies (1 - y)[U'(R ) - U'(Ri)] = y[U'(R ) - U'(R )]

* R2 < Ri as R3 _ R 45 5

Now R - R = (P 2 - P 1 )Q1 + (P 1 - P2)f* = (P 1 - P2)(f* - Q1) and

R - R = (Pi - P 2 )(Q 2 - f*)

If R2 > R and R > R4, that would imply f* > Q1 and Q2 > f* which

contradicts that Q2 is the smaller output. Similarly, R = R1 and R3 = R4 is

acontradiction. Hence R I > R2 and R4 > R3 and therefore Qi > f* > Q2

(24) implies

A[U'(R ) - U'(R*)] = (1 - A)[U'(R ) - U'(R )]

3 2

Now Ra - R1 = P 1Q2 + (1 - y)p*(Q-Q2)+ f*(pe - P1 )
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- P1 Q1 + 7p*(Qi-Q 2 ) - f*(pe- Pi)

= (p* - Pi)(Q-Q 2 ) and similarly

R - R ( 2 - )(Q1-Q 2)

If R 3 > R and R > R that would imply p* > Pi and P 2 > p* which

contradicts P1 being the higher price. Similarly R = R, and R 2 = R4 is a

contradiction. Hence R3 < R i and R < R4 and therefore, P1 > P* > P2 -

Proof of Proposition 8:

The strategy is to apply the implicit function theorem to equations (25) and

(26) to discover the response of the endogenous variables pr and gL* to a

change in the exogenous variable f.

The general statement of the implicit function theorem is as follows. X

is a vector of choice variables, b is vector of parameters, and G is a

differential map such that G(Xo;b) = 0 and the matrix aG(Xo;b)/aX = DxG is

non singular. Then one can solve for a differentiable function x*(b) such

that G(x*(b),b) = 0 holds as an identity. Further DbX* -

[DxG(XO;b)- [DbG(Xo;b)]

In the analysis here,

X = , G= , and b = f, where L is the Lagrangian function of the

constrained maximization problem i.e., L(p,f,i) = ) (p,f) + g1(f - f).

Therefore,

Sap /f Lf L L

where DxGI =L L - L L =L L since L 0. Further L -1 and
PP fg P fp LPP fi P= f=

L = pp is also negative due to the concavity of the utility function.

Hence ( DxG is strictly positive.
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ap*/af = [L L[ - (L ) ] < 0 because the numerator is positive by the
IDxG pp ff p

second order sufficient condition.

ap /af =- 1 LfL f]
IDxpf

Lf = -1 and DxG is positive. So the sign of p f depends on the sign of

L which is equal to pf.

7p = (1 - )W(Qi-Q2)[Xu"(RR)(pe - P1) + ( - )U(R)(pe - P2

- AU"(R*)(pe - Pi) - (1 - .)U"(R)(pe - P2)

= (1 - )'Y(Q1-Q 2 )[A(U"(Rj) - U"(R3))(P 1 - pe)

+ (1 - A)(U"(R*) - U"(R))(pe - P 2 )

> 0 as U"'> 0 because R > R3 and R > R2 (Proposition 7).
< <

Proof of Proposition 9:

Define the inverse of the marginal utility function by m: m a (U') - '. Also

define v as the composite function of u and m: v = U o m. Denoting by a a

value of marginal utility of income the following relation holds

v(a) = U(m(a))

Lemma: v"(a) is greater than, equal to, or less than zero depending on

whether the utility function exhibits decreasing, constant or increasing

absolute risk aversion.

Proof of lemma: See Imai, Geanakoplos and Ito

From the first order condition (to the unconstrained maximum)

EU'(r(p)) U'(r(p)). From Proposition 1, we also know U'(R) > U'(R) >

U'(R ) < U'(R ). At the optimum, U'(rc) is a mean preserving spread of U'(rg).

But if absolute risk aversion is decreasing, v is a strictly convex function

of marginal utility (from lemma). Therefore Ev(U'(rc)) = EU(rc) > EU(rB) =

Ev(U'(rB)) The proof is similar for other cases.
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APPENDIX B

Auj'(x) = (Uj"/Uj) 2 - Uj"'/Uj'. Dividing throughout by Auj, the equation

becomes Auj'(x)/Auj = Auj - Aj or

Auj = Avj + (Auj'(x)/Auj).

Consider the CARA utility function. Since Auj' = 0, Auj = Aj and the CMU is

verified. If the utility function is of the CRRA type with k as the constant

relative risk aversion parameter, Auj = kj/x and Auj'= -kj/x 2 . Therefore, Aul

- Au2 implies A, 1 - (kl/x 2 )/(kl/x) - Av2 - (k2 /x 2 )/(k 2/x) or Avl 2 Av 2 which

verifies the CMU condition.
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