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Abstract: 
In this paper we examine more closely the factors associated with production inefficiency in 
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industrial presence is associated with reduced agricultural production efficiency and may be an 
indication that externalities from the industrial process, like air and ground water pollution, 
affect agricultural production. We also find evidence that counties with a large percentage of the 
rural labor force engaged in agriculture tend to be less efficient, which suggests that policies to 
facilitate the removal of labor from agriculture, but not necessarily from the rural areas, would 
bring about enhanced agricultural efficiency and calls into question policies that promote 
wholesale migration from rural areas. Sensitivity analysis indicates results are robust to 
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I. Introduction: 

Being the most populated country and occupying a landmass on par with the U.S. or Europe, China 

has demonstrated its determination in food self-sufficiency with limited cropland (75 percent that of 

the U.S.). However, recent World Trade Organization statistics showed that China had a modest $2.9 

billion of deficit in agricultural trade in 2000 (Gale 2002). How well China can feed its population in 

the future remains a question of debate. Nonetheless, further growth in agricultural trade and/or 

domestic production is expected to accompany the increasing demand of meat poultry, fish, fresh fruit 

and vegetables, and other high value products of the emerging Chinese middle class (Gale 2002).  

Given limited per capita resources, if they intend to be competitive in the global market, Chinese 

agricultural producers need to be efficient. To facilitate continued growth in a sustainable manner, 

policy to promote greater efficiency of agricultural production will become increasingly important in a 

bid to limit the strain on the nation’s environment, water resources, and infrastructure. Indeed, given 

the trend of decline in the area of agricultural land (Yao and Liu 1998), technological improvements 

that shift the production frontier outwards and improvements in technical efficiency are required to 

increase agricultural production. While the standard response to improve technology has been to 

increase research and development expenditures, there is no consensus on policies to remedy the 

problem of technically inefficient production.  

 

The existing literature has generated a considerable discussion on whether agricultural production 

inefficiencies could be further reduced in China. The role of technical and allocative efficiency was 

investigated in Chen and Huffman (2006), Mao and Koo (1997), Wang, Cramer, and Wailes (1996), 

and many others. Abdulai and Huffman (2000) summarized results of several agricultural efficiency 

studies and found a higher average profit inefficiency score for China (Wang, Wailes and Cramer, 

1996) than those of other countries. Tian and Wan (2000) estimated national average efficiency scores 

ranging from 0.85 to 0.95 for several grain crops and cautioned that quite limited output growth could 

be attained through input injection and efficiency gains. Following the economic reforms in 1978 

some research has argued that although there has been technological progress, at the same time there 
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has also been a decline in technical efficiency due to unfamiliarity of the new technologies (Mao and 

Koo 1997). If significant inefficiency exists then further increases in output could be achieved through 

policy that facilitates efficient input and output market operations and creates the institutional and 

operational framework necessary to make more efficient use of existing inputs. For example, Dong 

and Putterman (1997) show that better access to credit can increase productivity in Chinese agriculture 

and Chavas et al. (2005) reach a similar conclusion regarding improving financial markets in The 

Gambia. Chen, Huffman and Rozelle (2006) applied a stochastic frontier model with farm fixed-

effects using a panel of rural households in China and found that mechanization, specialization, and 

the highest education achieved by household members improve technical efficiency while land 

fragmentation reduces it. Wang, Wailes, and Cramer (1996) claimed that being a large farm is 

associated with positive and statistically significant profit efficiency gains. 

 

Many of the above studies have used micro-level data sets. Estimates derived by using aggregate 

datasets may lead to different inferences and, hence, different policy implications (Carter et al. 2003). 

Provincial statistics of China have been extensively used, for example, in the influential papers of Lin 

(1992) on household responsibility system, and of Fan and Zhang (2002) on productivity and 

inequality. However, Herrmann-Pillath et al. (2002) suggested that provincial aggregates might not 

reflect the exact regional inequality of development for China and argued for uses of prefecture-level 

data. Chen and Huffman (2006) used a county-level dataset to investigate patterns of technical 

efficiencies in China’s agriculture. Studies based on aggregate statistics could derive implications and 

recommendations about regional policies since levels of economic development and even the 

economic institutions vary across China (Krusekopf 2002). How such variation could affect 

agricultural efficiencies is a topic of interest and will yield critical implications for county-level 

agricultural policy.  

 

In this paper we contribute to the existing literature by expanding our understanding of the factors that 

correlate with inefficiency in Chinese agriculture. Specifically, we examine the effects of a variety of 
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production characteristics, investment variables, and government fiscal activity on agricultural 

production efficiency in China. The approach taken is a two-step procedure that combines non-

parametric and parametric techniques. First, to estimate output-oriented measures of technical 

efficiency we use data envelope analysis (DEA), and secondly, a truncated regression model is used to 

identify inefficiency correlates where the significance of model estimates is inferred using a semi-

parametric bootstrapping routine. Among the results, we find areas with a heavy industrial presence 

reduces agricultural production efficiency, and may be an indication that externalities from the 

industrial process, like air and ground water pollution, affects agricultural production. One somewhat 

surprising finding is that counties with a high ratio of credit outstanding relative to GDP are actually 

associated with greater inefficiency in agriculture. We also find evidence that counties where a large 

percentage of the rural labor force is engaged in agriculture-related work tend to be less efficient. This 

finding has the implication that policies to facilitate the removal of labor from agriculture but not 

necessarily from the rural labor force would bring about enhanced agricultural efficiency. 

  

The rest of this paper is organized as follows. Section II formulates the econometric modeling strategy. 

Section III describes the data. Section IV presents the empirical results and includes a discussion of the 

implications of the findings. Section V outlines the method for controlling for influential observations 

and outlier and the corresponding results. Section VI concludes and summarizes. 

 

II. Methodology: 

When addressing issues related to technical efficiency, researchers generally adopt one of two 

commonly used methods. The first is the stochastic frontier approach which is amiable to a variety of 

statistical tools and estimation techniques. A limitation of the stochastic method is the requirement that 

the production technology be specified a priori. Imposing a specific functional form for a technology 

which is, in most cases, unknown can be problematic since alternative specifications can lead to 

different conclusions (Gong and Sickles 1992; Zhu, Ellinger and Shumway 1995; and Giannikas, 

Tran, and Tzouvelekas 2003). The second method involves non-parametric estimation of the 
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production frontier which, rather than explicitly specifying a functional form, relies on more general 

assumptions typical of microeconomic production theory such as convexity, continuity, and free 

disposability to define the efficient frontier1. One criticism of non-parametric methods has been the 

lack of a clear link between non-parametric estimation of efficiency relationships and the subsequent 

statistical analysis used to explain variation thereon2. In fact, the lack of theoretical results to allow 

reasonable inference in two-stage procedures has resulted in the ad hoc use of various statistical 

models that does not necessarily follow from underlying process generating the data.3 Fortunately the 

use of bootstrapping does provide an alternative means for statistical inference to proceed when more 

general results about the sampling properties of the estimators being considered are non-existent or 

intractable (Efron and Tibshirani, 1986). The algorithm described in Simar and Wilson (2007) details 

the data generating process (DGP) and subsequently the means by which inference might proceed 

when the objective is to describe variation in efficiency estimates obtained via non-parametric 

methods such as DEA. In this paper we use DEA to estimate output-oriented measures of technical 

efficiency in Chinese agriculture and identify the correlates of inefficiency in the second stage by 

using a truncated regression model with parameter significance inferred with the bootstrap algorithm 

detailed in Simar and Wilson (2007).  

 

2.1 Data Envelope Analysis 

For a representative firm operating at an inefficient point in the production set a measure of 

inefficiency is obtained by measuring the Euclidian distance from that point to the frontier. To 

measure technical inefficiency we compute output efficiency scores of the Farrell (1957) type, the 

reciprocal of the Shephard (1970) output distance function, and is obtained by solving the following 

for each firm i=1,…,n  
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where iy  and ix  are output and input vectors for the representative firm with k outputs and r inputs 

respectively, 1[ ... ]n=Y y y  is a (k×n) matrix, 1[ ... ]n=X x x  is a (r×n) matrix, and θ is an (n×1) column 

of parameter values in the unit interval. For a particular firm, the parameter îδ  is an estimate of the 

maximum amount by which output could be increased while using the same inputs4.   

 

2.2 Regression Analysis and Inference 

Since the îδ ’s will necessarily be confined to the interval [ )ˆ 1,iδ ∈ ∞  a truncated regression model is 

used to explain exogenous factors associated with inefficiency. Efficiency scores with a value of one 

indicate efficient operation (i.e. lies on the technology frontier) and values larger than one indicate a 

point that lies in the production set but is not on the frontier and represents technical inefficiency since 

the output could be increased by ˆ 1 100%iδ⎡ ⎤− ×⎣ ⎦  using the same amount of output. Of course, larger 

values represent an increasing degree of inefficiency. The relationship between the estimated 

efficiency scores and exogenous variables is represented via the following model 
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where vector zi is a (1×q) collection of environmental variables exogenous to the firm, β is a (q×1) 

vector of parameters to be estimated, and εi is a continuous iid random error term. The zi’s are those 

variables that are used to explain the observed inefficiency. Given the requirement that δi be greater 
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than or equal to one, the random error εi in (2) is assumed to be normally distributed with left-

truncation at ( )1 i− z β , and variance 2
εσ . Given this specification, the β’s in equation (2) can be 

estimated by maximizing the following likelihood function 
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where ( ).φ  and ( ).Φ  are the probability density and cumulative distribution functions for the standard 

normal respectively. This is similar to the usual likelihood for a regression model except for the right-

most bracketed term which ensures the density will integrate to unity after truncation. 

 

In processes such as the one we described above, theoretical results regarding the precision of the 

parameters are either non-existent or, when such results do exist, only applicable to specific 

formulations (i.e. Gijbels et al. 1999). Fortunately so long as the DGP has been described, bootstrap 

techniques can be used to empirically approximate the sampling distributions of the parameters of 

interest and use these to infer the precision of these estimates (see Efron and Tibshirani 1986). The 

Simar and Wilson (2007) bootstrapping algorithm is summarized as follows5  

  

[1] Estimate the efficiency scores using DEA to obtain ˆ 1,...,i i nδ ∀ = .  

[2] Obtain estimates β̂  and ˆεσ  by maximizing the log of the likelihood function in equation (3).  

[3] Replicate steps [3.1]-[3.3] L times to produce a sequence of l=1,...,L bootstrap estimates { }*

1

L

l l=
β . 

These estimates are used to approximate the sampling distribution for each parameter of interest.  
[3.1] For each  observation i=1,…,n, draw from the truncated normal described in (3) with 

standard deviation ˆεσ  to obtain a value di. To obtain this random draw, first compute a 
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standardized value for each i, 
ˆ1

ˆ
i

isv
εσ

−
=

z β , next draw vi from the uniform distribution on the 

unit interval and use this to compute the draw ( ) ( )1 *i i i id sv sv v= Φ + ⎡ −Φ ⎤⎣ ⎦ . 

[3.2] Scale di to get the deviate from the left-truncated normal distribution, ( )1ˆ *i iu dεσ
−= Φ , and 

use this to obtain the fitted value * ˆ
i i iuδ = +z β . 

[3.3] Perform operations [3.1]-[3.2] for each of the i=1,…,n firms to get a vector of estimates 
*  1,...,i i nδ ∀ = . Finally, using the fitted efficiency scores and the original explanatory 

variables in zi, use the method of maximum likelihood to maximize the truncated likelihood 

function in (3) to obtain a single set of bootstrap estimates *
lβ . 

 

The sequence of L bootstrap parameter estimates will empirically approximate the sampling 

distribution for each of the q parameters in β. Creating a histogram using the sequence of bootstrap 

values for each parameter reveals an approximation of its distribution and can be used to determine 

whether or not a particular parameter was significantly different from zero at a given level of 

significance. For example, a (1-α)∗100% confidence interval for a particular parameter βq is found by 

ordering the L bootstrap estimates of *
qβ  from lowest to highest and then remove the lowest (α/2)∗L 

observations from both the lower and upper end of the sequence. Denote the lowest value in the 

remaining sample by *

,
2

q αβ  and the largest remaining value by *

,
2

q αβ , it follows that a (1-α)∗100% 

confidence interval for βq is given by * *

, ,
2 2

,
q qα αβ β

⎡ ⎤
⎢ ⎥
⎣ ⎦

. For a particular level of significance α, if this 

interval does not include zero, then we reject the null hypothesis that the parameter βq equals zero.   
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III. Description of Data and Efficiency Results 

Agricultural efficiency scores are computed based on two outputs and four inputs. Agricultural output 

is measured by the amount of grain and meat produced and the four inputs are agricultural labor, 

mechanical power, fertilizer input, and sown area of agricultural crops. Data on agricultural output and 

inputs are based on a survey conducted by the Statistical Bureau of China for the year 1999. After 

removing observations with missing and unreasonable data, the final sample includes data from a total 

of 2,037 geographic areas or county equivalents. In 1999 the average county produced approximately 

247,000 tons of grain and 22,000 tons of meat6 (Table 1). The average number of agricultural workers 

was nearly 150 thousand and the average amount of mechanical power used in Watt equivalents was 

roughly 200 million, the equivalent of about 270 thousand horsepower hours. The average area of 

agricultural crop production was just over 70 thousand hectares to which an average of almost 19 

thousand tons of fertilizer was applied.  

 

Transforming the output and input variables using natural logs and estimating the output efficiency 

score for each of the counties using DEA resulted in an average efficiency score of 1.07 with 54 

counties deemed to be operating efficiently with efficiency estimates equal to unity. Roughly 

speaking, these results imply that on average an additional 7% increase in output could be achieved 

with the same inputs. Note that since we included only variable inputs which are chosen by 

agricultural operators these output efficiency scores will not capture the differences in non-

discretionary inputs such as land quality or climatic conditions that may also influence productivity. 

We partially control for characteristics such as these in the second stage regression where we use 

provincial indicator variables to capture regional variation in soil fertility and growing conditions.  

 

It is common in the productivity literature to refer to factors that are beyond the control of the 

managers themselves as environmental variables and these might include, for example, location 

characteristics, labor market characteristics, ownership structure, and government regulations (Coelli, 

Rao, and Battese 1998; Fried, Schmidt, and Yaisawarng 1999).  To explain the variation in the 
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estimated output scores we propose the use of a number of different variables which we have grouped 

into three categories: i) production characteristics; ii) credit and government fiscal behavior; and iii) 

other local characteristics. The summary statistics for each of these categories is given in Table 2.  

 

There are four variables included under the heading of production characteristics. The first three relate 

to the relative importance and structure of agriculture within each county and includes agriculture 

share of GDP, intensity of mechanical power usage in agriculture, and livestock share of total 

agricultural output. Agricultural production makes up about 35% of total output for the average county 

and ranges from 0.3% to just over 90%. The variable for intensity of mechanical relative to labor input 

in agriculture, computed as the ratio of mechanical power relative to agricultural labor, is an indicator 

of the relative importance of mechanization in production. This variable reveals significant variation in 

the intensity with which these types of inputs are used and ranges from counties that are relatively 

dominated by labor (minimum of 0.03) to counties that are relatively highly mechanized (maximum 

280). An interesting policy issue to address is how areas specializing in livestock production compare 

to those that are dominated by crop production in terms of efficiency. To evaluate this we consider 

livestock share of output relative to total agricultural output. On a per ton basis, the average county has 

10% of its agricultural output coming from livestock production and ranges from less than 1% to 96%. 

The fourth measure is agricultural GDP per agricultural worker and is intended to capture factors such 

as human capital and skill of agricultural labor.  

 

Research has shown that credit considerations can influence agricultural efficiency in developing 

countries (Dong and Putterman 1997; Abdulai and Huffman 2000; Chavas et al. 2005). The ratio of 

credit outstanding to GDP has an average of 0.73 and is expected to give an indication as to the 

indebtedness of the county in general and how this relates to efficient production in the agricultural 

sector. Ranging from less than 0.05 to over 7.7, some counties have very little credit outstanding while 

in others it is several times that of income. Two variables were created to assess whether government 

fiscal activity impacts efficiency. First, fiscal revenue relative to expenditures as a measure of the 



 10

fiscal balance is used to inform whether inefficiency is influenced by government deficit spending. 

Fiscal revenue relative to expenditure averaged about 0.56 indicating that the average local county 

government body spends roughly twice what they collect. Secondly, we include fiscal expenditures 

relative to GDP to measure how the relative size of government spending relative to total income 

within the county affects efficiency. Fiscal expenditures relative to GDP captures government 

activities (which would include investment, services, and government employment) relative to total 

production in the region. Here, average spending was slightly more than ten percent of GDP.  

 

County characteristics include variables related to industrial structure, income levels, and demographic 

composition. Industry share of total GDP was found to be approximately 35% (about the same as 

agricultural share of GDP) and ranges from a low of approximately 4% to nearly 86%. We also 

include a measure of income for the non-agricultural population, non-agricultural GDP per non-

agricultural worker, as a measure of affluence, skill, and level of development in the county outside 

agriculture. The data reveal that the representative county population is 82% rural. Research by Yao 

and Liu (1998) found that a higher share of population that is rural and a larger share of the 

agricultural workforce devoted to grain production each contributed to inefficiency in Chinese 

agriculture. To get a better understanding of how “ruralness” might affect efficiency of agricultural 

production we include the rural share of the population. We also include agriculture’s share of the 

rural labor force to inform on how rural employment dominated by agriculture might influence 

agricultural efficiency locally, if indeed at all. The data reveal that agriculture is the main employer of 

rural labor with an average share of 0.75 and ranging from about 13% to 100%.  

 

IV. Results  

To explain variation in non-parametric output efficiency scores estimated using DEA, we specify a 

truncated regression model with left truncation at unity. While the truncated regression model is 

arguably a more appropriate model than limited dependent variable models such as the Tobit7, 
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truncation at one necessarily means that those observations for counties which had an estimated 

efficiency score equal to one, i.e. those that are efficient, will be lost. However since only 54 counties 

having an output efficiency score equal to one, this is not a major limitation since we are still left with 

more than 97% of our original sample. Given the explanatory variables mentioned in the previous 

section it is likely that some of these variables are highly collinear and this should be taken into 

consideration when conducting regression analysis to avoid problems associated with multicolinearity. 

The correlations matrix in Table 3 was used to guide the choice of explanatory variables used in the 

regression analysis to avoid including variables that are highly correlated.  

 

The results of the regression analysis are presented in Table 4 and Table 5 where the latter includes the 

same regressors as the former except that unobservable provincial effects are captured through the 

inclusion of 298 provincial dummy variables (the default is Sichuan province with 144 usable 

observations). Notice that since the dependent variable, output efficiency score, is a unit free 

measurement there is no a priori reason to expect there exists any mechanical correlation with the 

explanatory variables in the truncated regression. That is to say, there is no reason to assume that 

endogeneity is a problem.   

 

In columns 1 and 4 of Table 4 the parameter estimate for agricultural share of GDP is negative and 

statistically significant (at the 1% level). Notice that, given our DEA formulation in equation (1), 

increasing variables with a positive estimated regression coefficient results in greater inefficiency, 

whereas an increase in a variable with a negative coefficient would correspond to greater technical 

efficiency. Thus, the negative sign for the coefficient estimates corresponding to agricultural share of 

GDP imply that areas that are more specialized in agricultural production tend to be more technically 

efficient. Greater efficiency where agriculture is relatively more important, at least in terms of total 

county product, might partially be due to greater competition among producers and a higher likelihood 

that producers will be able to copy or imitate the best production practices of others in the area. 

Additionally, a county where agriculture is important may also expend more resources catering to this 
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industry in terms of service provision, diffusion of best practice technologies, and engaging in 

activities that otherwise promote efficient production of agricultural goods. There is some evidence to 

suggest that counties that are mechanized are less efficient (column 1, Table 4). However, when 

provincial controls are added there is evidence to the contrary (column 4, Table 5). Considering the 

role of livestock intensity in agricultural output, the third production characteristic, the results indicate 

that higher share of total agricultural output from livestock is associated with greater inefficiency and 

statistically significant in all specifications, both without and with provincial controls. One possible 

explanation might be related to the fact that energy is lost when livestock convert feed into tissue and 

low conversion ratios might not be fully reflected in market prices. The final agricultural production 

characteristic, agricultural GDP per agriculture worker, appears to correlate positively with efficiency 

given the negative coefficient both without and with provincial controls as shown in column 1 of 

tables 4 and 5 respectively.  

 

The inclusion of the credit variable was thought to provide insight into how the local investment 

environment might influence efficiency in agriculture. The estimated coefficient for credit to GDP 

ratio is positive and significant (at the 1% level) in all specifications that include this variable 

(columns 2, 4, 5, 6, and 7), regardless of the inclusion/exclusion of provincial controls (Table 4 and 5), 

indicating that counties where outstanding credit is large relative to total income tend to be associated 

with greater agricultural production inefficiency. While difficult to identify precisely the underlying 

causes, it may be an indication of excessive investment and that reducing the amount of investment 

capital by means of increasing consumption might increase efficiency. In addition, if the investment 

happened to be in primarily agriculture-related technologies unfamiliarity with these new technologies 

might be the cause of inefficiency for a short time just after adoption while the operators “learn” how 

to best use the given technology.  

 

The ratio of fiscal revenue relative to expenditures, one of the two fiscal variables, has an estimated 

coefficient that is negative and is significant at the 5% level with provincial controls (column 2, Table 
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5). Recall that the average ratio of revenues relative to expenditures was approximately 0.55 (Table 2). 

If the local governments were to act in a more fiscally responsible manner and increase revenues to 

more closely match expenditures, these results suggest that improvements in agricultural efficiency 

might be possible. However, when provincial controls are not included, the estimated coefficient for 

fiscal revenue relative to expenditures is not longer significant (column 2, Table 5). At the same time, 

we also find higher government expenditure relative to GDP, the results of which are also robust to 

alternative specifications (columns 2, 4, 5, and 7) and the exclusion/inclusion of provincial controls, is 

correlated with increased inefficiency which would suggest reducing the relative size of government 

activity would improve efficiency. It has been shown that market distortions resulting from 

institutional framework contribute to inefficiency (Wang, Cramer, and Wailes 1996). To the extent 

that government fiscal activities distort market signals is one possible explanation for these results. 

 

Industrial production share of GDP considers how industrial presence impacts the efficiency of 

agricultural production. A priori, a strong industrial sector could potentially improve or impede 

agricultural efficiency.  For example, a large industrial presence might help by providing beneficial 

technology spillovers, better access to utilities, and improved transportation infrastructure. In contrast, 

industrial activity might hinder agricultural production due to negative externalities arising from the 

production process as well as this industry competing with the agricultural sector for land, labor, and 

investment capital. The results indicate a positive and statistically significant (at the 1% level) 

relationship between share of GDP from industry and output efficiency scores for the specifications in 

columns 3, 5, and 7 in both tables 4 and 5. Taken together, these results indicate that counties with a 

large share of total county product from industrial production have lower agricultural efficiency and 

suggest that any positive spillover effects between industrial and agricultural production, if they exist, 

are being overwhelmed by the negative ones. In recent years pollution resulting from industrial 

activity has become a concern in China and the current finding may be an indication of the adverse 

impact this is having on agricultural production. Another possibility is that these findings might also 

reflect a lower quality or intensity of agricultural labor in areas where there is heavy industrial 
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production. Since we do not have any information that allows for the quality or the skill of agricultural 

workers, it is possible that competition from industrial producers has drawn skilled workers away from 

agriculture. An alternative explanation might point to local growth and development policies that favor 

industrial development but at the same time actually makes agriculture production more difficult. 

 

The estimated coefficient for non-agricultural GDP per non-agricultural adult worker is negative and 

significant (at the 1% level) for all specifications that include this variable (columns 3 and 6 in Table 4 

and 5). Capturing in part the role of human capital and skill of the non-agricultural workforce, GDP 

per non-agricultural working adult is negatively correlated with inefficiency and highly statistically 

significant. The implications of the relative size of the local population that is rural are mixed. In 

column 6 of Table 4 the estimated coefficient is positive and significant at the 1% level and suggests 

the larger is the percentage of the population that is rural, the greater is the inefficiency, a finding in 

agreement with work by Yao and Liu (1998). However, when provincial controls are used, there is 

evidence that the larger is the rural share of the population the more efficient is agricultural production 

(column 3, Table 5), a result significant at the 10% level. When considering how efficiency is affected 

by the composition of rural employment, we find counties with a higher share of agricultural labor 

relative rural labor tend to be less efficient for all specifications  that include this variable (columns 3, 

5, and 7, Table 4 and 5) and is significant at the 1% level in all specifications except one (column  5, 

Table 4) where it is significant at the 5% level. These findings may be an indication that an overly 

large share of the rural labor force is engaged in agricultural production and that policies to improve 

efficiency in the agricultural sector might involve drawing agricultural labor in rural areas into non-

agricultural sectors in rural areas.   

 

V. Controlling for Influential Observations and Outliers 

Two criticisms often offered against the use of non-parametric methods to assess efficiency-related 

problems are: lack of statistical tools to evaluate the precision of parameter estimates in two-stage 
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methods, an issue addressed in the previous sections; and the sensitivity of non-parametric methods to 

outliers. Not limited to non-parametric methods alone, the second has implication for both stochastic 

and non-parametric procedures but tend to be more problematic for non-parametric analyses. In non-

parametric procedures like DEA, efficiency scores could be biased (upwards given our specification) 

if outliers are used to form the convex hull of the production set since the efficiency scores of the 

remaining observations are computed based on their relative location the frontier.   

 

Visual methods can be useful when identifying outliers and influential observations when the sample 

size is small but when the sample size is rather large, such as with the dataset used in this paper, other 

methods must be used. As a robustness check to see if the results discussed in the previous section are 

sensitive to influential observations and outliers we compute leverage score (li) for each observation9. 

Computing the leverage score for each observation involves first estimating an efficiency score for 

each element of the dataset. Next, in jackknife-like approach we systematically exclude one 

observation from the dataset and re-compute the efficiency scores for the remaining observations ( l
jδ  

1,.., 1, 1,...j i i n∀ = − + ) and compare these new scores against the originals. Specifically, for each 

observation the leverage score is computed as follows 
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1
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ˆ
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l
j j

j j i
il n

δ δ
= ≠

⎛ ⎞−⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑
 (4) 

 

This procedure is repeated for the n-1 remaining observations to determine which observations exert 

influence or might be potential outliers. When a particular observation is used to define the convex 

hull of the production frontier and it has few or no close peers, then that observation might be said to 

be an influential one since the scores of other, non-efficient observations in the neighborhood are 

measured relative to that particular point. Further, if the output or input data for a particular 
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observation happens to be measured with error so that it appears more “efficient” than it aught (i.e. 

reporting fewer inputs or inflated output), any observation whose performance is measured relative to 

that particular outlier will appear more inefficient than they actually are. By computing a leverage 

score as per equation (4) it is possible to identify observations that exert significant influence over the 

efficiency scores of other observations. A larger leverage score indicates a more influential, and 

possibly problematic, element of the dataset. In addition to outliers that influence the efficiency scores 

of its peers, an observation that is too far to the interior of the production set might be measured with 

error (i.e. output(s) being under reported or input usage over reported). These outliers to the interior of 

the production set can be identified by a leverage score that is very low or zero. Identifying influential 

observations and outliers and removing these from the dataset, the two-step estimation and inference 

procedure can be repeated to determine if results are robust to the removal of influential and outlier 

observations.  

 

The methodology followed in this paper to test for the robustness of results to outliers and influential 

observations involves computing the leverage score for each element in the full dataset and then 

repeating the two-stage procedure outlined earlier having removed those elements with unusually high 

and low leverage scores. The rule used here is to remove five percent of each of the highest and lowest 

leverage scoring observations which leaves a sample size that is nine-tenths of the original. The 

production and input summary statistics for remaining observations and the resulting efficiency scores 

are presented in Table 6 and the summary statistics for the explanatory variables used in the second 

stage in Table 7.  

 

The results in Table 8 correspond to those in Table 5 when no provincial controls are used and Table 9 

is the counterpart to Table 6 when provincial dummy variables are included. Parameter significance is 

again determined based on the bootstrapping routine outlined earlier. A comparison of these results 

with those presented in the earlier section leads us to conclude that outliers are unlikely to be a factor 

here given the robustness of the results to the exclusion of outliers.  
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VI. Conclusions  

To facilitate continued growth in a sustainable manner, policy to promote greater efficiency of 

agricultural production will become increasingly important in a bid to limit the strain on the country’s 

environment, water resources, and infrastructure. Given roughly 200 million small-scale households in 

China, policy promoting increased efficiency in agricultural production would come at a key point in 

time when the country is undergoing a significant change in the composition of its rural-urban 

population as the urban population in China expected to grow significantly during the next few 

decades. During this period of transition policy makers have a unique opportunity to develop a 

strategy and implement changes that will facilitate greater productive efficiency, thereby limiting at 

least some of the difficulties that are sure to accompany transition towards urbanization and the 

increasing dependence on the rural hinterland to supply agricultural goods that follows. 

 

This study of technical efficiency in Chinese agricultural production involved a two-stage process 

where output efficiency scores were estimated using DEA and variation in the resulting efficiency 

scores was explained by using a truncated regression model. Where such two-stage methodologies 

have been criticized for lacking the proper theoretical results to conduct statistical inference in the 

past, we circumvent this problem by relying on a semi-parametric bootstrapping routine to conduct 

inference. Using a dataset consisting of a cross-section of more than 2,000 counties revealed a number 

of characteristics that correlate with agricultural inefficiency.  

 

Among the results, we find that counties that are heavily vested in agriculture tend to be more efficient 

while those with a high industrial presence tend to be less efficient. This latter result leads us to 

suppose that complementarities are limited between agricultural and industrial production processes 

and that there exist potentially negative spillovers from industrial production that hinders agricultural 

production such as pollution. In recent years, the environmental consequence of pollution arising from 
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rapid and unchecked industrialization has become an important topic of debate among researchers, 

regulators, and environmentalists. Given the increasing role environmental considerations are likely to 

take in the future, the relationship between industrial activity, pollution, and agricultural production is 

one topic that deserves further consideration.  

 

Additional findings with policy implications include those related to the credit and government fiscal 

variables. One somewhat surprising finding is that counties with a high ratio of credit outstanding 

relative to GDP might be actually associated with greater inefficiency in agriculture. While there are a 

number of possible explanations, one might be an indication of excessive investment in which case 

reducing the amount of investment capital by means of increasing consumption might increase 

efficiency. It is well known that the savings rate in China is considerably higher than most other 

countries, and certainly higher than those in the West. Indeed, limiting locally available credit through 

reduced savings would encourage greater consumption and reduce the rate of capital accumulation 

which could slow the pace of growth. A slowed pace of growth might allow for new technologies to be 

adopted at a slower rate which would allow for potentially greater efficiency of use by allowing its 

users to become more familiar with these technologies before ushering in new ones. On the part of 

local governments, we find evidence efficiency could be improved by reducing expenditures as a 

fraction of aggregate county income as well as relative to revenues collected. When devising optimal 

policy it is important to note that while such actions may result in greater efficiency of agricultural 

production though the reduction of superfluous program spending, limiting government expenditures 

may also reduce the level of service provision and public investment which might limit productive 

capacity in the future.  

 

Finally, we also find evidence that the larger is agriculture’s share of rural labor the less technically 

efficient is agricultural production in the county. This finding has the implication that policy to 

facilitate the removal of labor from agriculture, but not necessarily from the rural labor force, would 

bring about enhanced agricultural efficiency. An appropriate set of policies here would involve 
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promoting non-agricultural rural development as opposed to facilitating migration to cities. While it is 

beyond the scope of this paper to make definitive recommendations on migration policy, such a 

finding does call into question policies that promote wholesale migration of rural residents to urban 

centers when economic improvement might also be achieved by developing the appropriate rural 

sectors.  
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_____________________ 
1 See Tulkens and Eeckaut (1995) for further discussion of these assumptions and their implications for 
analysis using non-parametric techniques.  
2 An exception is Gijbels et al. (1999) who provide asymptotic sampling results for the specific one-input 
and one-output case. 
3 See Simar and Wilson (2007) for a review of this literature. 
4 The optimization problem specified here allows for constant returns to scale in the lower range of inputs 
up to a point and then decreasing returns (Tulkens and Eeckaut 1995) 
5 Other studies that have used this bootstrapping procedure in empirical applications include Oliveira and 
Santos (2005) and Kuosmanen, Pemsl, and Wesseler (2006). 
6 Beef, pork, and mutton. 
7 See Simar and Wilson (2007) for a discussion of the appropriateness of various regression models used to 
explain variation in efficiency scores estimated using DEA. 
8 Tibet and Taiwan are excluded. 
9 The method used here follows Sampaio De Sousa and Stosic (2005, p.162)    
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Table 1. First Stage Summary Statistics – Complete Sample 
  Obs Mean Std. Dev. Min Max 
Output Grain (ton) 2037 246669 234267 132 2248891
 Meat (Beef, Pork, Mutton - ton) 2037 21920 20977 51 189090
       
Input Agricultural labor (1000) 2037 149 114 1 688
 Mechanical Power (1,000, 000 Watt) 2037 212 221 1 2007
 Fertilizer (ton, weighted) 2037 18661 18495 4 150493
 Sown area of agricultural crops (Hectare) 2037 70640 51010 103 320021
       
 DEA Output Score (No. efficient = 54) 2037 1.070 0.044 1 1.578
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Table 2. Explanatory Variables Summary Statistics – Complete Sample 
  Obs. Mean Std. Dev. Min Max 
Production Characteristics       
 Agr. share of GDP 1983 0.350 0.151 0.003 0.908
 Agr. mechanical power intensity 1983 1.891 6.516 0.098 280.000
 Livestock share of agr. output 1983 0.119 0.153 0.007 0.960
 Agr. GDP per agr. worker 1983 5179.570 4231.238 12.075 84535.000
       
Credit and Fiscal       
 Credit relative to GDP 1983 0.733 0.461 0.045 7.705
 Fiscal revenue relative to expenditures 1983 0.556 0.220 0.025 1.861
 Fiscal expenditures relative to GDP 1983 0.102 0.081 0.019 1.005
       
Other Local       
 Industrial GDP relative to GDP 1983 0.347 0.139 0.039 0.859
 Non-agr. GDP per adult non-agr. worker 1983 6597.053 5868.538 451.037 98612.720
 Rural share of population 1983 0.823 0.135 0.075 1.000
 Agr. labor share of rural labor 1983 0.749 0.135 0.226 1.000
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Table 3. Explanatory Variables Correlation  

 
AGDP/ 
TGDP 

Mach/ 
ALab 

Meat/ 
Grain 

ln(AGDP/
    ALab) 

Credit/ 
TGDP 

FRev/ 
FExp 

FRev/ 
TGDP 

IGDP/ 
TGDP 

ln(NAGDP/
    NAPop) 

RPop/ 
TPop 

ALab/ 
RLab 

AGDP/TGDP 1.0000           
Mach/ALab -0.0528 1.0000          
Meat/Grain 0.0390 -0.0001 1.0000         
ln(AGDP/ALab) -0.0155 0.2390 0.0381 1.0000        
Credit/TGDP 0.0102 0.0139 -0.0228 -0.1053 1.0000       
FRev/FExp -0.4406 0.0359 -0.0762 0.3302 -0.1745 1.0000      
FRev/TGDP 0.3131 -0.0051 0.1120 -0.3822 0.2223 -0.6516 1.0000     
IGDP/TGDP -0.8459 0.0397 -0.0811 0.0669 -0.0946 0.4894 -0.4267 1.0000    
ln(NAGDP/NAPop) -0.7565 0.1017 -0.0218 0.4532 -0.2252 0.5908 -0.5488 0.7239 1.0000   
RPop/TPop 0.2117 -0.2241 -0.0622 -0.4893 -0.2938 -0.1002 -0.0135 -0.0919 -0.1914 1.0000  
ALab/RLab 0.5265 -0.0191 0.0700 -0.2654 0.1311 -0.4210 0.4260 -0.5283 -0.4786 -0.1126 1.0000
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Table 4. Truncated Regression Results – Complete Sample 
Variable  #1 a  #2  #3   #4  #5  #6  #7  
Production 
Characteristics                 
 Agr. share of GDP -0.051 ***      -0.081 ***       

 
Agr. mechanical power intensity 
(x100) 0.028 *      -0.033      -0.026  

 Livestock share of agr. output 0.071 ***      0.072 ***     0.079 ***
 Agr. GDP per agr. worker -0.034 ***              
                 
Credit and Fiscal                 
 Credit relative to GDP   0.014 ***    0.012 *** 0.013 *** 0.021 *** 0.014 ***

 
Fiscal revenue relative to 
expenditures   0.009             

 
Fiscal expenditures relative to 
GDP   0.147 ***    0.155 *** 0.177 ***   0.148 ***

                 
Other Local                 
 Industrial GDP relative to GDP     0.165 ***    0.087 ***   0.080 ***

 
Non-agr. GDP per adult non-agr. 
worker     -0.030 ***      -0.008 ***   

 Rural share of population     0.016       0.041 ***   
 Agr. labor share of rural labor     0.045 ***    0.024 **   0.021 ***
                 
 Constant 1.355 *** 1.031 *** 1.211 ***  1.060 *** 0.986 *** 1.076 *** 0.986 ***
 Regional Controls b no  no  no   no  no  no  no  
 n 1983  1983  1983   1983  1983  1983  1983  
 log likelihood 3872.8  3649.5  3674.84   3757.5  3679.5  3633.6  3740.4  
 Wald Chi sq 588.33  125.48  163.66   358.39  184.71  90.24  322.47  
a Inference is based on confidence intervals obtained from 1000 bootstrap iterations. The superscripts: *, **, and *** indicates the value zero does not fall within 
the 90, 95, and 99 percent confidence intervals respectively. 
b Regional controls consist of 29 provincial dummy variables with Sichuan province being the default province. 
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Table 5. Truncated Regression Results – Complete Sample 
Variable  #1 a  #2  #3   #4  #5   #6   #7  
Production 
Characteristics                      
 Agr. share of GDP -0.032 ***        -0.050 ***         

 
Agr. mechanical power 
intensity (x100) 0.009         -0.033 *        -0.026  

 Livestock share of agr. output 0.066 ***        0.066 ***        0.071 ***
 Agr. GDP per agr. worker -0.031 ***                   
                      
Credit and Fiscal                      
 Credit relative to GDP    0.011 ***     0.010 ***  0.011 ***  0.012 ***  0.011 ***

 
Fiscal revenue relative to 
expenditures    -0.017 **                

 
Fiscal expenditures relative to 
GDP    0.075 ***     0.107 ***  0.113 ***     0.092 ***

                      
Other Local                      
 Industrial GDP relative to GDP       0.067 ***     0.038 ***     0.038 ***

 
Non-agr. GDP per adult non-
agr. worker       -0.015 ***        -0.006 ***    

 Rural share of population       -0.019 *        -0.004     
 Agr. labor share of rural labor       0.046 ***     0.037 ***     0.039 ***
                      
 Constant 1.285 ***  1.021 ***  1.115 ***  1.021 ***  0.967 ***  1.073 ***  0.960 ***
 Regional Controls b yes   yes   yes   yes   yes   yes   yes  
 n 1983   1983   1983   1983   1983   1983   1983  
 log likelihood 4133.2   3952.9   3937.25   4037.5   3959.9   3931.6   4028.3  
 Wald Chi sq 1291   741.69   697.79   1001.6   759.03   689.86   974.07  
a Inference is based on confidence intervals obtained from 1000 bootstrap iterations. The superscripts: *, **, and *** indicates the value zero does not fall within 
the 90, 95, and 99 percent confidence intervals respectively. 
b Regional controls consist of 29 provincial dummy variables with Sichuan province being the default province. 
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Table 6. First Stage Summary Statistics – High/Low Leverage Observations Removed 
  Obs Mean Std. Dev. Min Max 
Output Grain (ton) 1832 247602 236301 135 2099654
 Meat (Beef, Pork, Mutton - ton) 1832 21880 20983 51 189090
       
Input Agricultural labor (1000) 1832 149 116 1 688
 Mechanical Power (1,000, 000 Watt) 1832 213 220 1 2007
 Fertilizer (ton, weighted) 1832 18789 18819 4 150493
 Sown area of agricultural crops (Hectare) 1832 70680 51746 187 320021
       
 DEA Output Score (No. efficient = 53) 1832 1.069 0.044 1 1.568
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Table 7. Explanatory Variables Summary Statistic – High/Low Leverage Observations Removed 
Production Characteristics  Obs Mean Std. Dev. Min Max 
 Agr. share of GDP 1779 0.351 0.152 0.003 0.908
 Agr. mechanical power intensity 1779 1.899 6.818 0.098 280.000
 Livestock share of agr. output 1779 0.118 0.130 0.007 2.603
 Agr. GDP per agr. worker 1779 5146.726 3872.154 12.075 34784.000
       
Credit and Fiscal       
 Credit relative to GDP 1779 0.744 0.475 0.080 7.705
 Fiscal revenue relative to expenditures 1779 0.554 0.221 0.025 1.861
 Fiscal expenditures relative to GDP 1779 0.103 0.083 0.019 1.005
       
Other Local       
 Industrial GDP relative to GDP 1779 0.345 0.139 0.039 0.859
 Non-agr. GDP per adult non-agr. worker 1779 6525.386 5828.693 451.037 98612.720
 Rural share of population 1779 0.821 0.138 0.075 1.000
 Agr. labor share of rural labor 1779 0.750 0.135 0.226 1.000
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Table 8. Truncated Regression Results – High/Low Leverage Observations Removed 
Variable   #1 a  #2  #3   #4  #5   #6   #7  
Production 
Characteristics                       
 Agr. share of GDP  -0.054 ***        -0.083 ***          

 
Agr. mechanical power 
intensity (x100)  0.025         -0.035         -0.003  

 Livestock share of agr. output  0.087 ***        0.096 ***        0.106 ***
 Agr. GDP per agr. worker  -0.035 ***                   
                       
Credit and Fiscal                       
 Credit relative to GDP     0.015 ***     0.013 ***  0.014 ***  0.021 ***  0.014 ***

 
Fiscal revenue relative to 
expenditures     0.011                 

 
Fiscal expenditures relative to 
GDP     0.159 ***     0.151 ***  0.186 ***     0.146 ***

                       
Other Local                       

 
Industrial GDP relative to 
GDP        0.189 ***     0.095 ***     0.083 ***

 
Non-agr. GDP per adult non-
agr. worker        -0.034 ***        -0.009 ***    

 Rural share of population        0.019 *        0.046 ***    
 Agr. labor share of rural labor        0.051 ***     0.027 **     0.022 ***
                       
 Constant  1.367 ***  1.025 ***  1.232 ***  1.055 ***  0.976 ***  1.080 ***  0.978 ***
 Regional Controls b  no   no   no   no   no   no   no  
 n  1779   1779   1779   1779   1779   1779   1779  
 log likelihood  3475.5   3255.9   3289.69   3362.2   3284.1   3243.4   3348.2  
 Wald Chi sq  572.67   115.6   167.88   344.93   170.34   87.14   315.37  
a Inference is based on confidence intervals obtained from 1000 bootstrap iterations. The superscripts: *, **, and *** indicates the value zero does not fall within 
the 90, 95, and 99 percent confidence intervals respectively. 
b Regional controls consist of 29 provincial dummy variables with Sichuan province being the default province. 
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Table 9. Truncated Regression Results – High/Low Leverage Observations Removed 
Variable  #1 a  #2  #3   #4  #5   #6   #7  
Production 
Characteristics                      
 Agr. share of GDP -0.033 ***        -0.049 ***         

 
Agr. mechanical power 
intensity (x100) 0.004         -0.034 *        -0.029  

 Livestock share of agr. output 0.082 ***        0.090 ***        0.010 ***
 Agr. GDP per agr. worker -0.033 ***                   
                      
Credit and Fiscal                      
 Credit relative to GDP    0.012 ***     0.011 ***  0.012 ***  0.013 ***  0.012 ***

 
Fiscal revenue relative to 
expenditures    -0.016 **                

 
Fiscal expenditures relative to 
GDP    0.080 ***     0.103 ***  0.119 ***     0.089 ***

                      
Other Local                      
 Industrial GDP relative to GDP       0.081 ***     0.044 ***     0.042 ***

 
Non-agr. GDP per adult non-
agr. worker       -0.018 ***        -0.006 ***    

 Rural share of population       -0.017         0.000     
 Agr. labor share of rural labor       0.051 ***     0.040 ***     0.041 ***
                      
 Constant 1.296 ***  1.017 ***  1.120 ***  1.015 ***  0.959 ***  1.069 ***  0.949 ***
 Regional Controls b yes   yes   yes   yes   yes   yes   yes  
 n 1779   1779   1779   1779   1779   1779   1779  
 log likelihood 3720.9   3536.3   3524.27   3625.9   3544.1   3517   3619.5  
 Wald Chi sq 1263   679.72   643.79   962.41   698.66   632.38   941.08  
a Inference is based on confidence intervals obtained from 1000 bootstrap iterations. The superscripts: *, **, and *** indicates the value zero does not fall within 
the 90, 95, and 99 percent confidence intervals respectively. 
b Regional controls consist of 29 provincial dummy variables with Sichuan province being the default province. 


