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Abstract. Climate change, the ‘boom and bust’ cycles of rivers, and altered water resource
management practice have caused significant changes in the spatial distribution of the risk of
flooding. Hedonic pricing studies, predominantly for the US, have assessed the spatial incidence
of risk and the associated implicit price of flooding risk. Using these implicit price estimates and
their associated standard errors, we perform a meta-analysis and find that houses located in the
100-year floodplain have a —0.3 to —0.8% lower price. The actual occurrence of a flooding event
or increased stringency in disclosure rules causes ex ante prices to differ from ex post prices, but
these effects are small. The marginal willingness to pay for reduced risk exposure has increased
over time, and it is slightly lower for areas with a higher per capita income. We show that
obfuscating amenity effects and risk exposure associated with proximity to water causes
systematic bias in the implicit price of flooding risk.
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1. Introduction

The occurrence of floods, windstorms, and heat waves receives increasing media coverage. This
is partly due to improved technology in communication and broadcasting infrastructure, but it is
also a result of a higher incidence of natural disasters, among which floods have been particu-
larly prominent. Over the last few years, sizeable human and material losses are associated with
flooding disasters. The increased incidence of flooding has both natural and anthropogenic
causes.

Changing natural circumstances as well as human behavior simultaneously cause climate
change, and bring about increases in the frequency and the magnitude of floods. For instance, in
many of the mid and high latitudes of the northern hemisphere a 0.5 to 1% increase in land-
surface precipitation per decade has been observed. The frequency of heavy precipitation has
likely increased by 2 to 4% over the last 50 years, and a 0.74°C increase in global temperature
over the last century has affected sea levels by +2.8 mm per year over the last decade. The rise in
sea level has had concurrent impacts on the transport speed and flow volume of rivers [31, 32].

Anthropogenic impacts on river flooding are clearly visible in changed river management
practices. Construction in floodplains, channel straightening, building of dikes, and construction
activity generating impermeable surfaces such as transport infrastructure and residential areas are
examples of urbanization that increases the risk of river floods in small catchment areas and
small river networks. Land use conversion is also a factor changing the spatial distribution of
environmental risk. Particularly in developing countries deforestation for agricultural purposes
causes intensified sediment transport rates of rivers and of deposition downstream [36].

A spatial economic assessment of environmental risk is important in view of decision-
making on public and private investments in protective infrastructure to reduce the impact of
environmental disasters. An appropriate economic assessment also assists in the design and
provision of price-efficient insurance policies against environmental risk.

Typically, a simple cost-benefit rule guides rational investment behavior of economic
actors. Dantzig [17, p. 279] already notes that the optimal height of a sea dike is determined by
“taking account of the cost of dike-building, of the material losses when a dike-break occurs, and
of the frequency distribution of different sea levels.” The cost of protective infrastructure com-
prises outlay for the construction of a dike and the subsequent nuisance it generates, with
benefits accruing in terms of avoided human losses, material losses and reconstruction costs,
crops losses, and breaks in economic activity.

Reliable information regarding actors’ willingness to pay for a reduced exposure to the
risk of flooding is needed for efficient insurance pricing as well. Unpredictability and damage
magnitude make price-setting behavior difficult, in particular given problems of asymmetric
information and adverse selection [3]. Two types of private insurance, the optional system and
the package or bundle system, are generally distinguished [43]. The optional variant clearly
suffers from adverse selection, because it extends the standard policy to flood damage coverage
in return for a mark-up premium. In the package system, flood damage coverage is only
available along with other risks, such as fire, earthquakes, and hurricanes.

The legal system in the US has been comparatively conducive to private insurance of
flood risks in comparison to most other countries. In 1968, Congress instigated the National
Insurance Act, which called for the implementation of the National Flood Insurance Plan (NFIP;
see [15,29,58]). The NFIP stipulates the availability of flood insurance when a community agrees
to adopt and enforce flood mitigation and land use regulations. In the “emergency phase,” flood
hazard maps are provided, and residents in zones at risk are allowed to purchase a limited



amount of insurance at subsidized rates. In order to enter the “regular phase,” communities have
to adopt additional flood mitigation and land use measures in return for extended insurance
coverage. Because the NFIP suffered from a very low participation rate, Congress passed the
Flood Disaster Protection Act (FDPA) in 1973. Under FDPA regulations participation is
mandatory. Mortgage provision for property located in a flood zone is conditional upon
obtaining catastrophe insurance, which effectively qualifies as a guarantee securing the loan.

Effectively, in the context of an assessment of the risk of flooding we are searching for an
estimate of the implicit price for self-protection (the price of safety), or the capitalization of
insurance premiums and uncovered damages in the price of the house. The latter includes the
nuisance related to (partial) destruction of the house and belongings, and delays of
reconstruction. An inventory of available flooding risk valuation studies shows willingness to
pay (WTP) estimates ranging from —52 to +58% of the average property price associated with a
risk exposure of 0.01 per year (see Section 3). The variation in estimates may merely represent
sampling or estimation variance, but it could also be due to systematic variation in the
unobserved population value of the willingness to pay. Meta-analysis, comprising an array of
statistical techniques to analyze previously published empirical estimates, can be used to
determine the extent of random versus systematic variation. It is a well-known tool in economics
(see [45], for recent applications), with numerous papers on non-market valuation pertaining to
air pollution, recreational fishing, health risks, endangered species, wetlands, and pesticide risk
exposure (see, for instance, [23,14]).

The remainder of this paper is organized as follows. The next section deals with the use
of valuation techniques for risk of flooding assessment. Section 3 briefly discusses the sampling
of studies, and provides the main characteristics of the estimated WTP for reduced flood risk
exposure. We also investigate whether the sample drawn from the literature is homogeneous in
terms of the underlying population value, and whether publication bias has a distorting effect on
the sample. In Section 4, we provide an overview of factors that are potentially relevant in
explaining structural variation of flood risk valuations, and we present the estimation results for
the meta-regression analysis. Section 5 concludes.

2. Valuation, externalities and perception bias
Stated as well as revealed preference methods have been used to assess flood risks, with either
method having its own advantages and disadvantages (see [21], for an overview). Stated
preference methods are based on interviews or surveys explicitly asking individuals about their
willingness to pay for reduced flood risk exposure, using contingent valuation or choice
experiments (e.g., conjoint analysis or contingent ranking). Advantages of stated preference
methods include the possibility to give respondents accurate information about the envisaged
risk, the consideration of both actual and hypothetical scenarios, and the opportunity to assess
use as well as non-use values. Arguably, the major disadvantage of stated preference methods is
that it remains unclear whether the actual behavior of respondents corresponds to their self-
reported potential behavior. List and Gallet [39] show that, especially in risk assessment
valuation, the impact of the so-called hypothetical bias is most likely strong.

The revealed preference method is concerned with actual consumer behavior in markets.
The restriction to actual behavior obviously limits the method’s ability to assess WTP values in
different (real-world) constellations, and one cannot readily control the information shaping the
risk perception of individuals. De Blaeij et al. [13] and Florax et al. [23] are examples of studies



dealing with the valuation of risk. They both show that revealed preference techniques lead to
significantly lower WTP values than stated preference techniques.

Most of the studies assessing the value of flood risk exposure use the revealed preference
approach. The assumption underlying revealed preference studies in the presence of an
environmental risk is that an exogenously determined (set of) risk(s) is considered when
choosing the location of a house. Housing prices then reveal individual preferences regarding the
acceptance of risk, assuming that appropriate controls for differences in the property and the
location are included. A straightforward technique to assess such differences is to look at the
average difference between prices of houses located inside and outside a specific flood risk zone,
and to use a statistical test to assess the significance of the observed difference. Zimmerman [65]
and Shrubsole et al. [50] use the difference in means approach.

A more elaborate technique derives from Rosen’s seminal paper [46], in which a housing
unit is considered as a differentiated market good representing a bundle of quantitative and
qualitative characteristics. Implicit shadow prices can be determined as the partial first
derivatives of an econometric model that relates the observed selling price of a house to a set of
characteristic features of the house, and the neighborhood or location of the house. It is important
to note that p is the equilibrium price on the housing market, and variables describing the process
of equilibrium price formation should not be part of the hedonic price function.' A subset of the
neighborhood or location characteristics can be concerned with environmental aspects, such as
the risk of natural hazards, or air quality (see, e.g., [34]). Location choices hence include the
choice of consuming a particular level of (dis)amenity. This technique has the advantage of
being able to control for every element that potentially affects house prices. Yet, in the context of
flood risk valuation, two difficulties remain. One is the potential bias in subjective individual
perceptions of the level of risk, especially because in hedonic pricing models, as compared to
stated preference studies, no additional information or explanation is provided to consumers.
Another problem relates to the coincidence of water-related amenities and water-related risks.

Perception bias amounts to the divergence between the objective probability of a given
risk and an individual’s perception of the risk. A proper appraisal of objective hazards, for
instance determined on the basis of recurrent patterns, can interfere with individual personal
characteristics and subsequently give rise to biases in the perception of hazards. Specifically, an
individual may be completely blind to a risk, in which case revealed preference techniques are of
little relevance. Alternatively, individuals may perceive reality through a distorting mirror; in
which case revealed WTP values are over- or underestimated [60]. Two key propositions in
expected utility theory and in prospect theory state that individuals overestimate low probability
events, especially if fears are present. Individuals also underestimate risks over which they have
active control [33,61]. A way to at least partly identify differences between objective and
subjective probabilities of risk is to compare housing prices before and after the event. New
information that can potentially affect subjective probabilities and make them more in line with
the objective vulnerability are manifold. It includes the occurrence of the event at risk and the
individuals’ experience with such an event, a concurrent change in insurance premiums, a
change in disclosure rules concerning a specific risk, and increased visibility of the risk due, for
instance, to increased media coverage. An illustration of the overestimation of the effects of low

' Some studies include the number of days on the market as a conditioning variable in the hedonic price function,
although this does not seem appropriate. Such a variable reflects either the accuracy of the asking price versus the
actual market price, or it reveals an unexplained selling difficulty specific to a house.



probability events is provided in Beron et al. [8], who show that the devaluation of housing
prices due to the location in an earthquake zone drops from 4.0% before the Loma-Prieta
earthquake in 1989, to 3.4% after the quake.

Scarcity of information is also relevant with respect to the second complication, the
confounding of positive and negative externalities related to proximity to the water. Exceptional
rainfall can cause flooding risk, but flooding risk is likely to be independent of rainfall in regions
endowed with rivers, canals, or lake watersheds located nearby the coast or at low elevation
levels. In those cases, the presence of water is associated with positive (e.g., visual amenities,
water sports facilities, and open space) as well as negative spatial externalities (hazard of
flooding). As a result, a simple dummy variable signaling location within or outside a floodplain
may effectively underestimate the value of the risk of river flooding, because positive and
negative water-related externalities are not separately identified, and may hence partly cancel in
the capitalization of externalities in housing prices. Advanced computational techniques and the
use of geographic information systems have improved the extent to which researchers can
account for the spatial organization of the data in terms of distance to the water front and
elevation. It is also expected that amenities and risk do not exactly coincide. For instance,
hillside houses with a direct view on a river may have no canceling valuations for flood risk and
amenities, whereas for houses with a view but at a lower elevation the valuations may cancel.
This problem is addressed in the meta-analysis by controlling for the inclusion of distance and
elevation related variables in the primary studies.

3. Empirical valuation of flooding risk
The availability of empirical studies dealing with the valuation of flooding risk is still rather
limited and geographically confined to the United States, where flood insurance is typically
required for houses located in a flood zone. This section deals with the selection criteria for
primary studies, and presents an exploratory overview of the available empirical value
assessments of the risk of flooding. The relevance of publication bias and heterogeneity is
investigated statistically as well.

The selection of studies to be included in the meta-sample is governed by two desiderata,
which may be at odds. On the one hand, an all-inclusive approach contributes to avoiding the
distorting effect of selection and publication bias, and increases the efficiency of estimation. On
the other, a desire to save degrees of freedom to increase efficiency requires a sufficiently
homogeneous dataset in order to limit the number of control variables necessary to identify the
relevance of observable differences between studies. In the sample selection process we try to
strike middle ground between the abovementioned desires using the following requirements at
the study (or observation) level:

(1) the assessed price of flood risk is determined by means of a revealed preference technique
(either the difference in means estimator or a hedonic price model), and can be presented,
eventually after recalculation, as a percentage of the average price of the house;

(i1) the risk of flooding is captured by a dummy, where the dummy refers to the expected
occurrence of flooding;” and

(i11) the implicit price of a given risk of flooding is not a replication of a previously obtained
result in another study included in our database.

? Most studies employ the implicit price of the location of a house within a 100-year floodplain contour, implying on
average a minimum chance of being flooded of 0.01 per year.



The above restrictions lead to the exclusion of specific studies from the pool of available
studies. For instance, requirement (i) impedes the inclusion of studies presenting a dollar valued
change in price due to the location in a floodplain without available information on the average
housing price [55,30]. Requirement (ii) is even more restrictive and leads to the exclusion of
studies using elevation and flood depth as control variables [4,57,35,64].

The initial sample contained two studies reporting a single estimate obtained with the
difference in means estimators [65,50]. These results are excluded, because their inclusion
implies the need to introduce two additional control variables revealing the use of the difference
in means estimator and location in Canada (as opposed to the US). The Shabman and Damianos
[48] study was excluded, because it only assesses land prices. The final database is made up of
19 studies and 117 point estimates. Figure 1 illustrates the geographical location of the study
areas in the different studies, and Table 1 provides an overview of the most salient features of the
studies included in the sample.

< Figure 1 and Table 1 about here >

All studies use the actual selling price of the house as the dependent variable, except for
USACE [59] who use appraisal values. The operationalization of the risk variable differs across
studies. Most studies define the risk of flooding as the presence in an x-year floodplain, which
means that the probability of flooding amounts to 1/x per year. Donnelly [19], however, defines
the risk variable as the product between the usual flood dummy and the property’s tax liability.
The coefficient associated with this risk variable represents the difference in selling price due to
the location inside or outside the floodplain, per dollar of property tax liability. The reported
change in price is then computed for the average property tax. Almost all studies use the 0.01
flood zone contour to define the risk level.

A typical approach to account for subjectivity in probability assessment is to use pre- and
post-event valuations. Table 1 shows that many studies use a specific flood or storm, but some
studies consider changes in the design of insurance regulations, such as the National Flood
Insurance Reform Act of 1994 or the California Natural Hazard Disclosure Law. Most studies
contribute up to 10 observations to the meta-sample, except for the study by the US Army Corps
of Engineers [59] contributing as many as 26, and the paper by Pope [44] comprising 22
estimates. Both the time span and the number of observations in the primary studies vary widely.
Two studies employ spatial econometric tools. Bin et al. [10] uses a spatial lag model and Bin et
al. [12] a spatial error model allowing for spatial spillovers in the dependent variable and the
error terms, respectively.3

Table 1 also presents the price difference associated with the location in a flood zone,
which is defined as the estimated relative difference in the price of a house associated with
location in a specific zone at risk, due to this specific risk. These results are, however, not
directly comparable because the expression of the dependent variable in the meta-analysis, which
we refer to as the effect size T, as well as its associated standard error s depend on the functional
form of the hedonic price function in the primary study. Most studies use a semi-loglinear

? There is a subtlety in determining the effect size variable for the Bin et al. [10] study, because the marginal effect
in a spatial lag model should account for spatial spillovers. We have incorporated this spatial multiplier effect and
determined the associated standard error for the effect including the spillovers using the Delta method. For the
spatial error model used in Bin et al. [12] this correction procedure is not necessary. Details are available upon
request.



specification, for which the effect size T simply equals a, and sy equals s,, where a and s, refer to
the coefficient and standard error estimates for the dummy variable indicating location in the
floodplain in the primary study. In the case of a linear specification T =a/P and Sp=s,/ P,
where P is the sample mean of the selling price. For a Box-Cox specification T =aP'™, where
P is the mean estimated selling price and / the estimated non-linearity parameter, and the
standard errors depend on the specification of the Box-Cox model and can only be approximated
by rather involved Delta method approximations.* Because the risk levels are different from 0.01
per year in some of the studies, standardizing the effect size T with the risk probability enhances
comparability. The standardized effect size T" equals T x (risk probability x 100)", obviously
with appropriately rescaled standard errors.

< Figure 2 about here >

For the 117 point estimates of the meta-sample, the standardized relative change in house
price due to location in the 100-year flood plain ranges between —52% and +58%, but on average
it equals only slightly more than —2%. Table 1 shows the within study variation, and Figure 2
shows the point estimates and their associated 95% confidence interval. The figure illustrates that
almost 80% of the available meta-observations is negative, and in absolute value the estimated
price differentials are as a rule smaller than 20%. It is also apparent that greater standard errors
are predominantly associated with the higher price differential estimates. The latter is an
indication for publication bias, although in general one should be cautious interpreting these
results because differences in pre- and post-event assessments as well as several other
characteristics of the studies are not accounted for.

The potentially obfuscating influence of publication bias has recently received
considerable attention in the economic meta-analysis literature (see, e.g., [16,22,53]). The
underlying line of reasoning is that published study results may not be an adequate representation
of the population of all possible study results because of selection effects. This selection effect is
usually referred to as ‘publication bias’ and includes the effects of self-censoring of authors with
respect to undesirable or implausible results (‘file drawer problem’), and the possible tendency of
journal reviewers and editors to be favorably disposed towards the publication of statistically
significant and “positive” results. Various statistical tools and tests have been suggested to
identify the occurrence of publication bias (see [45,47]). We use the so-called funnel plot and
provide the results of two statistical tests for publication bias.

< Figure 3 about here >

The funnel plot in Figure 3 depicts the effect size against its associated standard error,
and derives its name from the statistical expectation that the plot should have a funnel-like shape.
The plot is hypothesized to show a distribution of estimated effect sizes centered on the true
underlying population effect size, which is approximated as the inverse-variance weighted
average of the effect sizes.” Typically, the latter is quite close to the estimate from the largest
study in terms of number of observations (or correspondingly the smallest standard error).
Smaller studies are less precise and will therefore show a greater dispersion, which results in a

* Full details and mathematical derivations for the different effect size definitions are given in the Appendix.
> In the meta-analysis literature this is known as the (pooled) fixed effects estimate.



(inverse) funnel-like shape. Figure 3 shows the funnel plot for the standardized effect size T". It
is by and large symmetric, but it has substantially more observations outside the 95% contours
than could be expected on the basis of chance. The funnel plot does not provide a strong
indication for publication bias, although potentially publication bias is likely not entirely absent.
This conclusion is reinforced by two statistical test results for publication bias. The adjusted rank
correlation test [7] uses the association between the standardized effect size and the sampling
variance, measured by Kendall’s 7, to detect publication bias.® The test shows a z-value of 1.72
(»p = 0.09) for the meta-sample. Egger et al. [20] present a regression asymmetry test to
investigate the asymmetry of the funnel plot by determining whether the intercept deviates
significantly from zero in a regression of the standardized effect estimate against its variance.
The estimated constant for the meta-sample is 0.74, with a p-value of 0.10.

The interpretation of the above tests for publication bias is hampered by the fact that the
underlying population effect size may not be homogeneous. Publication bias may be mistaken
for, or disguise, observable (e.g., differences in study design) and unobserved heterogeneity
among the effect sizes. Homogeneity of the effect sizes implies that variation in the estimates is
random and solely caused by sampling. On the contrary, in the case of heterogeneity, variation in
the estimated effect sizes is due both to sampling and real, observable or unobservable,
differences between studies. This is investigated by testing the null hypothesis that the
underlying population effect sizes 6, (i = 1, 2, ..., k) are the same across studies, Hy: 8= 6, = &
= ... = 6, using the Q-test, which reads as [54]:8

K 2wl
Q=2 w(l -T.) with T, =- M

i b
i=1 Z Wi
i

where Ti* is the i-th standardized effect size estimate and w; the reciprocal of its variance. The Q-
test has a y’-value with 116 degrees of freedom of 798.31, implying that it is highly significant
(for the unstandardized effect size T; the test value equals 766.21). In the next section, the
identified heterogeneity is investigated through a meta-regression analysis.

4. Meta-regression results

The objective of the meta-regression is to determine the impact of observable differences
between studies on the magnitude of the estimated relative selling price due to the risk of
flooding, accounting for non-observable differences between estimates from different studies.
The latter group of non-observable differences also includes observable but unmodeled
differences in order to arrive at a reasonably parsimonious specification. If one accounts for all

% Macaskill et al. [40] show, however, that the test is not very powerful.

7 These results pertain to the standardized effect size T". In the meta-regression we use T rather than 7" as the
dependent variable and include the level of risk as an explanatory variable. The adjusted rank correlation test and the
Egger test for T are less indicative of publication bias. The results are 0.18 with a p-value of 0.86, and 0.64 with a p-
value of 0.20, respectively.

¥ The Q-test is designed for a single-sampling situation (where each study provides one effect size estimate),
whereas in the current case frequently more than one estimate is provided by a study (see Table 1). As a result,
effect sizes coming from the same study are likely not independent, which violates the distributional assumptions for
the QO-test. This is, however, typically ignored and hierarchical dependence, within and between studies, has only
recently been investigated in more detail [26].



observable differences,’ the degree of multicollinearity becomes prohibitive, and a limited group
of conditioning variables is therefore selected. Table 2 provides the descriptive statistics.

< Table 2 about here >

Table 2 shows that, apart from the usual constant, 18 conditioning or moderator variables
are included in the meta-regression specification. The dependent variable in the meta-regression
is the unstandardized effect size estimate 7, and the right hand side of the equation therefore
contains an appropriate control for differences in the risk level. Two dummy variables signal the
difference between ex ante and ex post valuation, and are intended to at least partially capture
differences in the subjective and objective perception of risk. The turning point is marked by a
notable change in the available information, either because of a flood occurrence or because of
increased stringency in disclosure rules. Since valuations can be expected to be income
dependent (see [13]), per capita personal income at the county level in current US dollars is
included as a rough proxy for personal income of respondents and to control for income
differences across studies.

The next group of moderator variables identifies the space-time characteristics of the
primary studies. Specifically, a distinction is made between study areas pertaining to a coastal
zone or an inland location, because coastal zones are more prone to floods due to hurricanes and
strong winds as compared to inland plains. A variable defined as the median sample year of the
primary study is used to identify a systematic time trend in the estimated risk assessments, and
the time span of the data covered in the primary studies is included as well.

The third group of moderator variables refers to differences in the study design of the
primary studies. Specifically, we associate such differences with the type of data, the functional
form of the valuation model, and the estimator used in the primary studies. In particular, time
series and panel data are distinguished from cross-section data as the omitted category, and
dummy variables referring to a Box-Cox or semi-log functional form for the valuation model
distinguish non-linear models from the linear model, which is the omitted category. The fourth
group of moderator variables identifies characteristics of the data and the estimator. A variable
indicating that the effect size corresponds to a house price that is different from the average
house price is used, and takes on the value of +1 or —1 depending on whether the selling price is
higher or lower than the average selling price. The last variable in this group refers to the use of
adjusted standard errors in the primary study, and signifies the use of heteroskedasticity-robust
standard errors or the use of a model allowing for spatially autocorrelated error terms.

A final set of moderator variables concerns dummy variables signaling the inclusion of
specific control variables in the primary study, in particular covariates related to comfort,
neighborhood, quality, and finance. Finally, two dummy variables are used to reveal whether a
primary study accounts for water-related amenities identifying either proximity to water and/or

? In the initial database 40 observable differences across studies and estimates were coded. Some of these are not
very informative, because they identify a specific observation (use of weighted least squares for instance) or they
hardly vary over the entire dataset (use of the surface as a covariate in the primary hedonic price model). In other
cases there is a high degree of collinearity with other conditioning variables (e.g., use of level of pollution, tax level
and insurance premium as conditioning variables in the primary study, assessed rather than actual selling price as the
dependent variable, and delay on the market before being sold). This obviously complicates the interpretation of the
results, but can only be avoided when a larger number of primary studies become available.



scenic views associated with water proximity. The latter identify the impact of controlling for the
potential confounding of water-related externalities and flood risk in the valuation process.

Meta-regressions in economics have been estimated using a variety of estimators ranging
from simple ordinary least squares (OLS) to generalized least squares with various alternative
weighting procedures (e.g., fixed and mixed effects models, and the robust Huber-White
approach) as well as hierarchical level models. These estimators have their own respective pros
and cons (see also [1]). OLS is obviously inefficient, because it discards the information on the
estimated standard errors that can be taken from the primary studies, and disregards the
autocorrelation that may result from sampling multiple estimates from the same primary study.
Heteroskedasticity caused by unequal variances is taken into account in the fixed effects
estimator, which is essentially weighted least squares using the inverse standard errors of the
primary studies as weights. The fixed effect model is rather restrictive in the sense that it
assumes the population effect size to be a fixed unknown constant that can be fully explained by
observable differences between studies. This is a rather heroic assumption if the underlying
studies are heterogeneous and differences across studies are only partly observable.'® Instead of
assuming a fixed population effect size, the mixed effect estimator rests on the assumption that
the population effect size is drawn from a normal distribution centered on the “true” population
effect size, with an unknown variance to be determined from the data. The heterogeneity in
effect sizes is partly observable and can be specified as so-called moderator or conditioning
variables in the meta-regression, and to the extent that it is not observable, it is accounted for in
the additional random effect. This well-known estimator that is widely used in medical
applications of meta-analysis [54] is based on the following model:

T, =6.+¢&, wheree, ~N(0,067)
2)
0, =a+xf+u, where i, ~N(©0,7%),

where 7; is the estimate of the underlying population effect size 6, of study i, & is a common
factor, and x; contains a set of design and data characteristics. Deviations of the estimated effect
size T; from the true effect size 6 are random, and the true effect size and the precision of the
estimated effect size o7 vary across studies. The term o7 is known as the within-variance, and
is taken from the primary studies. Any remaining heterogeneity between estimates is either
explainable by observable differences modeled through moderator variables contained in x; , or it
is random and normally distributed with mean zero and variance 7%, the so-called between-
variance. The unknown variance can be estimated by an iterative (restricted) maximum
likelihood process or, alternatively, using the empirical Bayes method, or a non-iterative
moment-estimator (see [56], for details). We use the iterative restricted maximum likelihood
estimator with weights @, =1/(87 +£?) to obtain estimates for the regression coefficients and

£,

' In meta-analysis the fixed effect estimator typically pertains to the situation where the variation in estimated effect
sizes is fully attributable to a limited number of observable differences between studies. In that case the estimator is
equivalent to the mean of the inverse-variance weighted estimated effect sizes. This is equivalent to using weighted
least squares (WLS) with appropriately defined weights. Since a typical (economic) model would not assume that
differences are perfectly explainable by the observable factors, the variance reported for WLS and the fixed effect
estimator are not identical. The WLS-estimated standard errors need to be rescaled by the square root of the residual
variance (see [1], for more details).
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A popular estimator that simultaneously accounts for heteroskedasticity and cluster
correlation among effect sizes sampled from the same primary study is the familiar Huber-White
estimator [63]. The Huber-White estimator is, however, rather restrictive because it assumes all
differences across measurements and studies to be observable, and sufficient to explain the
empirical heterogeneity. The Huber-White estimator does not fully exploit all available
information because it estimates the difference in variances rather than also using the
information on the estimated standard errors that is available from the primary studies.
Simulation experiments have shown that it nevertheless performs reasonably well [38]. In order
to mitigate the latter, we also apply the Huber-White estimator to inverse-variance weighted
data.

< Table 3 about here >

The results for the mixed effect estimator are provided in the first two columns of Table
3; subsequent columns provide the results for the weighted and unweighted version of the Huber-
White estimator. Columns labeled (a) contain the full specification with the entire set of
explanatory variables, while columns labeled (b) provide results for a restricted specification in
which variables with a significance level smaller than 10% have successively been dropped
(backward stepwise regression). The results across estimators are by and large very similar in
terms of sign, magnitude and significance.

The marginal effect of flooding risk associated with location in the 100-year floodplain is
clearly negative and amounts to —0.6 to —0.8% of the housing price, except for the unweighted
Huber-White estimate which shows a slightly smaller effect of ~0.3%."'" Interestingly, the results
also clearly demonstrate the problems associated with subjective perceptions of generally very
small risks. The marginal effect of risk exposure is enhanced (in absolute magnitude) when a
recent flood has occurred, or increased stringency in disclosure rules effectively results in more
objective information about the environmental hazard being available. Ex ante evaluation, which
is by definition based on a more subjective assessment of the environmental hazard, results in an
implicit price of risk exposure that is smaller. Although ex ante and ex post risk assessments
mitigate or enhance the implicit price of flooding as expected, their effect is very small in
(absolute) magnitude. We also find that the valuation of risk is positively associated with
income, implying that the absolute value of the implicit price of risk is smaller for higher
incomes, which can be traced back to the greater capacity to mitigate and adapt to the negative
effects of flooding.

Previously we have mentioned that it is essential to carefully distinguish between positive
and negative water-related externalities. Omitting a control for positive water-related amenities
in primary studies is likely to confound the effect of amenities and risk, and therefore under-
estimate the implicit price of the risk of flooding. This is confirmed by our estimates in the sense
that controlling for the proximity to water in the primary study increases (in absolute value) the
implicit price of flooding. Controlling for a view does, however, not show the same effect
unequivocally, and the meta-analysis results are much more mixed. One reason for this may be

" Instead of operationalizing the risk variable as a continuous variable defined as the annual expected occurrence of
a flood, we have also experimented with a less restrictive specification in which a series of dummy variables
representing specific flood zones is used. However, this specification does not work well, because virtually all
observations are in the 100- and 500-year floodplain, and only a few observations are available in the 5 to 50, and
200 to 400-year floodplains.
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that the availability of scenic views concurrently acts as a proxy for lying on high lands, and thus
being less flood-prone.

Another issue that warrants further investigation is the positive estimated effect of a
coastal location. A negative sign can be expected for at least two reasons related to perceived
risk and actual risk, respectively. Perception may be such that the risk associated with hurricanes
and thunderstorms in coastal areas is greater, and in terms of actual risk the hazard may be
greater because coastal zones can be subject to river flood risk as well, effectively causing a
situation in which different types of flood risk cumulate.'* A reason for the counter-intuitive
positive sign may be that in coastal areas, the water amenity value is less well captured than in
river zones. As a simple check we estimate a variant of the meta-regression model presented in
Table 3 replacing the coastal zone and proximity to water controls by cross products of coastal
zone and proximity to water, and non-coastal zone and proximity to water. Interestingly, the
proximity to water in an inland zone has a larger coefficient than the proximity to water in a
coastal zone in absolute value (-0.143 and —0.041, respectively, both with a p-value < 0.01). The
interpretation that water amenities are captured inadequately or insufficiently in coastal zones is
therefore warranted. In coastal zones, proximity to water does most likely not cover the diversity
of wide-ranging amenities, such as easy access to water transportation and harbor activities,
tourism and recreation, open space and lower fragmentation of the landscape, and stronger winds
causing lower pollution levels.

In modern societies, improvements in safety and health levels are believed to go together
with amplified concerns about risk [37], implying that the increase in quality of life makes
people more risk averse. This aspect is confirmed in our results by the negative sign associated
with the time trend variable referring to the median sample year. The positive sign on the time
span variable is also in line with this interpretation. One should note that the abovementioned
societal improvements have to be distinguished from a mere accumulation of wealth, because we
control separately for variation in income levels. Both income as well as the closely related
evaluation of implicit prices for higher than average housing prices show that the implicit price
of flooding risk is lower (in absolute value). In terms of design characteristics of the primary
studies, the functional form of the valuation model does not seem to cause significantly different
valuations, but estimators allowing for heteroskedasticity and/or spatial autocorrelation exhibit
slightly higher implicit prices (in absolute value).

Finally, it is important to note that the omission of certain covariates in primary studies
can effectively make the estimator biased. The results show that the inclusion of variables
describing quality characteristics of the house (age, maintenance level) increases the adverse
effects of risk. Variables describing the comfort level of the house (central heating, fireplace)
have a similar effect, whereas the inclusion of neighborhood effects does not affect the implicit
price level in any significant manner. Control variables in the primary study that capture debt
financing of the house have exactly the opposite effect, and their (absolute) magnitude is greater.
The results with respect to conditioning variables included in the primary study clearly reveal
that the omission of certain covariates in the primary study may lead to an under- or
overestimation of the implicit price of flood risk.

2 Note that risk is characterized both by the probability of occurrence as well as the expected damage of an adverse
event.
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S. Conclusion

The purpose of this paper is to explore the magnitude and determinants of the implicit price of
the risk of flooding. We use a meta-analysis of 19 studies, exclusively from the US providing a
total of 117 point estimates, to investigate the impact of exposure to flood risk in terms of the
implicit price differential associated with the location of a house in a flood zone. Specifically, we
use the meta-analysis to shed light on the difference between pre- and post-event (ex ante and ex
post) valuation, and the potentially confounding effect of the coincidence of positive water-
related externalities with flooding risk. The distinction between ex ante and ex post valuation is
innate to the problematic nature of the perception of risk, and effectively makes a distinction
between ‘“subjective” risk assessment (ex ante) and “objective” appraisal of the hazard (ex post)
either because of the occurrence of the event or because of more stringent disclosure rules are
implemented.

The results of the meta-analysis are useful, both because they contribute to a more precise
assessment of the implicit price of an environmental hazard such as flooding, but also because
they provide guidance as to where the important voids are in our current understanding of the
willingness to pay to reduce exposure to environmental hazards. Prior to discussing the
noteworthy inferences in that respect, we would like to point out that the available empirical
literature on flood risk is still relatively scant. In conjunction with model uncertainty giving rise
to considerable heterogeneity across studies, which needs to be accounted for in the meta-
analysis, there is a clear-cut need for more empirical work on this topic. In particular, studies
pertaining to locations outside the United States can improve our understanding of the impact of
a different geospatial and geoclimatic settings (e.g., countries with substantial areas below sea
level, or countries in the tropics where weather influences are much more severe and significant).

An overview of the 19 available studies shows that estimates of the implicit price of
flooding risk vary considerably. A multivariate meta-analysis, controlling for observable and
unobservable differences across studies through fixed and random effects, shows however that
the price differential for a house located in the 100-year floodplain as compared to a property
that is not at risk amounts to —0.3 to —0.8% of the housing price. The actual occurrence of a
flooding event or increased stringency in disclosure rules causes a difference between ex ante
and ex post price effects, but the effects associated with ex ante or ex post measurement are very
small in magnitude. Arguably, this is however only a fairly crude way of modeling difficulties
associated with risk perception in the case of small risks, and it points to the need for a closer
investigation of this aspect of economic risk assessment.

The meta-analysis also shows that there is a real danger of confounding positively valued
water-related amenities with negatively valued exposure to flood risk. The way in which these
countervailing effects have been incorporated and identified in valuation studies has to date been
rather underdeveloped. Given the size of these impacts we discover in the meta-analysis, and
given the still inconclusive nature of their interpretation, this is an issue that warrants more
attention in future studies on flood risk as well.

Appendix

The implicit price of the risk of flooding depends on the specification of the hedonic price
model. For a linear specification, P = aF + X + £, where P is the housing price, F a flood zone
dummy, X conditioning variables including a constant, £ the error term, and & and [ parameters
to be estimated:
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Z Al
°F (AD)
Similarly, for a loglinear specification, In P = aF + X[ + €, the implicit price is:"?
oP
ﬁza-exp(aF+X,B+£):aP. (A2)
For a Box-Cox specification with a transformed dependent variable:
o PP—1
P<>ET=aF+X[)’+g, (A3)
where A is the nonlinearity parameter, the implicit price equals:
oP 1 1,
—=—MaF +Xp+e)+1)i - la
o5 = 7 M+ XB+e)+1)
-2
= o A(aF + XB+¢e)+1) 2
-2
= (AP +1) # (A4)
1-4
=a(P*)*
=aP'™

It is straightforward to show that this result is also valid for the gradient of a Box-Cox model
where one or more of the continuous right hand side variables are also transformed, as in:

PP =aF + XY B+Zy+e, (A5)

where, except for the flood zone dummy, X contains the transformed variables and Z the
untransformed variables (including the constant).

Equation A(4), particularly the second line above, shows that marginal effects are not
easily separable in terms of the parameters because the error term does not vanish in the gradient
(except when A4 = 1). Wooldridge [62] presents an alternative model in which the error term does
not show up in the conditional expectation and the marginal effects. The standard procedure is,
however, to ignore the presence of the error term and simply estimate marginal effects using
P™ determined with a maximum likelihood or an instrumental variables estimator. Ignoring the
presence of the error term does render both estimators biased, and Abrevaya [2] demonstrates

" Note that formally the derivative does not exist in the case of a dummy variable, and therefore the marginal effect
should be adjusted to e®— 1 [28]). In the current case, adjustments are not taken into account, because their effect is
negligible given the estimated values of the coefficient.
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that procedures accounting for the presence of the error term through numerical integration or
“smearing,” result in improved fitted values, conditional expectations and marginal effects.'
Following standard practice, however, we simply ignore the error term in the below.

The effect size T is defined as the relative change in the price of the house, so the first
derivatives in equations (Al), (A2) and (A4) need to be divided by P, which results in T = /P
for the linear model, T = « for the loglinear model, and T = aP~* for the Box-Cox specifications
given in A(3) and A(5). These effect sizes can be evaluated for a given price of the house, say
the average observed price P for the linear model, and (ignoring the error term) the average
predicted price with F valued at its sample mean for the Box-Cox model.

The variance of the effect sizes for the different specifications can be derived in a
straightforward fashion. For the linear specification P is a known constant, and hence:

a) (1 ’
Var(?j = (Fj var(a) . (A6)

In the loglinear specification the variance can be taken directly from the reported results of the
primary study, because it is simply the squared standard error of the coefficient of the flood
dummy.

The variance of the effect size in the Box-Cox specification needs to be approximated
because, as (A4) shows, the effect size is a nonlinear function of two random variables even if
one discards the error term. Using the Delta Method [25, p. 70], the asymptotic variance is given
by:

2 2
var(T) = (3—2] o, + (3—2) o.+ 2(%}(2—21 cov(d, @), (A7)

which can be further expanded to:

2 2
var(T) = (3—5] o; + (%) o.+ 2(%)(3—2) 71,0 ,0 - (A8)

From (A4) we can determine:

g—T =(AaF + AXB+1)" — AaF (AoF + AX[+1)7*
(04

(A9)
=P *—alFP ™,

' Since F is a dummy variable, the Box-Cox studies concerned [18,41,42] actually compute marginal effects as:
L
F= F=0

and subsequently transform the predicted values to P in order to determine the implicit price differential of the risk
of flooding. This is nearly identical to using A(4) with F fixed at its sample mean.
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and an identical result can be derived for the extended Box-Cox given in A(5). The derivative to
A is different, however, depending on the starting point. For the Box-Cox model given in (A4)
we obtain:

T _daP™
FY YY)
=—a(AaF + AXB+1) " (aF + Xp), (A10)

=—aP " - (aF + XP),

and for the extended Box-Cox model in A(5) we have:

T _ daP™
oA oA
= —a(AoF + X*B-B+Zy+ )2 -(aF + X*B-In(X) + Zy) (A11)

=—aP?* -(oF + X*B-In(X)+Zy)

Substitution of A(9) and A(10) or A(11), respectively, in (A8) gives the expression for the
variance of 7. This expression can be evaluated at the sample mean of the predicted price, P,
with F, X and Z fixed at their sample mean(s), and using estimated values for ¢, S, % 4, o, and
o, . In the case where an estimate for o, is unavailable, we use an approximated standard error
of (0.5xA), which makes A significantly different from zero approximately at the 5% level.
Since rj, is generally unavailable, we use ri, = —0.9 or +0.9 depending on whether
(dT/0A)(dT/dcx) is negative or positive, respectively, in order obtain sufficiently conservative
standard errors.
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Table 1. Studies included in the meta-sample with salient characteristics

Study Location No. Flood risk Mean Standard ~ Time span Context
(US estimates (x-yr standardized deviation (years)
state) floodplain)  effect size T of T
Bartosova et al. (1999) [5] WI 7 500 to 100 0.0253 0.245 3.5 Flood in 1997
Bialaszewski and Newsome (1990) [6] AL 1 100 0.0002 NA 1
Bin and Polasky (2004) [9] NC 3 100 -0.0597 0.023 10 Flood in 1999
Bin and Kruse (2006b) [11] NC 6 500 to 100 -0.1738 0.226 4
Bin et al. (2006a) [10] NC 1 100 -0.1281 NA 8
Bin et al. (2006¢) [12] NC 4 500 to 100 -0.1895 0.172 4
Dei-Tutu and Bin (2002) [18] NC 3 100 -0.0759 0.029 4.5 Flood in 1999
Donnelly (1989) [19] WI 1 100 -0.1206 NA 2
Fridgen and Shultz (1999) [24] ND, MI 4 500 to 100 0.0289 0.144 3.6
Hallstrom and Smith (2005) [27] FL 9 100 0.0719 0.095 21 Hurricane in 1992, change in
insurance disclosure in 1994
Harrison et al. (2001) [29] FL 4 100 -0.0222 0.012 18 Reform in the NFIP
MacDonald et al. (1987) [41] LA 6 100 -0.0921 0.017 0.25 Flood in 1982
MacDonald et al. (1990) [42] LA 6 100 -0.0923 0.020 0.5 Flood in 1978 and 1983
Pope (2006) [44] NC 22 500 to 100 0.0094 0.102 1.5
Shilling et al. (1989) [49] LA 1 100 -0.0761 NA 1.2
Skantz amd Strickland (1987) [51] TX 7 100 -0.0267 0.020 4 Flood in 1979
Speyrer and Ragas (1991) [52] LA 4 100 -0.0983 0.073 16 Floods in 1978, 1980, 1983,change
in insurance disclosure in 1998
Troy and Romm (2004) [58] CA 2 100 -0.0968 0.151 3
USACE (1998) [59] TX, KY 26 500to 5 0.0134 0.055 1to5
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Table 2. Descriptive statistics for selected variables (n = 117)

Variables Mean St. dev. Min. Max.
Effect size
T -0.023 0.072 -0.268 0.166
T -0.026 0.122 -0.515 0.575
Risk and income
Risk level (occurrence per year) 0.018 0.032 0.002 0.2
Ex post flood or disclosure 0.231 0.423 0 1
Ex ante flood or disclosure 0.239 0.429 0 1
Per capita personal income (USD), county level 20369 6812 5590 28374
Space-time features
Coastal zone 0.410 0.494 0 1
Median sample year 1993 6.612 1979 2003
Time span (in years) 5.248 6.212 0 21
Primary study design
Time series or panel data 0.385 0.489 0 1
Box-Cox 0.128 0.336 0 1
Semi-log 0.547 0.500 0 1
Non average price 0.000 0.294 -1 1
Adjusted standard errors 0.342 0.476 0 1
Conditioning variables primary study
Proximity to water 0.496 0.502 0 1
Scenic view 0.068 0.254 0 1
Comfort 0.624 0.486 0 1
Neighborhood 0.521 0.502 0 1
Quality 0.812 0.392 0 1
Finance 0.103 0.305 0 1




Table 3. Estimation results for the mixed effects estimator and the weighted and unweighted Huber-White estimator
with the effect size T as the dependent variable®

Variables and diagnostics Mixed effects Huber-White, Huber-White,
unweighted inverse-variance
weighted
@ (b) (a) (b) (a) (b)
Constant 20.679 23.860 21.888 21.088 22.677 26.287
(6.433) (3.674) (6.173) (2.378) (3.650) (2.019)
Risk and income
Risk level (occurrence per year) — —0.629" -0.637" 0304 -0.2907" -0.831 -0.873"
(0.330) (0.327) (0.029) (0.038) (0.330) (0.330)
Ex post flood or disclosure -0.022"  -0.024"  -0.034"  -0.028"  -0.0207" -0.021""
(0.012) (0.011) (0.014) (0.013) (0.005) (0.003)
Ex ante flood or disclosure 0.021" 0.020° 0.024" 0.029" 0.012° 0.013™
(0.012) (0.011) (0.014) (0.012) (0.006) (0.005)
Per capita income (in thousands) ~ 0.020”"  0.022™"  0.0207°  0.019™"  0.022""  0.024™"
(0.004) (0.003) (0.004) (0.001) (0.003) (0.001)
Space-time features
Coastal zone 0.112°°  0.102™"  0.072 0.094™  0.092™"  0.089""
(0.027) (0.019) (0.058) (0.026) (0.015) (0.010)
Median sample year 00117  -0.012"" -0.011"" -0.011"" -0.012"" -0.013""
(0.003) (0.002) (0.003) (0.001) (0.002) (0.001)
Time span (in years) 0.010""  0.0117"  0.008" 0008  0.0117 0.0117"
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
Primary study design
Time series or panel data -0.052""  —0.054™" —0.042"" -0.0377" -0.062"" -0.064""
(0.016) (0.015) (0.010) (0.008) (0.010) (0.008)
Box-Cox -0.021 0.021 -0.010
(0.036) (0.041) (0.024)
Semi-log -0.001 0.021 0.008
(0.020) (0.037) (0.013)
Non average price 0.018 0.017" 0.017" 0.018™ 0.017""
(0.011) (0.003) (0.003) (0.004) (0.004)
Adjusted standard errors -0.038"  -0.032""  -0.015 -0.022" -0.048""  —0.042""
(0.015) (0.012) (0.014) (0.012) (0.012) (0.007)
Conditioning variables primary study
Proximity to water -0.150""  -0.143""  —0.141""  -0.144™" 013777 -0.128""
(0.027) (0.023) (0.026) (0.023) (0.014) (0.012)
Scenic view 0.041 0.047 -0.013 0.065" 0.079™"
(0.031) (0.027) (0.045) (0.026) (0.024)
Comfort -0.031 -0.044™"  —0.039"  -0.033""  -0.037" -0.053""
(0.027) (0.016) (0.016) (0.009) (0.019) (0.010)
Neighborhood 0.006 -0.014 0.007
(0.015) (0.017) (0.008)
Quality —0.0877"  —0.0847"  -0.043 -0.054""  -0.090""  -0.092""
(0.025) (0.024) (0.030) (0.016) (0.014) (0.013)
Finance 0.142°"  0.1417°  0.096" 0.109™"  0.156""  0.155""
(0.028) (0.025) (0.035) (0.022) (0.016) (0.011)
Diagnostics
Between study variance 0.00077 0.00078
R’ 0.47 0.46 0.68 0.68
Root MSE 0.057 0.057 0.030 0.030

* Estimation results with standard errors in parentheses. Huber-White standard errors are robust to heteroskedasticity
and within-study autocorrelation. Significance is indicated by , " and  for the 10, 5 and 1% level, respectively.
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Figure 1. The geographical location of the study areas in the different studies
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Figure 2. Standardized effect size 7" including their 95% confidence interval ranked in increasing magnitude with
deciles of the meta sample size on the horizontal axis
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Figure 3. Funnel plot of 117 standardized housing price differentials due to location in a floodplain (7*) against their
estimated standard error, including the pooled fixed effects estimate (solid line) and its 95% confidence interval

(dashed lines)
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