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Abstract 
 
Subsidies on production have long been criticized for protecting producers from competition, and thus 
removing an incentive for efficient use of the resources. This study undertakes the examination of the 
impact of partially decoupled subsidies on the technical efficiency scores of cotton producers in 
Greece. The results indicate that compensatory area payments reduce the efficiency scores of the 
producers by diverting resources from products for which the subsidy is based on the area planted to 
the production of cotton, for which the aid is related to the volume of output. 
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1. Introduction 
 
The Common Market Organization for cotton was established in 1981, when Greece entered the 
European Community (EC). It consisted of a guide (target) and a minimal price per tonne of unginned 
cotton, accompanied by a co-responsibility levy when the production exceeded the Maximum 
Quantity Guaranteed (MQG) . Originally the MQG was set at 560,000 tonnes and the minimum price 
at the 95% level of the guide price. The calculation of the support per tonne was made based on the 
world price of ginned cotton. The difference between the world and the minimal price was paid to the 
cotton ginners, and from them transferred to the farmers. The same cotton regime applied with minor 
changes to the other two cotton producing states, Spain and Portugal, when they joined the EC. The 
major difference was the increase of the MQG to 752,000 tonnes. 
 
During the period 1981-1986 cotton production almost doubled in Greece but always remained below 
the MQG. After 1986 and until 1995 the production of cotton and the land devoted to cotton 
production grew at an annual rate of about 10%. At the same time no increasing trends are apparent for 
Spain, neither in terms of land occupied by cotton nor in terms of production. Due to the increase in 
production from Greece, the MQG was exceeded every year after 1986.  
 
A slight revision of the Common Market Organization for cotton took place in 1992, but the system 
underwent its first major revision in 1995. The MQG was increased to 1,031,000 tonnes and divided 
among the two major producer-states (782,000 tons for Greece and 249,00 tons for Spain). The 
minimal price was to be reduced only for the country that exceeds its National Quantity Guaranteed 
(NQG). The minimal price was set at €1,009.9/tonne for the next 5 years and the minimum total 
amount of aid at the EU level was set at €770 million. Furthermore, quality standards were set for the 
cotton that is eligible for support, in an attempt to improve the quality that declined since the 
introduction of the cotton regime. 
 
Even after the 1995 reform, the NQGs were exceeded in both Greece and Spain every year until 2000. 
Even after the reductions in the minimal price through the co-responsibility mechanism, cotton 
remained the most profitable crop for farms specializing in the production of arable crops. Karagiannis 
and Pantzios (2002) present in a simulation study for the case of Greece that since the NQG was not 



further divided among producers, the individual farmer had an incentive not to comply with the NQG, 
while compliance would result to a Pareto improvement both for the producers and the taxpayers. 
 
Like most trade distorting measures, the support policies for cotton resulted in a large increase of the 
produced output and distorted the output mix of the farms. As the price paid to the cotton producers 
within the EU was well above twice the world price, the price support programs induced them to 
produce as much output as possible, with little attention paid to the quality of the product. The 
incentives given to the farmers were further complicated by the 1992 CAP reform, when 
compensatory area payments were given to the producers of cereals, oilseeds and protein crops, as 
these arable crops participate in the rotation of cotton.  
 
In 2003 a further revision of the Common Market Organization for cotton was proposed. Under this 
new regime, a decoupling of aid from production is attempted, with 65% percent of the total aid 
coming in the form of a single farm payment and the remaining 35% in the form of a payment coupled 
to cotton area. 
 
The effect of decoupling support from the level of output in agriculture has been studied extensively in 
the agricultural economics literature. For example, Oude Lansink and Peerlings (1996) and Guyomard 
et al. (1996) use multiple-output profit functions to study the effect of the compensatory area payments 
on output levels of arable crops, in the Netherlands and France respectively. Both papers conclude that 
the compensatory area payments are only partially decoupled. Oude Lansink and Peerlings further 
conclude that output of arable crops which are not included in the area payments scheme is most likely 
to increase. Moro, and Sckokai. (1999) following a similar approach, find that the decoupled payments 
affect output levels mainly through land allocation. Some of the literature focuses on the effect of the 
policy reforms on output through the reduction of the risk associated with production (Hennessy 
(1998), Sckokai and Moro (2006)). 
 
Although most studies assessing the impacts of decoupled payments address the impact of land 
allocation and optimal yield responses, little attention has addressed the impact of policy changes on 
the efficiency of producers. The impact of subsidies on efficiency has been studied before in the 
literature (see for example Bezlepkina et al. (2005) and Kleinhanß et al. (2007)). In addition to 
measuring the presence of inefficiency in production, there is interest in identifying the forces that 
differentiate efficient from less efficient producers.  Stefanou and Saxena (1988), Riefenschnieder and 
Stevenson (1991), Kumbhakar et al (1991) and Battese and Coelli (1995) are early contributors to 
literature on explaining efficiency levels. Clearly, managerial ability and related forces can have an 
impact on the character of efficiency but we are often depending on fairly static measures such as 
years of education and years of operating experience. A constellation of other forces that are largely 
unobserved are part of the managerial ability impact on efficiency. The classic fixed effects models 
were initial efforts to account for unobserved heterogeneity as we estimate the structure of production 
decision making. More recently, Greene (2005) discusses the random effects models and their variants 
have been extended to provide greater insight in efficiency measurement to account for the impact of 
unobserved heterogeneity. 
 



This paper addresses the impact compensatory area payments had on the efficiency of cotton 
producers in Greece, when the cotton regime consisted primarily of the price support system and the 
co-responsibility levy. We hypothesize that support schemes that are partially or fully decoupled from 
production weaken the subsidy related incentives for producers to operate efficiently. Furthermore, 
when price support and (partially) decoupled payment measures are combined, we would expect the 
producers to divert non-land resources from the production of commodities for which support is 
(partially) decoupled from output to those for which it is fully related to output. This would result in 
distortion of both input and output mix and eventually to a reduction in efficiency. The econometric 
section of this paper develops a simulation based method to account for the effect of unobserved 
heterogeneity. 
 
The paper is organized as follows. The next section describes the specification of the model and the 
econometric technique to account for heterogeneity and to measure the effect of subsidies on technical 
efficiency when multiple outputs are produced. The data are described in section 3. The results are 
presented and discussed in section 4. Section 5 concludes the paper. 
 
2. Methodology 
Among the numerous techniques proposed in the past for measuring efficiency, the stochastic frontier 
approach (Aigner et al., 1977; Battese and Corra, 1977; Meeusen and van den Broeck, 1977) appears 
to be the most popular parametric method. It makes use of a definition of efficiency that uses observed 
data right from the beginning of the formulation of the estimation problem. It furthermore provides a 
direct way of determining the effects of exogenous factors on inefficiency. 
 
In a non-stochastic environment and when multiple outputs are produced by a firm, the technical 
efficiency of firm i  in period t  is defined as the maximum possible expansion of the observed output 
vector ( ity ) such that it reaches the boundary of the production possibilities set, given the inputs used 

( itx ): 

 
( ){ } ( )βyxxy ;,/:minTE ititoititit DP =∈= μμ  (1) 

 
Here, ( )βyx ;, ititoD  represents the deterministic part of an output-oriented distance function and it is 

assumed to be known up to a vector of parameters β . This measure of efficiency is bounded between 

zero and one. In the literature technical efficiency is replaced by itue− , with 0≥itu .  

 
It is apparent from equation (1) that distance functions are linearly homogeneous in outputs. Using this 
property the last equation can be written as: 
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where M
ity  is the normalizing output (see Coelli and Perelman (1996) for details). In the last equation 

itv represents a realization of the random conditions that affect the production process and which are 

outside the control of the firm. 
 
Once distributional assumptions are placed on itv  and itu  the parameters in model (2) can be 

estimated by maximum likelihood. Typically, itv  is assumed to be distributed normally, given that it 

represents random noise in the production process. The distributional assumption on itu  is more 

arbitrary. In the literature, itu  has been assumed to have a half-normal (Aigner et al., 1977), truncated 

normal (Stevenson, 1980), exponential or Gamma distribution (Greene, 1990).  
 
Battese and Coelli (1995), building on the work of Reifschneider and Stevenson (1991) and 
Kumbhakar et al. (1991), provide an extension where the mean of the distribution of itu  depends on a 

set of firm-specific characteristics ( itz ). In this model, itu  is assumed to have a normal distribution 

truncated from below at zero, the mean of which is ξz it′ . The vector of parameters ξ  is estimated 

along with β  and the variances of itv  and itu  in one step, using maximum likelihood. 

 

Observation-specific estimates of efficiency can be calculated after the estimation by ( )it
uite ε̂E − . The 

estimates of β  are directly interpretable as the marginal effects of the independent variables on the 

dependent. The same is not true for the estimates of ξ . In order to get the marginal effects of the 

variables in z  on efficiency one needs to calculate the derivative of ( )it
uite ε̂E −  with respect to z . 

These marginal effects are usually calculated at the sample means of the data or at the specific values 
for every observation. 
 
The models presented above ignore the panel nature of the data. However, when the firms differ from 
each other based on unobserved factors (possibly correlated with the observed data), then the pooled 
models run the risk of misinterpreting the unobserved heterogeneity as inefficiency. The typical 
solution would be to use fixed- or random-effects estimators. 
 
In a stochastic frontier model where the group-specific constant term is assumed to be capturing the 
unobserved heterogeneity effect, the fixed-effects estimator would involve maximization of the 
likelihood function with respect to the parameter vector θ  and the set of constant terms. Although this 
is computationally feasible even with very large datasets (see for example Greene (2005)), typical 
micro-panels are short which prevents the group-specific constant terms from converging to their 
population counterparts. Since the estimators of the slope parameters involve the estimates of the 
constants, even θ  is not consistently estimated. 
 
On the other hand, the random-effects estimator can be used to remove unobserved heterogeneity, 
given one is willing to assume that the heterogeneity is uncorrelated with the regressors. Greene 
(2005) employs the random effects estimator by simulation. However, an additional assumption is 



placed on the model: the group-specific constant term is assumed to have a normal density in this 
application, the parameters of which are to be estimated. 
 
Here we propose treating the group-specific constant terms as missing data and then use a variation of 
the Monte Carlo Maximum Likelihood technique (Gelfand and Carlin, 1993) to recover the estimates 
of the remaining parameters. The resulting estimator relaxes both assumptions that are necessary for 
the random-effects model; namely, a) the independence of the unobserved heterogeneity from the 
regressors and b) the assumption on the distribution of the constant term. In this way, the estimator is 
closer to the fixed-effects estimator. 
 
Consider the translog specification of an output distance function in inputs, outputs and time: 
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where ( )2,0N~ vitv σ  and ( )2,N~ uititu σξz′+ . For notational convenience, let ity  represent the 

dependent variable and let itx  be the vector of regressors: 
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The likelihood for group i  that is observed for iT  periods, conditional on the unobserved iα  is: 
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where [ ]′′′= γσξβθ  and ϕ  and Φ  are the standard normal density and distribution functions 

respectively. 
 
The estimation of θ  can be based only on observed data, that is, on the density of iy  marginally with 

respect to iα . Following Gelfand and Carlin (1993), this marginal density can be written as: 
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where 0θ  is any element of the parameter space of θ . 

 
The joint density of iy  and iα  can be decomposed to the product of the known conditional density of 

iy  (from equation (4)) and the marginal density of iα , ( )0,,p θzx iiiα . If we assume that the density 

of iα  does not depend on the specific value of  θ , then: 

 
( ) ( ) A∈∀= iiiiiii pp ααα       ,,,, 0θzxθzx  

 
and (5) can be simplified to: 
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The integral in (6) is an expectation and it can be approximated by Monte Carlo methods. More 
specifically, the likelihood for group i  can be approximated by: 
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where the j
iα s are independent draws from the density of the unobserved data, given the observed and 

0θ . Finally, the Monte Carlo log-likelihood function for the entire dataset is: 
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and it can be maximized with respect to θ  (ignoring the second, additive term that is constant with 
respect to θ ). Geyer (1994) proved that under loose regularity conditions, the Monte Carlo likelihood 
hypoconverges to the theoretical likelihood and the Monte Carlo maximum likelihood estimates 
converge to the maximum likelihood estimates with probability 1. 
 
One issue that remains to be resolved is the choice of ( )0,,, θzxy iiiif α . One way to proceed would 

be to use Bayes’ rule yielding: 
 

( ) ( ) ( )000 ,,,p,,,,,,, θzxθzxyθzxy iiiiiiiiiii ff ααα ⋅∝  

 
Then (6) can be further simplified to: 



 

( ) ( ) ( )∫=
A

iiiiiiiiiii ff ααα d ,,p ,,,,, 0θzxθzxyθzxy  (9) 

 
Here, we have come into full-circle and if we assume that iα  is independent of the regressors and of 

0θ , the estimator becomes identical to the random-effects estimator proposed by Greene (2005). 

However, there is an advantage in basing simulation on (6) instead of on (9). By using Bayes’ rule, as 
the number of time observations per group increases, the role of the prior diminishes just as it is the 
case in Bayesian inference. That is, after a prior ( )0,,p θzx iiiα  is specified, when sampling from 

( )0,,, θzxy iiiif α , information from the observed data is used to form the posterior density of iα . 

Furthermore, even if we assume that iα  is independent of the regressors in the prior, this does not 

imply that it is also independent in the posterior. 
 
 
3. Data 
 
The dataset used for this paper comes from the Farm Accountancy Data Network (FADN) and covers 
the period 1996-2000. The dataset contains farm-level information on physical units (outputs and 
inputs), economic and financial data (revenues from specific products and product groups, expenses 
related to input use, subsidies etc.), as well as some geographical characteristics and characteristics of 
the farm’s primary operator. FADN uses a stratified, rotating sampling scheme where farms remain in 
the panel on average for a period of 4-5 years.  
 
The farms that were used for this study satisfied the following criteria: 
1. they participate in the survey for at least 2 years, 
2. at least 10% of the total revenues comes form cotton sales for every year that the farm is in the 

dataset, and 
3. the revenues from sales of (i) cereals, oilseeds and proteins, (ii) vegetables, mushrooms and 

flowers, (iii) forage and (iv) other field crops (including cotton) comprise at least 80% of the 
farm’s total revenues. 

 
For the case of Greece, the last category of products is dominated by cotton and sugar beet. The other 
three categories contain the major products that participate in the crop rotation system. The selection 
of farms was made so that the resulting sample represents a rather homogeneous group in terms of 
their production technology. The second criterion guarantees that the farms in the used sample have 
integrated cotton production in the rotation system, that is, land, machinery and fixed factors in 
general are appropriate for the production of cotton. The third criterion selects the farms that are 
producing mainly arable crops. For these farms, the machinery and equipment is more likely to be 
homogeneous. Furthermore, farms that are producing primarily arable crops face similar decision 
problems on the input and output mixes and their production process could be better represented by a 
single distance function. The sample that resulted after applying these criteria contains 1246 farms and 
a total of 4371 observations. 
 



Three outputs are used in the translog specification of the distance function: cotton production 
(tonnes), cereals and other output (revenues normalized by price indices). Cotton production was used 
as the normalizing output. The inputs are the physical units of labor and agricultural area, the cost of 
materials and the values of buildings and fixed equipment (buildings) and of machinery and equipment 
(capital).1 Whenever only monetary values of inputs were available, the values were normalized by the 
corresponding price index. 2 
 
The specification of the mean of the truncated distribution of itu  includes a constant term and two sets 

of subsidies paid to the producers. The first set consists of the compensatory area payments paid to the 
producers of cereals, oilseeds, protein and energy crops. The second set contains all other subsidies. 
Total subsidies were divided into these two categories in order to analyze the impact of the 
compensatory payments on efficiency in detail. 
 
Some additional variables were included in the specification of the inefficiency term to control for 
irrelevant effects on efficiency. The size of the farm in European Size Units was used to control for 
economies of scale in the managerial effort of the farm operators. The absolute value of investment 
during the accounting year (net investment plus sales of fixed factors) was included in the 
specification to capture the effects of possible disturbances of the production process on efficiency, in 
the context of the adjustment cost theory. This variable is expected to have a negative impact on a 
farm’s efficiency score. Finally, the ratio of liabilities to total owned assets was included in the 
specification of the inefficiency term to control for the effects of the financial situation of the farm on 
efficiency. Zhengfei and Oude Lansink (2006) conclude that for the case of agriculture, liabilities 
should decrease inefficiency rather than increase it. This is because banks take the farm’s land and 
buildings as collateral, thereby providing the farmers a strong incentive for being efficient. 
 
The educational level and experience of the primary operator of the farm also belong in the 
specification of the inefficiency term. Two dummy variables for age of the primary operator (less than 
30 and between 30 and 50 years old) are used as proxies for experience. Of course these variables are 
likely to capture also effects of the life cycle of the farmer. The educational level of the farmer is not 
available in the dataset. However, small variability for this variable is expected. According to the 
National Statistical Service of Greece, only 26% of the people employed in agriculture in 2000 have 
completed primary education. 
 
Two models are estimated. One for farms that produce a mixture of products, including cotton but for 
which cotton can be treated as a regular crop participating in the rotation system. The other model uses 
only the farms that report at least 2/3 of the total revenues coming from sales of cotton, for every year 
that they participate in the FADN survey. These are the farms that specialize in cotton production. 
Occasionally these farms produce other output, but this happens mainly for reasons that are related to 
                                                 
1 Some observations report zero values for one or more outputs or inputs. In order to avoid the biases introduced 
by removing these observations from the analysis, the procedure proposed by Battese (1997) was used here. In a 
distance function setting, the procedure implicitly imposes the restriction that the differences between the 
production technologies  that produce all outputs (or use all inputs) and those that do not, can be captured by 
differences in the constant term. When an output is not produced, then the production possibilities set collapses 
to a smaller dimension. 
2 A detailed definition of the variables can be found in Appendix B. 



the fertility of the soil. We expect the compensatory area payments to have a stronger negative impact 
on the efficiency scores of the farms in the second set, as the operators of these farms are more likely 
to view this form of support as an additional income that is disentangled from production. 
 
Both models are estimated using the pooled stochastic frontier estimator, the linear fixed-effects and 
the Monte Carlo Maximum Likelihood estimator. The linear fixed-effects estimator does not provide 
estimates of the coefficients on the determinants of inefficiency because the inefficiency error term is 
absorbed by the group-specific constant. However, differences in the parameter estimates between the 
pooled stochastic frontier and the fixed-effects models can provide evidence for the correlation 
between the unobserved heterogeneity and the independent variables. 
 
 
4. Results 
 
The estimates of the distance functions are reported in Appendix A. Here we only discuss the results 
on the determinants of inefficiency. Table 1 presents the parameter estimates for the determinants of 
inefficiency from the pooled stochastic frontier models. The age of the primary operator does not have 
a significant effect on inefficiency for both for the mixed and the primarily cotton producers. This 
could be either because experience does not play an important role in determining the efficiency score 
of the farm, or because the effect of experience is canceled by the life-cycle effect of age. That is, 
older farmers may have larger experience, but on the other hand they could be less motivated to invest 
in new equipment, adopt innovations in the production process and in general optimize the long-run 
performance of the farm. 
 
Table 1. Determinants of Inefficiency from the Pooled Stochastic Frontier Models. 

 Model 1   Model 2 
 (Mixed Producers)  (Cotton Producers) 
 nT=3614 n=962  nT=1117 n=284 
 Coefficient p-value   Coefficient p-value 
age < 30 -0.0916 0.055  0.0955 0.149 
30 ≤ age <50 0.0303 0.134  -0.0406 0.252 
Size (ESU) -0.0298 0.000  -0.0364 0.000 
Investment 0.0023 0.382  -0.0117 0.253 
Liabilities 0.4805 0.000  0.4349 0.008 
Compensatory Payments 0.0544 0.000  0.1629 0.000 
Other Subsidies 0.0024 0.306  -0.0113 0.002 
Constant 0.3142 0.000  0.4212 0.000 

      
2σ  0.1177   0.0743  
γ  0.8416   0.7400  

uσ  0.3147   0.2345  
vσ  0.1365     0.1390   

 
The size of the farm reduces inefficiency and this result is in accordance with most empirical studies in 
agriculture. The absolute value of investment does not have a significant effect on inefficiency, while 
the ratio of liabilities to owned assets increases it. This could be due to the high degree of correlation 



between the two variable in the dataset.3 There is an alternative explanation for the results obtained 
here. Instead of loans affecting the efficiency of farmers, inefficiency may induce farms to have a 
higher debt to assets ratio. That is, the direction of causality could be different from the one imposed 
by the model. 
 
Compensatory area payments have a significant effect on efficiency in both models. As hypothesized, 
the effect is much stronger for the farms that are producing primarily cotton. As the area occupied by 
cereals, oilseeds and protein crops increases, the farms become less efficient. Furthermore, the farmers 
that are producing primarily cotton every year are more likely to view these area payments as an 
additional income, with no obligation to produce. As they rely more heavily on cotton production, they 
divert physical inputs and managerial effort for the production of this product, for which aid is directly 
related to output. This interpretation of the results is also supported by the data. By comparing the 
average revenues from cereals per hectare of land occupied by cereals between the two samples, one 
finds that for mixed producers, this quantity is €797/ha., while for the primarily cotton producers it is 
€601/ha. 
 
The other subsidies appear to be reducing inefficiency for cotton producers only. As this variable 
contains an array of subsidies, from different support programs, this result is harder to explain. The 
largest portion of these subsidies comes form the set-aside premiums, which are theoretically included 
in the model in terms of “other output”. Therefore this part of the subsidies should not affect 
efficiency. Another large part of these subsidies are the subsidies on inputs. The structural 
improvement achieved through input subsidies could result in a negative coefficient for this variable. 
 
The marginal effects of the continuous variables on efficiency were calculated at the specific values of 
the variables for each observation. Table 2 presents summary statistics for these marginal effects. 
Again the results suggest that the compensatory area payments reduce efficiency in both groups of 
cotton producers, but the marginal effect is substantially larger for farms that specialize in cotton 
production. 
 
Table 2. Marginal Effects of the Determinants of Inefficiency 

  Model 1  Model 2 
 (Mixed Producers)  (Cotton Producers) 
  mean min max  mean min max 
Size (ESU) 0.0025 0.0001 0.0033  0.0040 0.0001 0.0067 
Investment -0.0002 -0.0003 0.0000  0.0013 0.0000 0.0022 
Liabilities -0.0396 -0.0531 -0.0021  -0.0476 -0.0800 -0.0011 
Comp. Payments -0.0045 -0.0060 -0.0002  -0.0178 -0.0300 -0.0004 
Other Subsidies -0.0002 -0.0003 0.0000  0.0012 0.0000 0.0021 

 
Table 3 presents the parameter estimates for the determinants of inefficiency from the fixed-effects 
stochastic frontier models. Uniform priors were assumed for the iα ’s and 3,000 draws were taken 

from their posterior density.4 Except for the constant term, the parameter estimates do not change 

                                                 
3 When the models were estimated without the liabilities variable, investment was found to significantly increase 
inefficiency for mixed producers. The parameter estimate however was not significantly different from zero at 
the 5% level for cotton producers. 



substantially from the pooled models. Many variables though become insignificant. The effects of 
compensatory payments become slightly larger and remain strongly significant. 
 
Finally, when the unobserved heterogeneity is removed form the distance function, the estimates of the 
variance for the symmetric error terms decrease slightly. For the inefficiency error term the variance 
becomes larger for model 1. This comes mainly as a result in the drop of the constant term for the 
inefficiency model. A large portion of the fixed inefficiency that was captured by the constant term in 
the pooled models is removed along with the unobserved heterogeneity. The shape of the distribution 
of u  changes to accommodate observations that correspond to highly inefficient units. 
 
Table 3. Determinants of Inefficiency from the Monte Carlo ML Models. 

  Model 1  Model 2 
 (Mixed Producers)  (Cotton Producers) 
 nT=3614 n=962  nT=1117 n=284 
  Coefficient p-value  Coefficient p-value 
age < 30 -0.2154 0.207  0.1697 0.245 
30 ≤ age <50 0.0737 0.165  -0.0548 0.496 
Size (ESU) -0.0359 0.000  -0.0348 0.005 
Investment 0.0089 0.108  -0.0005 0.980 
Liabilities 0.7063 0.000  0.3961 0.262 
Compensatory Payments 0.0669 0.000  0.1800 0.000 
Other Subsidies 0.0003 0.929  -0.0070 0.339 
Constant -0.2795 0.027  0.0832 0.463 

    
2σ  0.1449  0.0637  
γ  0.9224  0.8406  

uσ  0.3656  0.2314  
vσ  0.1061   0.1008   

 
 
5. Concluding remarks 
 
This paper analyzed the effects of compensatory area payments on the technical efficiency scores of 
cotton producers in Greece. Using a distance function representation of the production technology and 
accounting for unobserved heterogeneity in its estimation, we were able to better identify these effects. 
As most cotton producers also produce many of the products for which support is partially decoupled 
from production, we found that compensatory area payments significantly reduce efficiency. 
Decoupled aid can be viewed by farmers as an alternative source of income additional to the sales of 
cotton. Although land is allocated for the production of cereals, no considerable effort is made to 
exploit the full potential of the production technology. On the contrary, resources are reallocated for 
production of larger volume of the cash crop. The negative effects of the compensatory area payments 
on efficiency were found to be much stronger for producers that rely heavily on cotton production as a 

                                                                                                                                                         
4 The variance-covariance matrix was calculated using the BHHH estimator of the information matrix: 
( ) ( ) ( )∑ ′=

i
ii θsθsθI ˆˆˆˆ , where ( )θs ˆ

i  is the score of the simulated likelihood function for observation i . The Monte 

Carlo standard error was ignored during the calculation. 



source of income. Finally, we find that ignoring the presence of unobserved heterogeneity will 
overstate the levels of inefficiency. 
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Appendix A 
 
Table A1. Parameter Estimates for the Distance  Function 

  Model 1   Model 2 
 (Mixed Producers)  (Cotton Producers) 

  

Pooled 
Stochastic 
Frontier 

Linear 
Fixed 

Effects 
Monte 

Carlo ML   

Pooled 
Stochastic 
Frontier 

Linear 
Fixed 

Effects 
Monte 

Carlo ML 
log_cer 0.2313 -0.2065 -0.1812  0.2770 0.2054 0.2937
log_oth -0.1302 -0.0556 -0.0061  0.2125 0.3215 0.2420
log_K -0.0972 0.1228 -0.0193  0.1286 -0.2107 -0.1474
log_B 0.0506 0.3247 0.4066  0.1382 0.3952 0.3295
log_L -1.8136 -1.2530 -1.3029  -0.5203 -0.1282 -0.4609
log_A 2.4346 1.3023 1.4965  1.7816 1.1945 0.9651
log_M -1.7869 -1.4740 -1.4245  -2.5205 -1.6322 -1.3380
log_KK -0.0042 -0.0039 -0.0064  -0.0029 0.0054 0.0070
log_KB -0.0018 -0.0039 -0.0051  0.0009 -0.0029 -0.0059
log_KL -0.0308 -0.0102 -0.0073  -0.0171 -0.0130 -0.0220
log_KA -0.0413 0.0117 -0.0074  -0.0010 -0.0120 -0.0023
log_KM 0.0527 -0.0031 0.0179  0.0008 0.0230 0.0166
log_BB 0.0005 -0.0091 -0.0122  -0.0061 -0.0234 -0.0201
log_BL -0.0058 -0.0077 -0.0082  0.0046 0.0100 0.0074
log_BA 0.0057 0.0105 0.0159  0.0136 0.0254 0.0271
log_BM -0.0002 -0.0115 -0.0150  -0.0114 -0.0183 -0.0123
log_LL 0.0550 0.0482 0.0467  -0.0259 -0.0032 0.0320
log_LA -0.2556 -0.1582 -0.1369  -0.0719 -0.0626 -0.0786
log_LM 0.1847 0.0934 0.0956  0.1175 0.0391 0.0310
log_AA 0.2147 0.0852 0.1454  0.1906 0.0469 0.0153
log_AM -0.2096 -0.1558 -0.2059  -0.3164 -0.1886 -0.1437
log_MM 0.0220 0.0624 0.0558  0.1266 0.0860 0.0708
log_cc 0.0372 0.0456 0.0443  0.0104 0.0303 0.0161
log_co -0.0049 -0.0070 -0.0057  -0.0005 0.0010 0.0019
log_oo 0.0494 0.0394 0.0351  0.0055 0.0081 0.0101
log_Kc -0.0009 0.0009 0.0026  -0.0044 -0.0034 -0.0036
log_Bc -0.0028 -0.0025 -0.0031  -0.0005 -0.0031 -0.0016
log_Lc 0.0121 0.0135 0.0119  -0.0075 -0.0294 -0.0061
log_Ac 0.0698 0.0229 0.0214  0.0345 0.0657 0.0639
log_Mc -0.0648 -0.0149 -0.0163  -0.0275 -0.0214 -0.0409
log_Ko 0.0017 0.0091 0.0078  -0.0074 -0.0167 -0.0141
log_Bo -0.0010 -0.0009 -0.0006  0.0001 0.0018 0.0000
log_Lo -0.0151 -0.0200 -0.0211  0.0073 0.0090 0.0045
log_Ao 0.0292 0.0340 0.0315  0.0373 0.0540 0.0449
log_Mo -0.0169 -0.0192 -0.0175  -0.0291 -0.0410 -0.0292
t -0.0819 0.0386 0.0216  -0.3304 -0.2758 -0.2909
t2 0.0056 -0.0010 0.0028  0.0198 0.0209 0.0218
tlog_cer 0.0037 0.0030 0.0026  0.0044 0.0045 0.0027



  Model 1   Model 2 
 (Mixed Producers)  (Cotton Producers) 

  

Pooled 
Stochastic 
Frontier 

Linear 
Fixed 

Effects 
Monte 

Carlo ML   

Pooled 
Stochastic 
Frontier 

Linear 
Fixed 

Effects 
Monte 

Carlo ML 
tlog_oth 0.0054 0.0048 0.0044  0.0018 0.0001 0.0021
tlog_K -0.0046 -0.0053 -0.0040  0.0086 0.0117 0.0137
tlog_B -0.0009 -0.0023 -0.0028  -0.0010 -0.0006 -0.0007
tlog_L 0.0380 0.0312 0.0312  0.0164 -0.0011 -0.0005
tlog_A 0.0086 0.0226 0.0186  -0.0167 -0.0108 -0.0129
tlog_M -0.0310 -0.0361 -0.0361  -0.0013 0.0006 0.0000
d_cer -0.1756 -0.2109 -0.1906  0.0549 -0.0016 0.0797
d_oth -0.5103 -0.3123 -0.2061  0.1371 0.0459 0.0822
d_bldg -0.0620 0.4745 0.6350  0.4350 1.2231 1.0124
constant 11.5479       8.9352     

 
 
Appendix B 
 
Table B1. Description of the variables used in the model. 
cotton Cotton production in tonnes. 
cereals Revenues from sales of cereals (excluding rice) divided by the annual price 

index for cereals. 
other Revenues from sales of other products divided by the annual price index for 

agricultural products. 
log_K Natural logarithm of the value of machinery and equipment (machines, 

tractors, cars, etc.) divided by the annual price index for agricultural 
machinery and installations. 

log_B Natural logarithm of the value of buildings and fixed equipment belonging to 
the holder divided by the annual price index for farm buildings. 

log_L Natural logarithm of the time worked in hours. 
log_A Natural logarithm of the total utilized agricultural area in hectares. 
log_M Natural logarithm of the value of the materials used (fertilizers, energy, etc.) 

divided by the annual price index for materials in agriculture. 
d_cereals dummy variable: 1 if the farm does not produce cereals. 
d_other dummy variable: 1 if the farm does not produce "other" output. 
d_bldg dummy variable: 1 if the farm reports zero value of owned buildings. 
Size Economic size of the farm in European Size Units 
Investment Absolute value of the value of total investment during the accounting year 

(including investment plus sales of capital and buildings) 
Liabilities Ratio of total liabilities to total (owned) assets 
Compensatory 
Payments 

Amounts paid to producers of cereals, oilseeds and protein, and energy crops 
in 1,000's Euros. 

Other Subsidies Total subsidies related to production paid to farmers, excluding 
compensatory payments, in 1,000's Euros. Includes set-aside premiums, 
subsidies on inputs, LFA and environmental subsidies. 

 


