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I ntroduction

Although U.S. farmland values have been studietl witmerous land price models, a farmland valuation
puzzle still remains (Moss and Katchova, 2005). fdsalts of traditional economic models of farmland
prices demonstrate that farmland value is detemnlne discounted future returns to farmland (Alston

1986; Burt 1986; Featherstone and Baker 1987)thHeme are issues unexplained in those models.

First, farmland values exhibit significant shomnteboom-bust cycles that are not explained by #seta
value formulations. The results of Schmitz (199%) af Falk and Lee (1998) indicate that the valofes
agricultural assets are determined by market furdaabs in the long run, but in the short run famdla
prices diverge significantly away from the discaehvalue, and these diverged periods are refeored t
boom or bust cycles. Actually, more literature megbe overreaction of farmland values in respdiose
increases in returns (Featherstone and Baker 1881, and Coiling 1990; Falk 1991; Clark et al. B99
Schmitz 1995). Second, while the direction of clemgn farmland values is consistent with the
capitalization formula, farmland appears to beaysttically overpriced. Farmland returns are comsitle
too low comparing with other sectors in the capitalrket when justified through the capital ass&timy

models using their asset values.

Farmland values make up 75 percent of the U.Scualtmire assets, therefore the farmland valuation
puzzle is an important problem that stimulates tylef researches in the field. Scholars have loegnb
trying to identify the possible causes for boomtbagcles, such as quasi-rationality or bubbles’
(Featherstone and Baker 1987), time- varying rigkmums (Hanson and Myers 1995), overreaction
(Burt 1986; Irwin and Coiling 1990), fads (Falk abhee 1998), and risk aversion and transaction costs
(Just and Miranowski 1993; Chavas and Thomas 1R88ce and Miller 1999; Lencc 2001). Further,
researchers have also explored potential arbitbeggers for overpriced farmland values, such &s th
absence of short selling and transaction costs raaliigrage quite risky (Chavas 2003; Lence 2003;

Miller 2003).



The resolutions to the farmland valuation puzzke iaterlaced with the issue of market fundameritals
the stock-pricing literature. Irwin and Coiling @® use a variance-bounds test proposed by Shiller
(1981) and LeRoy and Porter (1981) to analyze vérette volatility in farmland prices was consistent
with the variability in returns to farmland. Theynd that the variability in the return to farmlamgs
potentially larger than that implied by the varlabiof farmland prices, but this methodology magvk
suffered from nonstationarity’ in data series (Kt 1986) and small-sample bias (Flavin 1983).
Campbell and Shiller (1987) develop the test ofgresent-value model to deal with nonstationarydat
Falk (1991) uses this methodology and he doesimbiaf stationary relationship between farmland ealu
and returns to farmland. Hanson and Myers (199%) that some variation in farmland values can be
explained by a time-varying-discount rate, whidhsirate the possible effects of nonfundamentals o

farmland prices.

Falk and Lee (1998) apply the methodology propdsedee (1998) to examine farmland prices and they
find that fads and overreactions relevant to shamtpricing behavior, while permanent fundamental

shocks to long-run price movements.

Barry, Robison, and Neartea (1996) allow for tHea$ of risk and risk aversion on asset priceindJa
CAPM model, Shiha and Chavas (1995) uncoveredsttati evidence that transaction costs have
significant effects on land prices. Epstein and @if91) use a nonadditive nonexpected utility based
CAPM and find that risk aversion is important tonfiéand pricing. Kocherlakota (1996) discovers that
incomplete markets and trading costs could alsoebevant to the equity-premium puzzle. Just and
Miranowski (1993) develop a structural model ofritand prices and find that inflation-rate and real
returns on alternative uses of capital changescaage changes in farmland values. Chavas and Thomas
(1999) adopt the Epstein and zin (1991) framewark idynamic land pricing model and both find risk
aversion and transaction costs are important tdameland prices. Lence (2001) cautions about tte d
stationary in Just and Miranowski (1993) and thdudé&on in Chavas and Thomas (1999). Plantinga et

al. (2002) decompose agricultural land values tinoa spatial city model into components reflectimg



discounted value of future land development anddibeounted value of agricultural production, which
counts for 91% of the overall US farmland valuesntRouvelle and Lence (2002) find robust evidence
that the behavior of land prices and rents is &t with the CDR-PVM in the presence of empitjcal

observed values of transaction costs. However, rutttee assumption of fixed relative risk aversion

coefficient, the existing literatures have notyuddddressed the farmland valuation puzzle.

The objective of this essay is to develop genegadathic land price models (DLPM) through the
introduction of farm wealth levels, to enhance niadbustness against risk aversion misspecification
To be specific, our model generates reasonablyratpredictions for land prices, supposing that th

risk aversion changes geographically and tempof@fmez-Limon, Arriaza, and Riesgo, 2002).

Chavas and Thomas (1999) adopted the frameworkpsfeifi and Zin (1991) and developed a DLPM
that incorporates risk aversion, transaction c@std,dynamic preferences, which they applied t@1%5
U.S. land values. Their model generates very gatddg of data, but the estimation of parametersds
stable over time and this diminishes the prediciower of the model. This essay extends the work of
Chavas and Thomas by assuming that consumptionnbabnear functional forms and therefore
including both return rate and wealth levels in tdred pricing model. Intuitively, farm wealth legehire
related to relative-risk-aversion-coefficient (Rret964; Arrow, 1965), and risk aversion affectada
prices (Just and Miranowski, 1993). Consequenilg,dmission of farm wealth levels makes traditional

pricing models especially vulnerable to risk avemgnisspecifications.

We expect our empirical results to be consisterth wihe major findings of existing capitalization
formula. Although most present value models arected by empirical data, and the persistent lownet
rate of farm sector is linked to farmland overprigiand admission of market failure, we believe trskt
aversion misspecification is the missing key to fdmenland valuation puzzle in those models. Finst,
test the hypothesized nonlinear homogeneous refdtip between farmland return and wealth in our

model with US data, and expect a significantly meedr relationship. Second, we compare the resttict



and unrestricted models. We expect that the lifiestricted) estimation of risk aversion coeffidién
significantly lower than that of the nonlinear (estricted) model, which helps to explain the appidye
overpriced farmland through risk aversion misspegifons in traditional DLPM. Third, we expect lestt
out of sample prediction of our model. Last, ourdeloprovides evidences of the structural relatignsh
between farm wealth and the farm land prices, i return impacts controlled in the model. Our
general DLPM formula sheds light on the effect ofrbfarm returns and wealth on farmland values

through the general homogeneity assumption.

This essay will provide researchers a valuable émaatk in asset pricing because it develops a génera
DLPM that nests traditional models as its specades. Our findings will benefit both farmers and

developers with more accurate forecasts on farnpaices.

The essay proceeds as following: Section Il costaidiscussion and derivation of the model estidhate
GMM. Section Il details the construction of dathe estimation and testing procedures. Section IV

illustrates the actual empirical results. Sectioswhmarizes and concludes the essay.



TheModéel
We build our model with well accepted set ups foitCAPM models. We consider the
optimization problem facing a representative corsymvhose goal is to maximize his utility
through his choices of levels of consumption ardcations of his portfolio among various
assets each period (Mankiw and Shapiro, 1986).
At period t, the consumer’s assets = (ao; ai¢ aye, ..., Age) are consisted with two parts:
riskless assets,,, and risky assetsa{;, a,;, ...ax:), and they come from two possible sources:
assets maintained from last periog,.;, and new investments in the assets,= (ny;, my;,
my, ...,Mg:). The relationship is expressed as the following:

(1) Akt = App—1F My

k=0, 1,2,...K.

At period t, consumers have the options to consyp@and to make investment,. Under the
assumption of rationality, the consumers are sughbd® maximize their utilities in their
consumption and investment decision. Therefors iteasonable for us to assume that the the

consumer’s budget constraint is binding and dehassfollowing:

(2) TeQo -1 + T[t(al,t—li s aK,t—l)



= q¢yr + Mo + Z£=1[Pkt + Vi (M) I My

Wheren;(a t-1, Az¢-1,----, Age—1) IS differentiable return function for risky asseasdr;is the

interest rate for riskless assets in period t. flimetion v, (1m,,) in equation (2) represents the

unit transaction cost of buying or selling assgt. We discuss 3 scenarios figy, according to

the sign ofm,;.

B vkl = v >0 ifmy >0,

:O ifmkt:O,

=v, >0 if m, <0

We suppose that both the buyers and sellers haveayoa positive fee which would be

transferred to third parties in order to closedeal, so bothy;’, transaction cost for buying, and

v, transaction cost for selling, are positive, thouthey may not be the same due to

asymmetry, which could pose a problem to the caitiirof v, at point 0. This transaction costs

structure reflects a situation where transacticstoeduce the income of all market participants

and discourages them from participation.

We then assume a recursive utility framework follogvkKoopmans (1960)

(4) U = W6 Yes1 Yerzr )



=Ue M(Ugsqllp))

whereM (U.,4|I;) is an aggregator of future consumption certaigpyivalent given information

Following Epstein and Zin (1989,1991), we furthesame the following:

G, = [(1-p)yf +pML,
for 0 #p <1,
= (1- Blog(y: + B log(M,),
for p=20
1
(Bb)M; = M(Up44lle) = (EUft )
1if0#a <1,
=exp|E; log(Us41)] if a=0
Where = 1/(1 + §), and§ is the rate of time preferencep = 1—1/0, ando is the
intertemporal elasticity of substitutioa.is the relative risk aversion coefficient of trmnsumer

(Epstein and Zin 1989, 1991). When= 1, the consumer is risk neutral and the higher tiaes

of a the more risk averse is the consumer, and vicgaver



One interesting special case of equation (5) iswleen a« = p # 0, equation (5) reduces to

the familiar expected time-additive utility specdtion

U, = [(1-P)E, Blye 1M®

jz0

We would test the hypothesis = p # 0 in our estimation results section to see if the US

farmland data support time-additivity in utilityrfation.

Assuming U(y:, My, (Us41)) is differentiable and bounded for all feasillg;, a;, m;), the

optimization problem of consumption and investnastision could be written as the following:
(6) Vi(ae-1)

= max{U(y;, M;(Uy+1)): equations (1) and (2)}

= max U
at

K
<Ttao,t—1 + T — (aOt - aO,t—l) - Z(pkt + vkt)(akt - ak,t—l))

k=1

~ Q¢ Mt(Vt+1(at))]

whereV,(a;_,) is the indirect objective function. Under diffetability assumptions, the first-

order necessary conditions for are

(7a)  ao: (0U/0y)/q: = (AU/OM.)(OM,/day:)



) )
(7b) akt:(a”)i,#ﬂ;—;)(jaﬁ), if My # 0

Noticing that we leave the case that, = 0 out of our deduction due to 2 reasons. First, the
functional form in equations (8) at,; = 0 is disputable according to Lence (2001). Second,
the data set for estimation, we do not have ang gatnt withm,; = 0, which could bear a
nearly O possibility in the reality.

Apply the envelope theorem to equation (6) at poaitdifferentiability, we have

291 + 1)
(8a) 06?0‘,/:_1 — (0%); tTe
8b) 5= e e if My # 0
ag,t—-1 dtc

According to equation (5b), we use implicit functiftorm theorem to get
OM,/dat = M{~“E [UfS (0Upy1/0at)].

Substituting equation (8a) and (8b) into equatite) @nd (7b),
d o _
(9a) (O_Z)/Qt = (OU/OM)(M{*E¢[Uf7'(OU/0Ye41) (1 + Tei1)/Qes1)
U

)(Pkt + Vgt

9yt ) - o—
(9b) ( = (0U/OM;) {M;="E[Uf{1" (0U/0yr41]) X [(O7rr41/0axs)

+(Prts1 t Vir+1)1/qes1]} i mye #0



If we substitute (9a) into (9b), and assume p = 1, we get the standard time-additive model

under risk neutrality, which we would also tesbiumr estimation section.

(10)  (Pyt + vke) = Ee{[(Omey1/0ay:) + Priyr + vk,t+1]/qt+1} + Ee[1+7141)/qt41]



Specification:

Equation (9a) and (9b) are the Euler equationgamal price dynamics, but we could not use
them directly to estimate future farmland pricesduse part of the structures is not observed. In
this section, we show how to further specify theigtures of equation (9a) and (9b) through
testable assumptions and deduct an empirical sylstamthem.
Assume the consumer’s aggregated wealth levelraidoeand t-1A; andA,_,, as following
(11a)As = aor + Xi=1(Prt + Viet) Qe
(11b)A;_1 = age-1 + Z£=1(Pkt—1 + Vke-1)Ake—1

From equation (2) we can get
(12) qty: = TiQor—1 Tt T[t(al,t—ll ey ak,t—l) — [mo + Z£=1(Pkt + Vi) Myt ]

We can rewrite equation (12) as the following

P
(13) qy: = [(Tt +1) — ] Aot—1 + Xh=1 [(aant ) + (Pt + Vke) (1 — 2kt )] Agt—1

Ao,t—1 kt-1 Akt-1

ASSUMPTION Al. The return function 74, a,,..ax)iS lin€ar homogenous in

(A16, Azes von s Aer)-

ASSUMPTION A2.The consumption function,,_,)is homogenous of degréen A.;



ory.(A;—;) H. D. O.A.

We can then write the consumption function as

(14)y: = k¢ - At—l)L
Use Taylor expansion we can rewrite (14) as

A-1)?
1!

a-pn

n!

* lOgAt_l * At—l + te +

(15)y, = k; [At—l + log"Ai_1A—1 + ]

()when0 <A1<2,(A-1">0asn - oo.
(i) A;_4is bounded, séogA;_is also bounded. Therefoﬁé’# - 0asn — o

Due to (i) and (ii), we can find an intedéy such that

(1-1) -1

yt = kt At—l + T . lOgAt_l . At—l e N' . lOgNAt_l . At—l + €

Wheree < 0.00001

Thus, we can write the following

1-1)
1!

@a-nN
N

(16) ye = k¢ - Ap—q [1 +

* logAt_l * At—l + lOgNAt_l * At—l]

. 9
DefineR, = aAy t

, under the assumption A2, Equation (14) couldeveritten as:

t—1

1
Ytzz'Rt'At—l



Together with (17), we can find

_@a-ov

(17) Rt Akt [1 + I logAt 1 At 1 + * lOgNAt_l * At—l]

Together with (13), we can find

(18) [ -

akt 1[ o +(Pkt+vkt)< %)_%(Pkt-l_vkt)

aot 1 10akt-1 kt—1

Equation (18) is very important, and we use itéavk the key value for our homogeneity test.

age—1[_0mt ( Akt )]
re+1 t +(Prt+v 1-
(19) R. = i (re+1) aot 1 Zaot—ll.aakt—l (Pre+vke) Akt—1
t— Aft—1
qt 1+Za0k_1(Pkr+Vkr)

From equation (5), we can find
1
U, ™) = [(1 = B)(ty)? + B(TM)P]P

— o1 - Bt + pMETP
= tU:(ye, My)
for 0£p<1

Under Assumption A2, we haye = k, - A},

Uly:(tAe-1), M (A,)] = U, [TAYt(At—ﬂ'(EtUta+1(TAt))1/a]



Notice the second term is self-adjusting to thatrehship ofU.(A;_,), if we assume linear
expectation operator.
We can have U [tA;_1,TA] = TAU[Ar—1, AL]
(20) Vi(tAi—1) = maxU,(tA;_q, TAL)
= t*maxU,(4,_,,A;)
= TAVt(At—l)

From equation (5), we can apply the envelope thea@ed get the following:

th _ 6Ut _aUt 6yt

21 = =
(21) 0At-1  0Ar—1 0yt 0Ar—

=U, P(A-B)y/ "R,

Together with (20), we can have

1
A 0Ap_q

(22) V= Aeer =zUPA =By Ry Ay

Rearrange equation (22) under the assumptiorithatV; at optimum, we have

1

(238.) Ut = I:% (1 - ﬁ)ytp_l * At—lRt]; fOI‘ p;éo

(23b) utﬂ:[% A- By AR I

a- a- 1 , - }
(24)  U,,"(0U /9dy,,,) =U,., p(l—ﬂ)ym"1:[;(1—ﬁ)yt+f’ 'ARLCPP A= By



From equation (5a) we can get the first derivatives

ouU, /oM, =U " 4m
aUt /ayt = Utl_p (1_/8) ytp_l

(25)  (0U,/0M)/(U, /dy,) =AM " [(1- B)y,” ]
Rewrite equation (5a), we can get the following
M” =V -A-B)Y."1/ B

Substituting from equation (23a)

1 _
(26) M, ={[;(1-,6’)yt" ‘ALR - @A-B)Y 11 By
Therefore the following part could be substituted usiggation (24), (25), and (26)

(27)  [(8U,/0M)/(0U, /9y )I[M," U ;" " (0U /Y1) G / o]

=AM A=AV N DY AR M- Ay 0 s

={Al % @-A)Y AR - Q=B B (L= By

1

[ 4= 8) Yo, AR U= B) Vi O/ G

(p-a)lp

= (B %) P (Ve Vo) P I(ALRG = AGY) (AR 1G]

Substituting equation (27) into equation (9a) and {@&b)yet



(282) 1=E{(Aa/0)" (Yur! ¥)" (ARG, ~ A6 Y) (ARG L+ 10)}

P + Vi = E{(A0 1 0d)” (Vea ! Y0 P LALR G —A6Y) (AR 1G0T
(an{ﬂ/aakt + pk,t+1 +Vk,t+1)}

(28b)
wherey=alp
Rearrange equation (28a) and (28b) we get an dsen@&VIM moment functional form for our

empirical model:

(298.) Ult =1/ Q. — (IBQt /qt+1)y(yt+1/ yt)y(p_l)[( A-lR[qt _/]qtyt)/(p\ Rt+1qt+1)]l_y (1+ rt+1)/qt

(29b) Uy = P+ = (B Gur)” Ve ! ¥) PP I(ALRG, = AT Y) (AR LG
(677';+l/aat + pt+1 +V’[+l)

whereEU ()W = 0
v, =C,AQ, if AQ >0
Vv, =C,AQ, if AQ, <0
AQ =Q-Q,
Equation (29a) and (29b) are the two equationsuofgeneral homogeneity model, and all the
variables used are defined as following:

° 0 : Consumer Price Index(1982~1984:1)



° Y,

[ R:
[ A:
° r,

° p,:

° n.,la,:
° v,

° Q:

disposable income of farm population ($trillion)

gross rate of return on farm equity

farm wealth levels (equity) ($100million)

interest rate on U.S. treasury bills(%)

Farm land price($100,000/acre)

net farm income per acre ($1000/acre)

transaction costs of year t in farmland market

land quantity at time t

When we setd to 1, equation (29a) and (29b) reduces to thelihemogeneity model:

(302) Uy =1/6, = (8o / Gh)’ (Ve Y1) P (Ristho) " A+ 110 G

(30b) U, = p +V, = (B! Gt)’ Veea! Y) P (Roahr) (077,108, + Pry +Viy)

In spite of slight notation differences, our lind@mogeneity model is the same as that of Model

M1 in Chavas and Thomas (1999).



Data and Estimation

The above model is developed for a reprehensivewnar and we assume that all the functional
forms would sustain with aggregated data. As ddfinethe equations, all the data are collected

from USDA data set in 1950~2008 at US aggregatesl.le

The estimation methods and hypothesis tests aceistied in details in the Estimation Results

section.

Estimation Results

2-stage GMM

Both the linear homogeneity model and the genesaidgeneity model are estimated with two-
stage GMM procedure. Hansen (1992) shows that ymastically efficient or optimal GMM
estimator of parameter vector could be obtainedhnosing weight matrix so that it converges
to the inverse of the long-run covariance matrix.the first stage, we calculate an HAC —
Newey-West weighting matrix, which is a heteroslstiddy and autocorrelation consistent
estimator of the long-run covariance matrix baseduwo initial estimate of the parameter vector.
First, we calculate the initial parameter estimaieshe nonlinear system with two-stage least
squares estimation by iterated convergence. Seocmrduse 2SLS estimates to obtain the
residuals, and third, we obtain estimates of thegdaun covariance matrix of the instrument-
residual matrix, and use it to compute the optimalghting matrix. In the second stage, we
minimize the GMM objective function with the optilnaeighting matrix obtained in stage 1
with respect to parameter vector. The non-lineaingpation for the parameters iterates to
convergence of 0.0001 and updates parameter essifraim the initial 2SLS estimates to the

final 2-stage GMM estimates. Further, for the HA€@qgedure, we specify that the data is



processed with prewhitening by VAR(1) and we cho®setlett kernel and Newey-West

bandwidth.
Instruments

In our two-stage GMM estimation, we use identicatiument vector for both equations in the
system. In the linear homogeneity model, we esBmat five element parameter vector
(0,7, B, Cny Cp), With five different instruments (1,.B W/Yr1, &/Qr1, Re1). Since we have two
equations in the linear homogeneity model, the mstrument number used is ten (two times
five), which determines the degree of freedom ddraentifying test in our linear homogeneity
model to be five, ten (number of instruments) mifius (number of parameters). Similarly, we
estimate a six element parameter vectoy (5, Cn, C, 4), With seven different instruments (1,
Pe1, WY1, /0e1, Re1, a;, Liabilityy) in our general homogeneity model. Therefore thgree of
freedom of overidentifying test in our general h@moeity model is eight, fourteen (number of

instruments) minus six (number of parameters).
Estimation

The GMM estimations are reported in Table 2 forhblmtear homogeneity model and general
homogeneity model. Although estimations are balsicadnsistent between two models, there

are some very interesting differences.

First, the general homogeneity model yields a mbaher estimate forpthan the linear

homogeneity model, which indicates that the intageral elasticity of substitution,

o =1/(1- p), is much higher under the general homogeneity indde linear homogeneity

model estimate forpis 0.754, and the corresponding intertemporal ieiastof substitution,



o=1/1-p), is 4.0650, very close to 4.10, the estimate ohv@s and Thomas (1999).
However, the general homogeneity model estimate dand o are 0.9586 and 24.1546

respectively. This results show that agents infémenland markets are even more flexible in

income substitution between time periods than ti@diC-CAMP predicts.

Second, the estimates of transaction cost paraspeigr and Cm, in the linear homogeneity
model are both insignificantly positive, which i®se to the results from Chavas and Thomas
(1999). The estimate of booming market transagbiarameter, Cp, in the general homogeneity
model is 0.1136 with standard error of 0.0568, fpesiand significant at 5% level, while that of
the diminishing market, Cm, is -0.0074 with stamdarror of 0.0045, negative and marginally
significant at 10% level. These results show thatgaction costs;,, remain positive regardless
the increasing or decreasing of farmland quantdy. one hand, the opposite signs of the
transaction cost parameters in the general homdagenedel are more intuitive in line with the
real world phenomenal. After all, both the buyend aellers of farmland need to pay transaction
costs, such as advertisements, research, legakiegso on. Therefore, it is reasonable to expect
positive aggregated transaction costs in both bogrnand diminishing markets. On the other
hand, these results eliminate transaction costsma®f the major drivers in the farmland market.
Agents make decisions of buying or selling farmlahgdays in presence of positive transaction
costs, even though the magnitude of diminishingketaparameter seems to be much smaller
than that of the booming market. The magnitudesdiffice is sensible because when the market
is diminishing, agents become more cautious argll#aids to an increase in market efficiency.
The transaction amount decreases, and only the ecosiomically efficient deals are closed in
the market, which yields much lower transactiont€as aggregation. In short, the transaction

costs affect farmland market, but not as signifilyaas a driving force.



Third, the general homogeneity model yields a mbuafher estimate fora than the linear
homogeneity model, which indicates that the riskramn coefficient of the farmland market
participants could be much higher than the tradéianodel predicts, or farmers are much less
risk averse than we thought. We follow Epstein &l (1991)'s definition of risk aversion
coefficient: agents are risk neutral when theirl, and become more risk averse when
decreases and vice versa. It is worth noticing tratitional time series models generate one
single estimate ofa in the whole period of study based on aggregate@.dit is well
documented that risk aversion could differ matgriatross different agent groups, according to
elements such as age, income, education, health,otlver geographical variables. In other
words, the estimate ofr is probably more like a baseline rather than asibéa average of
agents’ risk aversion coefficient. Even under thgumption of representative agent, the estimate
of a needs extra cautions, because the risk aversiehflar the same agents could change over
time due to the changes of their geographical bbesa It is apparent that other factor(s) should
be included in the consideration of risk aversiororder to explain a certain year’s land price
data or to make a reasonable prediction of neawrdutin our general homogeneity model, we
introduce wealth level, approximated by the farmeciity, as a remedy to the embedded risk

aversion coefficient misspecification problem in M.

Fourth, and probably the most important, we finat tthe estimate of, homogeneity degree of
consumption and value function, is 0.8277, withndtad error of 0.0034. This finding is
consistent with several previous assumptions we emakoutA. First, A is positive and
significant, meaning that consumption is a valicdr@asing function of last period’s wealth level,
therefore, so is value function. In other wordss tresult provides empirical evidence to the

hypotheses that agents’ wealth level affects theure consumptions and utilities. Second, the



magnitude of the estimate is between 0 and 2, stgpthiat the nonlinear homogeneous function
of yi(At.1) could be closely approximated by a linear funwlicform as equation (16). This result
reinforces the validity of our homogeneity test,iebhis derived from equation (18). Third, the
estimate oft is less than 1, indicating that our data bett@psut a nonlinear rather than a linear
homogenous functional form of consumption. Thioaltustrates the necessity of a general

homogeneity model in farmland pricing.

In addition, the objective function value, reporeeslJ-stat, are low for both models: 0.1085 for
linear homogeneity model and 0.2460 for general dgeneity model. The estimates joandp

are both close to 1 in both models, and they aresistent with the findings of Chavas and
Thomas (1999). The R-squared are close betweetind@& homogeneity model and general
homogeneity model, but they are both significadtiywer than that of Chavas and Thomas
(1999), which could be caused by the persistembléard price rise since 1997, and especially
the sharp rise since 2004. The general homogenwayel has a slightly higher R-squared in
equation (29b), 0.3350 than its counterpart, 0.23d5he linear homogeneity model (30b),
meaning that the general homogeneity assumptigrstiel explain the variance in US farmland
prices. This result is intuitive since we add onerenparameterd, homogeneity degree of
consumption, to estimate in equation (29b), whasienate turns out to be significantly different
from 1, which unsurprisingly increases the explemmapower of the general homogeneity model

in farmland pricing.

Hypothesis testing

The GMM estimates are tested and results are epant Table 4 for both linear homogeneity

model and general homogeneity model. Both modeds @ over identification test with very



high p-values, supporting the overall validity dfetinstrument variables. With insignificant
parameter estimates, the linear homogeneity mailsl to reject both the No transaction costs
hypotheses and the Symmetric transaction coststigpes, while the general homogeneity
model estimates reject the No transaction cost thgses at 1% level and reject the Symmetric
transaction costs hypotheses at 5% level. In ottends, US farmland data do not provide
evidence against the No transaction costs hypathasel950~2008 period as Chavas and

Thomas find in the 1950~1996 period with the lineamogeneity model.

As to the expected utility hypotheses, the lineambgeneity model fails to reject the nuly. (
=1), while the general homogeneity model shows thatclose to but statistically bigger than 1.
Both models provide evidence of the advantage ohSamption smoothing” over “income
smoothing” in the effects of risk aversion. The afitaequal-to-Iy estimates are both in favor of
the dynamic consumption-based CAPM model. The wffee is that the linear homogeneity
model shows that the estimate pfs not statistically different from that @f , while the general
homogeneity model indicates that is close to but bigger thap, which provide empirical

evidence against the traditional expected timetacdutility specification.

p and a are both found significantly different from 1 allevel by Chavas and Thomas
(1999) with the linear homogeneity model. In our Mstimation, p is significantly different
from 1 at 1% level, andr is marginally different from 1 at 10% in the limeaomogeneity
model, and both insignificantly different from 1 ihe general homogeneity model. A possible
explanation is that with the highly aggregated d#ta estimations of intensively preference

related variables such as intertemporal elastioftysubstitution and risk aversion coefficient



could be interpreted as a boundary or frontiendfiidual or subgroup observation values rather

than the average of them.

Our linear homogeneity model estimation fails tgecethe O rate of time preference hypotheses
null (8 =1) as Chavas and Thomas (1999) did. But the gehemogeneity model estimates find
strong evidence against O rate of time prefere@de:square= 147.7758 and p-value=0.0000,

which is consistent with Chavas and Thomas (1999).

A last hypothesis testing reported in Table 4 ie limear homogeneity test for our general
homogeneity model. The null hypothesis is thatl or the consumption is a linear homogeneity
function of previous wealth level. The chi-squatatistics is 2518, indicating that homogeneity
degree of consumption is significantly less thanThis test supports the necessity of general
homogeneity model and helps to explain the betegfopmance of the general homogeneity

model comparing to the linear homogeneity model.

Homogeneity Test

Both the linear homogeneity model and the genemhdyeneity model are built on the
assumption A2: consumption ¥ a homogeneous function of previous wealth leMgl It is

important to check if this assumption is suppotigdiata used for estimation in both models to
verify the specification of the functional formsdatherefore the validity of the parameter

estimations.

From equation (18), we define that

Delta=left side —right side
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It is obvious that Delta should be close to 0 & ttomogeneity assumption holds; otherwise it

indicates that data used in estimation do not supmonogeneity at the estimated degree.

Figure 1 shows the calculated Delta values for lio#ar and nonlinear (general) homogeneity
model. As we can see, the nonlinear homogeneityeinaith degree of 0.8277 yields delta
values ranging from -0.5 to 1.2, which is accematansidering the noises in data and errors in
estimation. However, the linear homogeneity modeldg delta values ranging from 1 to 24.5,

suggesting that US farm data fail to support thedr homogeneity assumption.

Robustness

In order to further explore the validity of our geal homogeneity model, we also estimate it
with full information Maximum Likelihood and 3 Stad.east Squares. Table 3 demonstrates the
estimations of general homogeneity model with ath8thods: GMM, ML, and 3SLS. Out of
total seven parameters estimated, the magnitudesigmificance level for six parameters are
stable across all 3 methods, and the only diffexeiscthat the estimates of parameter for
transaction cost in booming market are insignificanth ML and 3SLS, but significantly

positive at 5% level with GMM.

These results indicate that our estimates of tmegd homogeneity model are not sensitive to
estimation methods. The functional forms adoptetha estimation are reasonable and robust

against structural misspecifications, while théneates are reliable and useful in predictions.



Predictability

To test the reliability of out-of-sample predictoorof our models, we perform recursive
predictions with both linear homogeneity model gmeheral homogeneity model, and compare
them with the true data of farmland prices duri®§a~2008. The recursive predictions are made

through a repeated procedure. First we use alfisie from year 1950 to year n to obtain GMM
estimations4g,y, 5, C, C, A )n Of @ model, and we usp,{, 8, Cr, ,C, A)n and data needed in the
functional form (b) to predict o, the farmland price of year n+l. Then we repe#& th

procedure for year n+1 to predict the farmlandeiicyear n+2, and so on.

Figure 2 shows the comparison results of linear dgemeity model and general homogeneity
model with observed value of farmland price fron®7190 2008. As we can see, among all 12
years’ predictions, the general homogeneity modeflays performs better than the linear
homogeneity model because the nonlinear predicioesalways closer to the observed values
than the linear predictions. Except for four yedr898, 2003, 2004, and 2007, when the two
predictions are close, the nonlinear predictions argnificantly higher than the linear

predictions, which helps to explain the allegedniand overpricing puzzle.

This result is also consistent with the higher Resqd for the general homogeneity model when
compared to the linear homogeneity model. Bothltesllustrate that the general homogeneity

model has stronger explanatory power and morebieliaredictability in farmland pricing.



Conclusions

In the article, we develop a general homogeneitdehto enhance model robustness against risk
aversion coefficient misspecification in the tramhal C-CAPM model. We find that US
farmland data support a nonlinear functional foatiher than a linear form for consumption. We
also find that both farmland returns and consumaesilth levels are determinates for farmland
assets value. Our model generates better out-gblsgpnedictions and our results are robust to
estimation methods. It provides empirical evident¢he effects of transaction costs and risk

aversion on farmland prices.
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Table 1. Descriptive Statistics, 1950-2008

Variable Mean Standard Minimum Maximum Skewness Kurtosis Autocorrelation
Deviation Coefficient

q:(= 1in 1982-84) 0.9121 0.6154 0.2410 2.1530 0.4794 -1.2501 0.9996
v, (billion dollars) 69.2605 16.0702 41.9507 123.3692 0.9209 1.3116 46.81
Q; (million acres) 1056.0200 94.6592 919.9000 1206.3550 0.2190 -1.3532 0.9993
p¢ (1,000 $/acres) 0.5945 0.5087 0.0650 2.1700 1.1522 1.1551 0.9959
a, (billion dollars) 605.1680 448.2733 151.9045 1841.2120 0.9933 0.5685 0.9939
R, 1.1597 0.0734 0.9599 1.4166 0.0929 2.6367 0.6270
m./a; (1,000 $/acre) 0.0313 0.0229 0.0091 0.0947 1.0584 0.4011 0.9260
7 0.0509 0.0264 0.0092 0.1316 0.7596 0.5695 0.8809
Note: Number of observations is 59.

Table 2. GMM Estimation Results, 1950-2008

Linear Homogeneity General Homogeneity
Estimate Std. t- Estimate Std. t-
Error Ratio Error Ratio

p 0.7547 0.0807 9.3482 0.9586 0.0429 22.3410

y 0.9701 0.1115 8.6969 1.0185 0.0038 267.6441

B 0.9726 0.1279 7.6027 0.9558 0.0051 186.3042

Cm 0.0084 0.0145 0.5814 -0.0074 0.0045 -1.6315

[ 0.2062 0.2318 0.8895 0.1136 0.0568 2.0008

o 0.7321 0.1323 5.5316 0.9763 0.0423 23.0554

A Setto 1 - - 0.8277 @00 241.1212

J-stat 0.1085 0.2460

R? equation (a) 0.5174 0.5010

R? equation (b) 0.2345 0.3350

Note: The t-ratios are obtained under the Hioli 3 = 0. The Linear Homogeneity parameters are estimated équations (30a) and (30b), while the General ttyemeity
parameters are estimated from equations (29a)281).(



Table3. GMM, ML, and 3SL S Estimationsfor General Homogeneity M odel, 1950-2008
GMM ML 3SLS

Estimate Std. Error Wald-Stat Estimate Std. Error Wald-Stat Estimate Std. Error Wald-Stat
p 0.9586 0.0429 497.5111 0.9802 0.0164 3555.4680 .9566 0.1168 66.8666
y 1.0185 0.0038 71633.3834 0.9994 0.0028 126495.9 .0153 0.0105 9301.2505
B 0.9558 0.0051 33405.0900 0.9807 0.0063 24616.1600 0.9479 0.0193 2419.7650
Cm -0.0074 0.0045 2.6616 -0.0003 0.0035 0.0077 AB02 0.0201 1.2623
cp 0.1136 0.0568 4.0033 0.0142 0.3551 0.0016 -0.0604 0.1887 0.1025
o 0.9763 0.0423 529.8373 0.9796 0.0168 3398.8210 971 0.1196 65.7352
A 0.8277 0.0034 58139.4400 0.8286 0.0000 1.45E+27 0.8280 0.0065 16136.9487

Note: For the Wald tests the critical valuesc&(l) are 2.71, 3.84, 6.63, and 10.83 for a 10%, 5%,d%8,0.1% significance level, respectively. All threstimations are obtained from equations (29a)
and (29b).

Table 4. Hypothesis Testing, 1950-2008

Linear Homogeneity

General Homogeneity

Test Statistic p-Value Test Statistic p-Value
Overidentifying restrictions (Hansen test) x2(5) =0.1085 0.9998 x2(8) =0.2460 0.9999
No transaction costs (cp=cn=0) x%(2) =1.0923 0.5792 x%(2) =13.8794 0.0010
Symmetric transaction costs (cp =cm) x2(1) =0.7284 0.3934 x2(1) =4.9195 0.0266
Expected utility =1 x?(1) =0.0718 0.7887 x%(1) =23.5875 0.0000
Infinite intertemporal elasticity of substitutigm= 1) x2(1) =8.1808 0.0042 x2(1) =1.0028 0.3166
0 rate of time preference B=1 x2(1) =0.0007 0.9790 x2(1) =147.7758 0.0000
Risk neutrality (a=1) x2(1) =3.6801 0.0551 x2(1) =0.3564 0.5505
Linear Homogeneity =1 x%(1) = - x%(1) =2518.3218 0.0000

Note: The Linear Homogeneity parameters are estinabm equations (30a) and (30b), while the Géridoanogeneity parameters are estimated from equs(@9a) and (29b).
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Figure 1. Homogeneity Test for Linear Homogeneityddl and General Homogeneity Model
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