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Estimating a Demand System with Seasonally Differenced Data

Abstract

Researchers estimating demand systems have often used annual data even though
monthly or quarterly data are available. Monthly data may be avoided because with
monthly data it becomes more difficult to specify seasonality, autocorrelation is more
likely to be significant, and there is a greater chance of finding significant dynamics in
demand. This paper shows how to obtain consistent and asymptotically efficient
estimates of a demand system using seasonal differenced data. It also shows that several

alternative estimators are either inefficient or implausible for demand systems.

Key Words: demand system, seasonal differences, autocorrelation, Monte Carlo



Estimating a Demand System with Seasonally Differenced Data

1. Introduction
Researchers estimating demand systems have often used annual (Chavas 1983), Duffy (1987),
Brown, Lee and Seale (1995), Eales, Durham and Wessells (1997), Brown and Lee (2000), Seale
and Marchant (2003), Seale, Marchant and Basso (2003), Muhammad (2007), (Moschini and
Meilke; Alston and Chalfant; Eales and Unnevehr; and Mutondo and Henneberry) even though
monthly or quarterly data are available. Monthly data may be avoided because with monthly data
it becomes more difficult to specify seasonality, autocorrelation is more likely to be significant,
and there is a greater chance of finding significant dynamics in demand.

Seasonality is commonly assumed to be present in budget shares in the estimation of
demand systems. A common assumption is that seasonality is deterministic and thus is
accounted for by the use of seasonal dummies. However, the use of dummy variables to account
for seasonality may be inappropriate. As noted by Fraser and Moosa (2002), “assuming
seasonality is deterministic when it is actually stochastic will yield a misspecified model” (p. 83).

With deterministic seasonality, the intercepts as well as the parameters for the dummy
variables are assumed constant. However, changes in tastes and preferences may cause these
parameters to change over time. The changes in the parameters may be sudden or gradual over
time. This means that assuming deterministic seasonality may lead to models that are
misspecified and fail the tests of structural stability.

Therefore, another alternative is to estimate the general model used by Fraser and Moosa

(2002) that nests the deterministic and stochastic seasonality. Yet, the assumption of stochastic



seasonality is not without limitations. The reader is referred to Fraser and Moosa (2202) for a
discussion of these limitations.

The conclusion from the discussions so far is that there is no agreement on the
appropriate form of seasonality in the estimation of demand systems. Moreover, each form is
not without limitations. Researchers therefore let the data determine the form and locations of
seasonality components (Arnade, Pick, and Gehlhar, 2004).

As an alternative and a mean to eliminate altogether of dealing with seasonality, a
number of researchers have used seasonal difference models. These models let the researchers
use the higher frequency data, do not require specifying the form of seasonality, and are not
likely to show significant dynamic effects in demand. But, as we show, such models are
autocorrelated with the degree of autocorrelation depending on the level of seasonal differencing.

The reason for this is that the use of annual differences when quarterly or monthly data
are available leads to the problem of overlapping data. The econometric problem resulting from
the use of overlapping data is the moving average (MA) autocorrelation which results in
inefficient estimates and biased hypothesis tests. Harri and Brorsen (2007) compare different
estimators used with overlapping data in the context of the univariate equation model. They
show that when lagged values of the dependent variables are not included as explanatory
variables, the GLS estimator is the appropriate estimator. The covariance matrix for the GLS
transformation can be derived analytically in the case of overlapping data.

In this paper, we show how to obtain consistent and asymptotically efficient estimates of
a demand system using seasonal differenced data. Specifically, we propose a GLS estimator for

estimating a system of equations with overlapping data. Monte Carlo simulations are used to



compare the properties of the GLS estimator with overlapping data (annual differences) and the
conventional SUR estimator with disaggregate data (monthly observations). Alternative
estimators are also considered like an SUR estimator using non-overlapping and the maximum
likelihood estimator developed by Beach and MacKinnon (1979).

The rest of the paper is organized as follows. Section two derives the GLS estimator.
Section three discusses the Monte Carlo simulation. Section four provides an empirical
application to the case of US meat demand. Section five concludes.

2. The Model
We start with the following system of M equations:

Wu=0+Z,Bu +DpVm+Em>» m=1.,M (1)
where w,, is a (T'* 1) vector of the values of the dependent variable, where T is the length of time
series, Z,, is a (T'* 1,,) matrix of the values of the explanatory variables, D,, is a (T * p,,) matrix
of the values of the p dummy variables with p = 11 for monthly data and p = 3 for quarterly data,
pnand v, are respectively a (/,, * 1) and a (p,, * 1) vectors of regression coefficients, and ¢,, is a
(T * 1) vector of the disturbances. We assume that & = [&1’, &, ..., &m’]” has E[¢] =0 and
E[ee’] = Z. We further assume that disturbances are uncorrelated across observations, but have
contemporaneous covariance V. In other words, E[&,€.s] = 6, If t = s and zero otherwise.
Therefore, we can also write X' = VOIr.

We will refer to the system in (1) as the disaggregate model which, depending on the
available data, can be estimated with either monthly differences or quarterly differences. If one

instead uses annual differences, these annual differences represent an aggregation of level k=12



for monthly differences or k=4 for quarterly differences. The system with the aggregated

variables can be represented as:
yv,=X,pB, +u,, m=1.,M (2)

where

2 jm (3)

t+k-1 t+k-1 t+k-1

ytm = zwjm’Xtm = Zij’ utm =
Jj=t Jj=t

j=t
where, k& is as previously defined. Given the size of the original sample, 7, the new sample size
is T-k+1. Note also that the seasonal dummy variables no longer appear in (2). The aggregation

of the variables in (3) induces an MA process of order £-1 in the error term u,, in (2).

From the assumption that the original error terms were uncorrelated with zero mean, it

follows that:
k-1 k-1
Efu,,]= E[Z 8(t+j)m]: Z E[g(t+j)m]: 0 4)
i=0 Jj=0

Also, since the successive values of ¢;,, are homoskedastic and uncorrelated, the

unconditional variance of u,, is:

varf u,,1=0; = Ele/,1= ko] (5)

tm

Based on the fact that two different error terms, u,, and u; s+ gm, (¢ =1, ..., T and s = t+1,
..., T) have k — s common original error terms, ¢, for any k — s > 0, the covariances between the
error terms in (2) are:

Cov[utm ’u(t+s)m] = E[utm 'u(t+s)m] = (k - S)me v(k - S) > O (6)

Similarly, the contemporaneous covariances between the error terms in (2) are:



k-1 k-1

Cov[utm ' usn] = E[utm ' usn] = E[ zg(Hj)m ! ZE[‘C"(S+]‘)n] = ko—mn Vt =S (7)

Jj=0 J=0

Dividing (6) by (5) we get the correlations between two different error terms, u,,, and u,+

om as follows:

k=S Gth—s)>0 (8)

corr [utm ’u(t+x)m] = k

Collecting terms we have the correlation matrix of each u,,, 2 (7-k+1 * T-k+1) as:

1 k-1 k—s 1 0 0
k k k
k-1 L k-1 k—s 1 0
k k
k-1 L k-1 k—s 1
k k k k
Q=
1 k—s k-1 . k-1
k kK k k
o .. X . k=s k1l kol
k k k k
0 o k=s k=1
L k k i

With 2 defined as above, we can express the covariance matrix for
u=lu’,u, .., un’]’ as Eluu’]l = Z, = kVOQ.

To obtain efficient estimates, the generalized least squares (GLS) parameter estimates can

be derived as follows:

B=xzx)xz 1y

5 T R - | 1 . o1
=(X'(—V Q2 )X) X' (—V " ®Q2
p=( (L+1 )X) (L+1 )y



or
f=(xvieaix)yxvieal)y (9
Let P’ = CA™”, where C is the matrix of the eigenvectors of £ and A is the diagonal

matrix containing the eigenvalues of . Then, 2 = P’P. Substituting this into (9) and

rearranging we obtain:
B=(xPaevex) xpaev?!)py (10)
where I = I ;. Let X*=PX and y*=Py we get:
B=(X*(IVHxyix*rev )y (11)
which is the conventional seemingly unrelated equations (SUR) estimator with an unknown

contemporaneous covariance matrix ¥ with the transformed variables X* and y*.

Similarly the variance-covariance matrix of the GLS estimates from (11) is:

Var[B] =c2(X* (I1®V1H)x»™  (12)

Alternative Estimators
Among alternative estimators, an obvious estimator is the one that uses non-overlapping data. In
other words only the k-th observation from (2) will be used in the estimation. This will eliminate
the issue of MA autocorrelation, but the estimator is inefficient since it does not use all available
information.

Another alternative estimator is the maximum likelihood estimator developed by Beach
and MacKinnon. This estimator (from hereon referred to as the AR(1) estimator) imposes the
same AR(1) parameter for all m equations. In the general case considered by Beach and

MacKinnon the AR(1) parameter needs to be estimated. However, in our case this parameter can



be derived analytically. It is (k-1)/k, which is the first off-diagonal term in the £ matrix. In other
words, the AR(1) model in this case uses a form of ©2 where only the first off-diagonal term is
positive while the others are set to zero. This estimator is therefore inefficient too since it does
not account fully for the autocorrelation present in the error term.

Finally, the seasonal difference model of Box and Jenkins (1970), which is called a
seasonal unit root model in more recent literature, uses data which are in some sense
overlapping, but do not create an overlapping data problem if correctly specified. For annual
data, the seasonal unit root model is

a)l:aK[+77[

(13)
M =N+,

where & is i.i.d. normal. In this case, the disaggregate model

0 -0 5,=0(Kk —K )+, (14)
has no autocorrelation. In this example, twelfth differencing leads to a model that can be
estimated using overlapping data and ordinary least squares. Seasonal unit roots have largely
been used when the research objective was forecasting (e.g. Clements and Hendry 1997). One
problem with the seasonal unit root model is that it is often rejected in empirical work (e.g.
McDougall 1995). Another is that it implies that each month has its own independent unit root
process and so each month’s price can wonder aimlessly away from the prices of the other
months. Such a model seems implausible for most economic time series. Hylleberg et al. suggest
that the seasonal unit roots may be cointegrated, and in the case of the demand systems the

adding up condition would impose some type of cointegration which can overcome the criticism

of one month’s price moving aimlessly away from another month’s price. Wang and Tomek



(2007) present another challenge to the seasonal unit root model since they argue that commodity
prices should not have any unit roots. While a seasonal unit root model may be an unlikely
model, if it is the true model, it does not create an overlapping data problem.

In this section we showed how to obtain consistent and asymptotically efficient estimates
of a demand system using seasonal differenced data. We also showed that two of the alternative
estimators are inefficient while the seasonal difference model of the Box-Jenkins type seems
implausible for demand systems.

3. Monte Carlo Simulation
In this section we discuss the Monte Carlo study used to compare the properties of the proposed
estimator and alternative estimators. We generate the data according to (1). We use a system of
three equations and thus Z,, consists of three correlated log prices series, P;, P,, P;, and an
exogenous variable representing the log of the ratio of expenditures on the price index, In(X/P).
D, consists of four quarterly or twelve monthly fixed dummy variables that satisfy the following

conditions:

Zk:dj:O and Zdl.zO

j=1 i=1
where, k and m are as previously defined. The second condition is to impose the adding up
restriction. In addition, to ensure the adding up restriction we impose these three other

conditions:

n

m

a, =1, Y w, =1 and Y & =0
i=1

i
i=1 i=1

where ¢ represent the intercept for the i equation. In case one of the three shares is negative

then that system observation is regenerated with a different draw of correlated random errors



until all three shares are positive. Finally, the homogeneity and symmetry restrictions are
imposed on the parameters of the system.

We generate 1000 samples of 60 and 120 observations according to (1). We obtain
aggregate observations according to (2) using two different levels of aggregation, k=12 for
monthly observations and k=4 for quarterly observations. We estimate both (1), from now on to
be referred as the disaggregate model, and (11), from now on to be referred as the overlapping
model, for each sample. We also estimate the model using nonoverlapping (to be referred as the
NON model) observations by using only the £ aggregate observations. Finally, we obtain the
maximum likelihood estimates for the AR(1) model in (2) by imposing the same AR(1)
parameter for each equation equal to (k-1)/k.

3. Monte Carlo Results
The actual slope parameters and the means of their Monte Carlo estimates and standard errors
from all the models are presented in Table 1. We report results only for one equation, since the
results are very similar. Three main findings are to be noted from the results in table 1. First,
slope estimates from all models are consistent as expected. Second, the slope estimates and their
standard errors are exactly the same for the disaggregate model and the aggregate model with the
proposed GLS estimator. This finding is consistent with the theoretical results presented above.
Third, the standard deviations of both the model estimated with non-overlapping data and the
AR(1) model are larger than those of the disaggregate model and the aggregate model with GLS.
On average, the standard errors of the AR(1) model are 18 to 30 percent larger, while those of

the model with non-overlapping data are from 2 to 4.65 times larger.



Table 2 reports the number of rejections of the hypothesis that estimated parameters are
equal to the actual values for the significance level of 5 percent. The number of rejections is
twice as large as the nominal level for the AR(1) model. It is also almost twice as large for the
model with non-overlapping data when the ratio of sample size to aggregation level is small. In
the meantime the rejection rates for the aggregate model with GLS (and the disaggregate model
which are not reported as they are the same as the ones for the aggregate model) are very close to
the nominal level.

4. Empirical Application
We estimate the U.S. meat demand to compare the empirical performance of the different
estimation models discussed above. Data are monthly observations from January 1989 to August
2007. Per capita beef, pork, and poultry quantities and retail prices were obtained from USDA’
Livestock and Poultry Situation and Outlook Reports. Per capita fish quantities and retail prices
were derived using the approach in Schmitz and Capps (p. 10) and Kinnucan et al. (1997).
Bryant and Davis (2008) using the Bayesian Averaging of Classical Estimates (BACE) approach
find that the first differenced Almost Ideal Demand (FDAID) model outperforms the other
models considered in their analysis. Therefore, we use FDAID as our functional form. The fish
equation is dropped from the estimation. Finally, since the test of the symmetry hypothesis does
not reject it we impose the symmetry.

Results of the U.S. meat demand are reported in table 3. Table 3 reports parameter
estimates and their standard errors for the four different models and for the three equations of
beef, pork and poultry. Parameter estimates and their standard errors for the disaggregate model

and the aggregate model with GLS are very similar for the three estimated equations. Results for
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the AR(1) model and the model that uses nonoverlapping data confirm their inefficiency, as
shown by higher standard errors and lower significance levels.

5. Conclusions
Estimation of demand systems with seasonal (annual or quarterly) differenced data leads to
models which are autocorrelated with the degree of correlation depending on the level of
differencing. Ignoring this autocorrelation results in inefficient estimates and biased hypothesis
tests. The Beach and MacKinnon estimator, used in some previous works, is also inefficient in
this case and so is the estimator that uses nonoverlapping data.

We show how to obtain consistent and asymptotically efficient estimates of a demand
system using seasonal differenced data. Monte Carlo simulations confirm the theoretical
derivation that a GLS estimator using an analytically derived correlation matrix produces

consistent and efficient estimates.
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Table 1. Monte Carlo Simulation Results

Sample Aggregation Actual
Size Level Variable Parameter Disaggregate Model Overlapping Model Nonoverlapping Model AR(1) Model
Values Parameter ~ Standard  Parameter  Standard  Parameter  Standard  Parameter  Standard
Estimates Error Estimates Error Estimates Error Estimates Error
60 4 P1 0.02 0.0200 0.0141 0.0200 0.0141 0.0208 0.0320 0.0204 0.0176
P2 0.03 0.0311 0.0205 0.0311 0.0205 0.02899 0.0468 0.0308 0.0252
P3 -0.05 -0.0514 0.0290 -0.0514 0.02895 -0.0491 0.0656 -0.0516 0.0360
In(X/P) 0.025 0.0250 0.0092 0.0250 0.0092 0.0246 0.0211 0.0248 0.0112
60 12 P1 0.02 0.01997 0.0153 0.01997 0.0153 - - 0.0195 0.0191
P2 0.03 0.0314 0.0223 0.0314 0.0223 - - 0.0318 0.0270
P3 -0.05 -0.0516 0.0313 -0.0516 0.0313 - - -0.0510 0.0379
In(X/P) 0.025 0.0251 0.00997 0.0251 0.00997 - - 0.0252 0.0122
120 4 P1 0.02 0.0197 0.00996 0.0197 0.00996 0.0201 0.0204 0.0199 0.0122
P2 0.03 0.0304 0.0140 0.0304 0.0140 0.0305 0.02999 0.0304 0.0172
P3 -0.05 -0.0498 0.0199 -0.0498 0.0199 -0.0504 0.042 -0.0503 0.0241
In(X/P) 0.025 0.0248 0.006 0.0248 0.006 0.0245 0.0134 0.0247 0.0075
120 12 P1 0.02 0.0196 0.00998 0.0196 0.00998 0.0205 0.0452 0.0197 0.0120
P2 0.03 0.0305 0.0145 0.0305 0.0145 0.0306 0.0674 0.0304 0.0173
P3 -0.05 -0.0502 0.0206 -0.0502 0.0206 -0.0506 0.0951 -0.0501 0.0242

In(X/P) 0.025 0.0248 0.0065 0.0248 0.0065 0.0237 0.0304 0.0247 0.0077
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Table 2. Rejection levels of the hypothesis that estimated parameters are equal to their actual
values.

Rejection Level

Sample  Aggregation  Nominal Overlapping  Nonoverlapping AR(1)
Size Level Level Variable Model Model Model
60 4 0.05 P1 0.051 0.057 0.114
0.05 P2 0.054 0.046 0.118
0.05 P3 0.044 0.049 0.118
0.05 Ln(X/P) 0.054 0.043 0.116
60 12 0.05 P1 0.056 0.122
0.05 P2 0.056 0.102
0.05 P3 0.047 0.109
0.05 Ln(X/P) 0.048 0.108
120 4 0.05 P1 0.046 0.039 0.129
0.05 P2 0.043 0.038 0.107
0.05 P3 0.041 0.035 0.104

0.05 Ln(X/P) 0.052 0.034 0.1
120 12 0.05 P1 0.047 0.091 0.109
0.05 P2 0.044 0.088 0.099
0.05 P3 0.043 0.089 0.096
0.05 Ln(X/P) 0.046 0.071 0.098
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Table 3. Parameter Estimates for the U.S. Meat Demand

Beef Equation

Pork Equation

Poultry Equation

Variable Disagg. GLS AR(1) NON Disagg. GLS AR(1) NON Disagg. GLS AR(1) NON
Model Model Model Model Model Model Model  Model Model Model Model  Model
PBeef -0.2380*  -0.2361*  -0.1375** -0.0592
(0.0397)  (0.040) (0.054) (0.067)
PPork 0.0805*  0.0817~* 0.1461** 0.0497 -0.2247= -0.2238* -0.0532 -0.084**
(0.0289)  (0.029) (0.063) (0.036) (0.033) (0.033) (0.090) (0.038)
PPoultry 0.1575~  0.1544* 0.2012*= 0.0095 -0.144+ -0.142* -0.336*  -0.035 -0.3011~ -0.2959~* -0.135«  -0.0442
(0.0411)  (0.041) (0.043) (0.069) (0.031) (0.031) (0.061) (0.044) (0.059) (0.059) (0.032) (0.087)
PFish -0.00003 -0.00004 -0.0123 0.00008 -0.0002  -0.0002 -0.0237 0.0003* 0.0004*+=  0.0004>+==  0.0358  0.00001
(0.0003) (0.0003)  (0.096) (0.0001) (0.0003) (0.0003) (0.137) (0.0001) (0.0002) (0.0002) (0.071)  (0.0002)
Expend  0.2921  0.2920* 0.2737* 0.1757~* 0.1639*  0.1638+* -0.426*  0.165* -0.4557+ -0.4557+ 0.1522* -0.3400+
(0.008) (0.008) (0.008) (0.035) (0.006) (0.006) (0.012) (0.022) (0.011) (0.011) (0.006) (0.041)
Feb 0.01934~ 0.0417~ -0.0611*
(0.004) (0.003) (0.006)
Mar -0.0435~* 0.0101~ 0.0334~
(0.004) (0.003) (0.006)
Apr 0.0059 0.0227~ -0.0285+
(0.04) (0.003) (0.006)
May -0.010** -0.0005 0.0100%*=
(0.004) (0.003) (0.006)
Jun 0.0029 0.0215* -0.0244+
(0.004) (0.003) (0.006)
Jul -0.0042 0.025+ -0.0209+
(0.004) (0.003) (0.006)
Aug -0.0277~* 0.0208~ 0.0069
(0.004) (0.003) (0.006)
Sep -0.0025 0.0399~ -0.0373*
(0.004) (0.003) (0.006)
Oct -0.0334~ 0.0200~ 0.0135*
(0.004) (0.003) (0.006)
Nov -0.0045 0.0370~* -0.0324+
(0.005) (0.003) (0.007)
Dec 0.0096** 0.0336* -0.0432+
(0.004) (0.003) (0.006)

Note: *, **, and *** denote respectively significance at 1%, 5% and 10%.
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