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Abstract 

 ‘Productivity and efficiency growth enhances competitiveness’. Similarly formulated 
statements are common in the literature on the economic performance of firms, 
industries and nations. This conventional perception in the economic literature, 
originating from trade and growth theory models, however, lacks a clearly defined 
mathematical formulation. Earlier work by Page (1980) and Nishimizu and Page 
(1986) provides an elegant formalization of the relationship between the productivity 
growth and competitiveness measured by the Domestic Resource Costs (DRC) ratio. 
However, the relationship between technical efficiency and competitiveness has not 
been addressed in the literature. Moreover, the DRC is a biased measure of 
competitiveness. We propose static and dynamic decompositions of competitiveness 
measured by the unbiased Social Cost Benefit Ratio (SCB) indicator using a distance 
function approach, and demonstrate these decompositions using simulated data. These 
decompositions extend earlier work to formalize the relationship between technical 
efficiency, productivity and competitiveness, and demonstrate that competitiveness is 
also influenced by other factors that can override the effects of efficiency or 
productivity improvements.  

1. Introduction 

The literature on the economic performance of firms, industries, or countries has 
tended to be divided along two lines of analysis. The first strand of the literature 
focuses on the analysis of comparative advantage and/or competitiveness. Due to 
ambiguity on the precise meaning of these concepts, a large number of measures of 
competitive advantage/competitiveness1 have been developed. Siggel (2006) provides 
a comprehensive survey and discussion of these measures. Among the concepts and 
measures surveyed, he concludes that the Domestic Resource Cost (DRC) criterion is 
the only measure that qualifies as a true measure of comparative advantage. The DRC 
is a well-known and widely applied concept (e.g. von Cramon-Taubadel et al, 2008 
and 2009) first proposed by Bruno (1965) and incorporated in the Policy Analysis 
Matrix (PAM) framework by Monke and Pearson (1989). The DRC compares the cost 
of domestic resources measured at social prices to value added measured in social 
prices. It can be derived from the Ricardian comparative advantage framework, and 
the use of social (or equilibrium) prices throughout ensures that the DRC measures 
true comparative advantage (Siggel, 2006).  

                                                 
1 Some authors (e.g. Siggel, 2006)distinguish between the competitive advantage and competitiveness 
concepts based on the prices used. When equilibrium or shadow prices are used, then the concept of 
competitive advantages is applied. When actual (distorted) market prices or some mix of shadow and 
market prices are used, then the concept of competitiveness is applied. In this paper for the sake of 
simplicity we use these two terms interchangeably. Also note, if not otherwise indicated, we consider 
equilibrium prices.       



The second strand of literature focuses on efficiency and productivity analysis, where 
technical efficiency and Total Factor Productivity (TFP) change concepts have been 
of primary interest. Krugman (1994), for instance, argues that ‘… for an economy 
with very little international trade, ‘competitiveness’ would turn out to be a funny way 
of saying ‘productivity’. Dollar and Wolf (1993) propose measuring the 
macroeconomic or national competitiveness in terms of productivity. This approach 
has also been heavily applied on the micro level (e.g. Zhul et al, 2008). The 
theoretical background of the efficiency and TFP concepts is well established (see e.g. 
Färe and Primont, 1995), and parametric and non-parametric methods for measuring 
them have been developing and converging rapidly. (e.g. Daraio and Simar, 2007; 
Kumbhakar et al, 2007; Simar and Zelenyuk, 2008). Inferences on comparative 
advantage/competitiveness are drawn based on relative rates of TFP change between 
the Decision Making Units (DMUs) and/or their relative distances from the ‘best-
practice’ frontier. 

How are these two strands of analysis related to one another? It is often maintained 
that productivity growth enhances competitiveness (e.g. Link and Siegel, 2003, p.1), 
but is there a formal mathematical relationship between a DMU’s 
competitiveness/comparative advantage and its productivity level/growth or technical 
efficiency? Will a firm that becomes more efficient of productive necessarily become 
more competitive as a result? Attempts to relate technical efficiency, productivity and 
competitiveness go back to Page (1980) and Nishimizu and Page (1986) who 
proposed a DRC decomposition that formally relates improvements in productivity to 
improvements in a DMU’s comparative advantage, thus supporting the common 
perception of a link between efficiency/productivity and competitiveness.  

Nevertheless, important open questions remain to be addressed. Despite the wide 
acceptance of the DRC as a comparative advantage indicator in policy analysis, it is 
not perfect. Masters and Winter-Nelson (1995) and Siggel (2006) have shown that the 
DRC understates the competitiveness of activities with intensive usage of domestic 
factors. To correct for this, Masters and Winter-Nelson (1995) propose the Social 
Cost Benefit Ratio (SCB) criterion, which is essentially the unit cost ratio (UCs) 
proposed by Siggel (2006). This (unbiased) measure compares total domestic costs at 
social prices to the social value of output. An interesting question in this regard is 
whether there is a formal relationship between technical efficiency and 
competitiveness. Apart from its theoretical relevance, this issue might be important 
from a policy analysis perspective. Competitiveness and efficiency analysis place 
different demands on data, expertise, computation time etc. Deriving a formal 
relationship between competitiveness and efficiency could help to reduce these 
requirements. Hence, in section 2 of this paper, after introducing the SCB measure of 
competitiveness, we derive a static decomposition of the SCB into technical 
efficiency and other components. 

A second open question is whether the relationship between the DRC and TFP growth 
derived by Nishimizu and Page (1986) also holds for the relationship between the 
SCB and TFP growth. In section 3 we explore this question in detail and derive a 
general dynamic decomposition of changes in the SCB into TFP growth and other 
components for the multiple output and input case.  



Both the static and the dynamic decompositions are illustrated using simulated data in 
section 4, and section 5 concludes. The decompositions of SCB levels and changes 
presented in the rest of this paper show that while efficiency and productivity growth 
are positively related to competitiveness, competitiveness is also influences by other 
factors that can override and mask these relationships. 

2 Competitiveness decomposition I (static) 

Numerous indicators of competitiveness have been developed and applied by 
economists. In a comprehensive survey of these measures, Siggel (2006) concludes 
that the Domestic Resource Cost (DRC) criterion is the only measure that qualifies as 
a true measure of comparative advantage. He shows that the DRC can be derived 
from the Ricardian comparative advantage concept. The DRC measure compares the 
cost of domestic resources at social (shadow) prices to value added at world prices. 0 
< DRC < 1 indicates comparative advantage: the social opportunity cost of domestic 
resources used is smaller that the corresponding social gain (value added). The 
opposite is true for the DRC > 1. If the DRC is smaller than 0, then the revenue does 
not even suffice to cover tradable input costs, let alone domestic inputs. In this case, 
production of the good in question is clearly not competitive.  

Masters and Winter-Nelson (1995) identify weaknesses of the DRC criterion. They 
demonstrate that the DRC understates the competitiveness of activities with intensive 
usage of domestic factors instead of tradable inputs. The activity with the highest 
level of competitiveness does not necessarily maximize social profits, in other words 
its input mix is not optimal at given social prices. Siggel (2006) also shows why the 
DRC is not a perfect measure of competitiveness. First, he essentially restates Masters 
and Winter-Nelson’s (1995) argument. Second, Siggel (2006) shows that there are 
situations in which intermediate inputs may also contribute to comparative advantage. 
To correct for these problems, Masters and Winter-Nelson (1995) propose the Social 
Cost Benefit Ratio (SCB) criterion, which is essentially the unit cost ratio (UCs) 
proposed by Siggel (2006). It is an unbiased measure, since it correctly identifies the 
socially optimal level of input use. 

Assume that n firms operate in the sector in question. Each firm i (i= n,1 ) uses K 
inputs, 1( ,..., ) 'i i i K

Kx x x += ∈ℜ , to produce M outputs, 1( ,..., ) 'i i i M
My y y += ∈ℜ . The SCB 

criterion of comparative advantages compares total costs at social prices to the social 
value of output:  

wxSCB
py

=                                                 (1) 

where 1( ,..., )Kw w w=  and 1( ,..., )Mp p p=  are the shadow (social) price vectors for 
inputs and outputs respectively. An SCB ratio less than or equal one indicates 
competitive production: the social opportunity cost of the resources used in 
production is smaller that the corresponding social gain (revenue). The opposite is 
true when the SCB is greater then one.  



Next assume that all n firms have access to the same technology T, defined as 
{( , ) : }T x y x can produce y≡ , that satisfies the standard regularity axioms of 

production theory (e.g. Färe and Primont, 1995). Following Färe and Grosskopf 
(1997):  

( , ) 1
( , )O

p w wx
py D x y

Π +
≥                                           (2) 

and  

( , ) 1
( , )i

p w py
wx D x y

Π −
≥ −                                            (3) 

where ( , )p wΠ is a profit frontier defined as 

{ }
,

( , ) sup : ( , )
x y

p w py wx x y TΠ = − ∈                                           (4) 

( , )oD x y and ( , )iD x y are the Shephard (1970) output and input distance functions:  

{ }( , ) inf : ( , / )oD x y x y Tθ θ≡ ∈                                        (5) 

and 

{ }( , ) sup : ( / , )iD x y x y Tλ λ≡ ∈                                         (6) 

If ( , ) 1oD x y =   ( ( , ) 1iD x y = ), a firm is technically efficient, otherwise, when 
( , ) 1oD x y <  ( ( , ) 1iD x y > ) it is technically inefficient. The reciprocal of the Shephard 

distance function is the Farrell (1957) technical efficiency defined as  

( , ) 1/ ( , )o oTE x y D x y=  or ( , ) 1/ ( , )i iTE x y D x y=                       (7) 

Combining expressions (1), (2 or 3) and (7) leads to: 

( , ) ( , )o
p w SCB TE x y
py

Π
+ ≥                                           (8) 

and  

1 ( , ) ( , )i
p w TE x y

SCB wx
Π

− ≤  .                                          (8) 

 

These two equations can be transformed into equalities by introducing allocative 
efficiencies, i.e.: 



( , ) ( , )o o
p w SCB TE x y AE
py

Π
+ = ⋅                                           (13) 

and  

1 ( , ) ( , )i i
p w TE x y AE

SCB wx
Π

− = ⋅                                            (14) 

Note that oAE  ( iAE ) should be greater (less) or equal 1. The product of technical and 
allocative efficiencies is in both cases the profit efficiency. Isolating SCB in (13) and 
(14) produces the following decompositions:  

( , )( , )o o
p wSCB TE x y AE
py

Π
= ⋅ −                                             (15) 

and  

1 ( , )( , )i i
p wTE x y AE

SCB wx
Π

= ⋅ +                                            (16) 

 

Let us graphically demonstrate the intuition behind expressions (15) and (16). Figure 
1 shows the simple one input and one output case, where a firm is producing at point 
B. Using the notation in the Figure 1 we can express the right-hand side parts of the 
equation (15) by the ratios: 

( , )o o
OC OD ODTE x y AE
OB OC OB

⋅ = ⋅ =                                    (17) 

( , )p w OA
py OB

Π
=     (18) 

Substituting expressions (17) and (18) in (15) yields: 

( )OD OA OD OASCB
OB OB OB

−
= − =    (19) 

Since (OD - OA) < OB, we have SCB < 1, thus production at point B is competitive 
at given social prices.   

In the same manner, and with reference to Figure 2: 

  ( , )i i
OB OC OCTE x y AE
OA OB OA

⋅ = ⋅ =                                    (20) 



( , )p w OD
wx OA

Π
=     (21) 

Substituting expressions (20) and (21) in (16) yields: 

1 ( )OC OD OC OD
SCB OA OA OA

+
= + =    (22) 

Since (OC + OD) < OA, we have 1 1
SCB

< , or SCB > 1. Thus, production at point A is 

not competitive at given social prices.   

Figure 1: SCB decomposition – output 
orientation 
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Figure 2: SCB decomposition – input 
orientation 
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Summarizing the above discussion, we have demonstrated analytically that technical 
efficiency positively contributes to competitiveness.  Equally important, the equations 
(15) and (16) provide information about two additional determinants of 
competitiveness. Allocative efficiency refers to whether a firm chooses the profit 
maximizing input or output mix. Technical and allocative efficiencies are micro- or 
firm-level determinants of competitiveness, since they are under the control of firms. 

The y in 1
py

in equation (15) is also a micro-level determinant of competitiveness. 

The profit frontier, ( , )p wΠ  in (15), is a macro- or sector-level determinant. As 
expression (7) shows, this frontier is defined by input and output prices and by 
available technology. Prices in the competitive market setting are given for firms. 
Technology, by assumption, is accessible to all firms, and therefore also given. To 
what extent a firm makes use of this technology is reflected in its technical and 
allocative efficiencies.  

Whether a farm’s  lack of competitiveness is mainly due to micro- or macro-level 
factors can have important policy implications. If micro-level determinants prevail, 
then competitive market forces  will either force the farm to adjust its behavior, or 
they will force it out of the market. Policy makers might want to use investments in 
agricultural training and extension to ease adjustment, or early retirement schemes, 



retraining and other measures to ease exit. If macro-level determinants such as price 
distortions prevail, then some form of market intervention may be in order.       

The proposed decomposition of the SCB criterion in equations (15) and (16) could 
serve as a basis for statistical inference on individual farm SCB scores.2 In (15) and 
(16), note that the variation in SCB scores comes from the superposition of the 
technology and profit frontiers variations.   

3 Competitiveness decomposition II (dynamic) 

Using notation of the previous section we can rewrite the SCB criterion in sums form 
as:  

K

k k
k

M

m m
m

w x
SCB

p y
=
∑

∑
                                                (23) 

Taking the total differential and rewriting the resulting expression in relative changes, 
the percentage change in the SCB can be expressed as: 

K K M M
k k m m

k k m m
k k m mk k m m

dw dx dp dydSCB s s r r
SCB w x w y

= + − −∑ ∑ ∑ ∑                                (24) 

 Here, k k
k K

k k
k

w xs
w x

=

∑
 denotes the cost share of input kx , and m m

m M

m m
m

p yr
p y

=

∑
denotes the 

revenue share of output my . The last and the second terms in (24) comprise a 
(negative) conventional Divisia index of productivity growth defined as  

K M
k m

k m
k mk m

dx dyTFP s r
x y

= −∑ ∑  for a multi-output, multi-input setting. Hence, equation 

(24) transforms into: 
K M

k m
k m

k mk m

dw dpdSCB s r TFP
SCB w p

= − −∑ ∑                                (25) 

Bruemmer et al. (2002) decompose TFP  further into different sources of productivity 
growth. From (7), the output distance function oD is equal to the inverse of the Farrell 
output efficiency measure. In logarithmic form, this can be expressed 
as 0 ln lnoD TE= − . If TE is modeled via a non-negative variable u, TE = exp(-u), this 
can be expressed as 0 ln oD u= + . Using these definitions, the decomposition of TFP 
growth index takes the following form (Bruemmer et al, 2002): 

                                                 
2 Methods for generating inferences on aggregate SCB scores are proposed in Nivievskyi and von 
Cramon-Taubadel (2009). 



ln ( )( ) ( ) ( 1)
M K K

m k k o
m m k k k

m k km k k

dy dx dx D uTFP r s RTS
y x x t t

μ λ λ ∂ ⋅ ∂
= − + − + − − −

∂ ∂∑ ∑ ∑            

(26) 

The complete decomposition of the SCB growth index is then as follows:3 

           ( ) ( )

           ( 1)

ln ( )           

K M
k m

k m
k mk m
M K

m k
m m k k

m km k

K
k

k
k k

o

dw dpdSCB s r
SCB w p

dy dxr s
y x

dxRTS
x

D u
t t

μ λ

λ

= −

− − − −

− −

∂ ⋅ ∂
+ +

∂ ∂

∑ ∑

∑ ∑

∑
                             (27) 

Equation (27) decomposes SCB growth into the following components. The first two 
components, using Nishimizu and Page’s (1986) terminology, are the ‘factor costs 

effect’ (
K

k
k

k k

dws
w∑ ) and ‘term of trade effect’ (

M
m

m
m m

dpr
p∑ ). The next two components 

are an ‘output allocative efficiency effect’ ( ( )
M

m
m m

m m

dyr
y

μ−∑ ) and an ‘output 

allocative efficiency effect’ ( ( )
K

k
k k

k k

dxs
x

λ −∑ ), where ln ( )
ln

o
m

m

D
y

μ∂ ⋅
=

∂  
and 

ln ( )
ln

o
k

k

D RTS
x

λ∂ ⋅
= −

∂
. RTS denotes returns to scale (see Färe and Primont, 1994). As 

Bruemmer et al. (2002) explain in detail, if firms choose their inputs and output 
bundles to maximize profits, then 0m mr μ− =  and 0k ksλ − = . Otherwise they allocate 
their resources inefficiently. A ‘scale effect’ is captured by the next component 

( ( 1)
K

k
k

k k

dxRTS
x

λ− ∑ ). Technical change and efficiency change effects are captured by 

the last two components, ln ( )oD
t

∂ ⋅
∂

and u
t

∂
∂ , 

respectively. 

 

4. Empirical Illustration 

4.1. Multivariate Simulated Data 

In this example we simulate a data set of n = 100 observations with q = 2 inputs and p 
= 2 outputs using the scenario proposed in Simar (2003) and slightly modified for our 

                                                 
3 The same decomposition results from incorporating distance functions in (23) and taking the total 
differential of the resulting identity.   



purposes. In this scenario the function that describes the efficient frontier is given by 
the following relationship: 

0.3 0.5
,2 1 2 ,11.0845( ) ( )t ty x x y= − , 

where ,t py , ( )qx denotes the ith component of y  (of x), for , 1,2p q =  in period  
1,2t = . Note that the quantities of inputs do not change over the time.  

First we generate independent uniforms ,q iX  on the interval (1,2) , 1,100i =  and 

independent uniforms ,p iY  on the interval (0.2,5)  for the first period. The random 

rays in output space would be characterized by the slopes 2, 1,/i i iS Y Y= . The frontier 
points in both periods are defined then as: 
 

0.3 0.5
1, 2,*

1, ,

1.0845( ) ( )
1

i i
i t

i

X X
Y

S
=

+
 

* 0.3 0.5 *
2, , 1, 2, 1, ,1.0845( ) ( )i t i i i tY X X Y= −  

The (in)efficiency scores in the first period are generated by 1, exp( )i iineff U= − , where 

iU are drawn from the exponential distribution with the mean equal 1/3. In the second 
period we allow for random (normal) efficiency changes, i.e. 

2, 1, (1,0.1)i iineff ineff φ= × , where (1,0.1)φ  is a normal distribution with mean and 
standard deviation equal to 1 and 0.1, respectively. Basically we assume that the 
productivity change stems solely from efficiency change. In both periods the final 
simulated points are generated by: *

, , , , ,p i t p i t t iY Y ineff= × , , 1,2p q = , 1,2t = , 1,100i = . 

To demonstrate the static and dynamic competitiveness decompositions, e.g. 
equations (25) and (15), we need the corresponding shadow prices. For this we utilize 
the weight-restricted Data Envelopment Analysis (DEA) model, e.g. see Kuosmanen 
et al (2004). According to this method the optimal weights (ρ,w)  in the dual 
representation of the distance functions (see the linear programming formulation in 
equation (28) below) represent the ‘shadow prices’ of outputs and inputs with respect 
to the corresponding technology. The observed input-output mix ‘reveals’ indirectly 
the economic prices underlying the production decisions (Kuosmanen et al, 2004). 
The restrictions on the weights (the upper pybu , qxbu , and lower pybl , qxbl bounds on 
implicit output and input value shares in equation (28)) are introduced so as to avoid 
zero shadow prices.  

,
( , ) min

. .
1

, ; 1, 2

, ; 1, 2

0
0, 0

w

p p p p p p

q q q q q q

D y x wx

s t
y
y ybu y ybl p

w x xbu w x xbl q

Y wX
w

ρ

ρ
ρ ρ

ρ
ρ

=

=
≤ ≥ =

≤ ≥ =

− ≤
≥ ≥

          (28) 



Solving (28) for each pair of ( , )y x  we find their corresponding shadow prices ( , )wρ  
in both periods. Using this information we first estimate SCB as in (1) and then as in 
(15) for the first period (we name them as SCBL and SCBR respectively). The 
‘Decomposition Ia’ subplot in Figure 3 shows a scatter plot of SCBL versus SCBR. 
Since all the points lie on the 45 degree line through the origin, the static 
decomposition identity in (15) indeed holds. In our particular example, the oAE and 
py  components equal 1. We assume that the output-input mix is allocatively efficient 

so that the optimal weights ( , )wρ  can be considered shadow prices (see Kuosmanen 
et al, 2004 for details). 1py =  is a restriction in (28). As a result, equation (15) 
identity simplifies to ( , ) ( , )R oSCB TE x y p w= −Π . The ‘Decomposition Ib’ subplot 
shows a scatter plot of SCBL versus technical efficiency (TE). It demonstrates that 
firms with similar technical efficiencies scores can nevertheless display very different 
degrees of competitiveness.  

Figure 3 Demonstration of decompositions of competitiveness levels and changes 
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Source: Own presentation; Notes: dashed lines are the 45 degree lines through the origin 

Next we check the dynamic decomposition identity in (25) with our simulated data. 
We calculate the relative change in competitiveness directly using SCB scores in two 
periods, i.e. 2 1/ 1dSCB SCB SCB= −  and then calculate the relative change dSCB as in 
(25), we name them as dSCBL and dSCBR respectively. The ‘Decomposition IIa’ 
subplot demonstrates that the estimated dSCBL and dSCBR are almost perfectly 
correlated; the estimated correlation coefficient is 0.99. The ‘Decomposition IIb’ 
subplot shows that relative changes in TFP do not translate into identical changes in 



competitiveness. Since the cloud of points extends over all four quadrants of the plot, 
improvements in TFP can be associated with both improvements and deterioration of 
competitiveness.  

5 Conclusions 

In the paper we derive static and dynamic decompositions of competitiveness 
measured by the Social Cost-Benefit indicator using a distance function approach. 
The static decomposition shows a positive relationship between the levels of technical 
efficiency and competitiveness, thus confirming the conventional perception about the 
relationship in the economic literature. Micro (firm-level) and macro (sector-level) 
determinants of competitiveness are distinguished. Firm-level determinants are mostly 
under the firm managers’ control, while sector-level sources are  are exogenous for 
the manager. 

The dynamic decomposition of competitiveness shows a positive relationship between 
the TFP and competitiveness growth. The determinants of competitiveness growth 
include: i) a factor costs effect; ii) a terms of trade effect; iii) a scale effect; iv) 
technical change; v) technical efficiency changes; and vi) allocative effects.  

Both the static and the dynamic decompositions are confirmed and illustrated using 
simulated data. To our knowledge this is the first rigorous analysis of the relationship 
between competitiveness and efficiency and productivity. While efficiency and 
productivity growth are positively related to competitiveness, the results presented 
here demonstrate that other determinants of competitiveness can override and mask 
these relationships.  
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