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Abstract 
Landowner characteristics influence his/her willingness to change landuse practices to 
provide more or less environmental benefits. However, most studies of 
agricultural/environmental polices identify landowners as homogenous. And, the 
primary cause of failure of many environmental and other polices is the lack of 
knowledge on how humans may respond to polices based on changes in their behavior 
(Stern, 1993). From socioeconomic theory and empirical research, landowners can be 
identified as individuals who make agricultural landuse decisions independently based 
on their objectives. Identifying possible classes of landowners, assessing how each 
would potentially respond to policy alternatives, and the resulting pattern of land uses 
in a watershed or a riparian corridor would be very useful to policy makers as they 
evaluated alternatives. Agricultural landscapes are important producers of ecosystem 
services. The mix of ecosystem services and commodity outputs of an agricultural 
landscape depends on the spatial pattern of land uses emerging from individual land 
use decisions. However, many empirical studies show that the production of 
ecosystem services from agricultural landscapes is declining. This is consistent with 
research conducted over the last few decades showing there is a narrow range of 
social circumstances under which landowners are willing to make investments in the 
present to achieve public benefits in the future through investing in natural capital 
resulting in public goods which are frequently produced as ecosystem services.  
In this study an agent-based model within a watershed planning context is used to 
analyze the tradeoffs involved in producing a number of ecosystem services and 
agricultural commodities given price and policy scenarios while assuming three 
different types of agents in terms of their goals. The agents represent landowners who 
have been divided into a number of different groups based on their goals and the size 
of their farm operations. The multi-agent-based model is developed using a heuristic 
search and optimization technique called genetic algorithm (GA) (Holland), which 
belongs to a broader class of evolutionary algorithms. GAs exhibit three properties (1) 
they start with a population of solution, (2) they explore the solution space through 
recombination and mutation and (3) they evaluate individual solutions based on their 
appropriate fitness value(s), for example given profit maximizing agents this would be 
gross margin. A GA is a heuristic stochastic search and optimization method, which 
works by mimicking the evolutionary principles and chromosomal processing in natural 
genetics. The three economic agents that are modeled are based on variations in their 
objective functions and constraints. This study will help in identifying the tradeoffs 
associated with various agents in the provision of ecosystem services and agricultural 
commodities. The agent model developed here will help policy and decision maker 
identify the various agents within the watershed and assess various policy options 
based on that information. The study will also help to understand the interaction and 
feedback between the agents and their environment associated with various policy 
initiatives. The results of the study indicate that the agent model correctly predicts the 
actual landuse landcover map by 75 percent. 
 
Key words: Multifunctional agriculture, Agent based modeling, Genetic Algorithm. 
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Introduction 

Landowner (agent) characteristics are one of the major sets of factors that influence 

a landowner’s willingness to change landuse practices to provide more or less 

environmental benefits (Lockeretz, 1990; Loftus and Kraft, 2003). However, most studies 

of agricultural/environmental polices fail to include landowners as a factor influencing 

policy. And, the primary cause of failure of many environmental and other polices is the 

lack of knowledge on how human may respond to polices based on changes in their 

behavior (Stern, 1993). From economic and social theory and empirical research farm 

landowners can be identified as heterogeneous individuals who make agricultural landuse 

decisions independently based on their objectives (Maybery et al., 2005). Identifying 

possible classes of landowners (agents), assessing how each would potentially respond to 

policy alternatives, and the resulting pattern of land uses in a watershed or a riparian 

corridor would be very useful to policy makers as they evaluated alternatives.  

Multifunctional agricultural landscapes are potentially important producers of 

ecosystem services, e.g., enhanced water quality, nutrient recycling, reduced 

sedimentation, carbon sequestration, and enhanced wildlife habitat, in addition to 

traditional agricultural commodities. The product mix of ecosystem services and 

commodity outputs from an agricultural landscape depends on the spatial pattern of land 

uses emerging from individual land use decision, called the economies of configuration by 

Gottfried et al., (1996). However, many empirical studies show that the production of 

ecosystem services on agricultural landscapes is in decline. This is consistent with social 

research conducted over the last few decades showing there is a narrow range of social 

circumstances under which farmers or landowners are willing to make personal 

investments in the present to achieve public benefits in the future through investing in 
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natural capital (Firey 1963), i.e., investments that result in the greater production of 

ecosystem services. These services are frequently public goods from which the landowner 

derives virtually no income.   

Understanding the links among agricultural/environmental policies, human 

decision making through land use choices, and environmental outcome can help design 

policies that directly affect incentives pertaining to land use and management. 

Consequently, in this study an agent-based model within a watershed-planning context is 

used to analyze the tradeoffs involved in producing a number of ecosystem services and 

agricultural commodities given a number of price and policy scenarios while assuming 

three different types of agents or landowners in terms of their goals. Most of the previous 

simulation studies used traditional mathematical programming methods lack the capability 

of modeling complex, human-decision- making process of feedback and interaction of 

agents with the environment and among themselves, and they also lack in spatial 

specificity (Berger 2001).  

Parker et al., (2003), defined agents as autonomous entities that have limited 

knowledge and information, which are nothing but simple subroutines of a computer 

program. Agents are goal directed; can sense the environment and act upon it; can react to 

policy and market conditions; and are capable of interaction with other agents and a 

common environment (Woolridge and Jennings, 1995).  In this study, agents represent 

landowners who have been divided into a number of different groups based on their goals, 

biophysical variables such as soil crop productivity, and the size of their farm operations. 

In this research a multi-agent-based model that capture multiple farmer behavior is 

developed by using a heustric search and optimization technique called genetic algorithm 

(GA) (Holland, 1975), which belongs to a broader class of evolutionary algorithms (EA). 
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Research Goal 

 This research develops a multi-agent based model that accurately captures multiple 

farmer typology behaviors in making land use decisions that invariably affects the 

production suits of multifunctional commodities from an agricultural landscape. This study 

also analyzes the multi-agent-based model, in the decision making process, on the possible 

economic and environmental outcome for policy scenarios such as change in agricultural/ 

environmental policies such as soil conservation. Finally the study tests the robustness of 

the developed agent-model in accurately capturing the variations in the decision-making 

process of various farmer agents due to variations in endogenous (e.g. agents value) and 

exogenous factors (e.g. market price) compared to the actual land use land cover map.  

Study Area 

The study area is the Big Creek watershed (Figure1) of the Cache River basin in southern 

Illinois, which covers and area of 1944km2. Large quantities of sediment from the upper 

reaches of the basin are being deposited in aquatic and wetland habitat found in the Lower 

Cache River, threatening to eliminate the high quality natural communities that inspired 

the designation of this area as a State Natural Area and Land and Water Reserve, a 

National Natural Landmark, an Important Bird Area, and a Wetland of International 

Importance (RAMSAR Wetland).  Land use changes in the Big Creek watershed (land 

clearing, drainage efforts) have significantly increased the discharge (flow volume and 

velocity) of this tributary (Demissie et al. 1990), resulting in excessive sediment suspended 

and transported in the water column during periods of high flow. Along with the need to 

enhance ecosystem quality, there is also a political and economic need to maintain a viable 

agricultural sector. The region is an impoverished area with few linkages to surrounding 

regions and minimal infrastructure to support non-farm activities (Beaulieu et al., 1998).  
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Figure1: Map of study area. 

The landscape supports a variety of agricultural related enterprises with grain, cattle, and 

vegetable producing operations being the most prominent. Study conducted by Beck et al., 

1995 have established that land use changes associated with maintaining and enhancing the 

Cache watershed are not inherently damaging to the local economy. 

AGENTS 

 The theoretical principles of agriculture location theory based on market forces 

used by Von Thünen (Ponsard 1983) to explain the agricultural land use land cover 

changes that underpin most of traditional geographic land use land cover model does not 

capture the anthropocentric and biophysical complexity associated with land use change. 

Recently, studies have shown that complexity associated with biophysical variables (e.g. 

slope, soil type, and erosion), economic factors, and anthropogenic factors (e.g. value, 

cultural and objectives) in addition to market factors are important elements in the 

explaining agricultural land use land cover change. Most of the traditional economic and 

geographic studies tried to separate the two entities associated with land use change of 

human decision-making and environmental consequences into two separate models. Until 

lately, socioeconomic research of human decision-making ignored the spatial component 
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of the environment human agents were acting on, while the environmental modeling 

completed ignored the human element on landuse land cover change (Irwin and 

Geoghegan 2001).  But the agent-based models for agent environment interactions are 

spatially explicit due to their integration with spatial models such as GIS or cellular 

automata (CA). One of the major failures associated with current environmental 

management is the failure of non-inclusion of human-decision making in natural resource 

management. So there is an increased focus on research towards integration of human 

systems and their influence of environmental outcomes. According to Deadman et al., 

(2000) understanding the linkages and complexities between human and natural systems is 

central to the development of effective natural resource policy. 

 Recent research studies in the modeling of human decision-making (Berger 2001; 

Parker et al., 2003) and its effects on environment have successfully explored the benefits 

of using agent-based models compared to traditional mathematical models such as 

differential equations and transition probability matrices. The traditional process-based 

models or statistical models do not include human decision-making as a driver of landuse 

change, which many recent studies show play a major role in landuse change. Even though 

this agent-based research on human decision-making is in the rudimentary stage of the 

developmental process, various studies have shown that it has enormous potential. 

Compared to traditional mathematical models, an agent- based model helps to represent 

human decision-making process explicitly. An agent-based model for environmental 

management consists of two things: a spatial process based model to capture and analyze 

the complex biophysical variables, and an agent-based model to account for the complex 

human decision-making process (Berger 2001). An agent can represent any autonomous 

entity such as atoms, biological cell or a human being, but in this research context of 
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agricultural land use management, the agent represents a farmer or a farm manager who 

combines his/her knowledge, values, relevant policy and market conditions, information on 

biophysical variables such as soil quality, crop productivity, and slope, and resources 

availability such as land, labor, and machinery availability to make agricultural land use 

choices that define an agricultural landscape.  

 Ferber (1989) defined agents as follows:  

“A real or abstract entity that is able to act on itself and its environment; which has partial 

representation of its environment; which can, in a multi-agent universe, communicate with 

other agents; and who’s behavior is a result of its observations, its knowledge, and its 

interactions with the other agents (p 249).”  

An agent-based model can be used to represent a simple homogenous agent or 

complex, multiple agents. A multi-agent- based model involves multiple heterogeneous 

agents interacting with the environment, which can be a market, a political institution, a 

watershed or a farm. According to Bonabeau (2002) the benefits of agents based modeling 

in human decision-making compared to traditional models are that (1) agent-based models 

are flexible, (2) agent-based models captures emergent phenomenon, and (3) the models 

incorporate real world systems involving complex human decision making. The flexibility 

of the agent-based model helps it to integrate various complexities associated with human 

decision-making as well as the complexity associated with environmental process (Parker 

et al., 2003; Berger et al., 2001). Various studies on agent-based model on agent 

environment interactions have shown that, the agent-based models can be used: as a 

computational laboratory to explore human environment interactions and feedbacks; to 

represent complexity related to socioeconomic decision-making; helps to represent 
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emergent phenomenon; to integrate human environmental systems; and for scenario 

analysis related to land use land cover change (Berger 2001).  

  Agents interact with the environment and also among themselves. Agent-

agent interaction involves imitation, information diffusion, coalition, and buying and 

selling. However agent environmental interaction, is the main focus of this particular study 

involves agent’s influence on an agricultural landscape in the form of soil erosion, water 

quality impacts, and deforestation. Agents can also interact with each other while 

providing valuable feedback regarding landuse patterns (Torrens and Benenson, 2005). But 

for this study the spatial autocorrelation of landuse choices among agents was statistically 

insignificant. According to Sengupta (forthcoming) the agent-based decision-making 

appears to be a spatially variable process rather than a spatial diffusion process. One of the 

reasons for this can be the advances in the technologies of communication that diminishes 

the influence of neighbors on an individual landowner’s landuse choice.    

Recent studies on agent-based models have shown that these models can be used to 

capture human decision making with a high degree of success compared to traditional 

models when the interactions between the agents are complex, nonlinear, discontinuous, 

and discrete, or when there are multiple heterogeneous agents acting independently, or 

when the agents represents complex behavior such as adaptation and learning (Bonabeau 

2002). Most of the traditional economic studies model human actors only as utility 

maximizing agents (Ormerod 1995) with unfettered information and knowledge and with 

the brainpower to comprehend all information. However, this is against the norm of most 

human psychological studies that argue most human makes decisions based on cognitive 

limitations and bounded rationality (Simon 1957). Bounded rational agents rather than 

trying to find an optimal solution that fully anticipate the future states of the system of 
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which they are part, make inductive, discrete, and evolving choices that move them 

towards achieving goals or levels of aspiration (Simon, 1997; Rabin 1998). So, traditional 

economic models can be misleading if considered to represent the real world phenomenon 

with multiple human agents having multiple social behaviors like the one under study.  

A survey done by Kraft et al., (1989), in the study area was used to identify three 

different types of landowners, technologically-adopting commercial farms or profit 

maximizer; landowners showing satisficing behavior a la Simon; and conservationists, 

whose first and foremost goal was to conserve natural resources. These agents were 

spatially distributed across the watershed based on an algorithm written in avenue scripts 

(ArcView 3.2) that takes into account crop productivity and soil erosion. The distribution 

is consistent with the previous studies by Kraft et al., (1989) and Tim Loftus and Kraft 

(2003), in that large commercial farm occupy majority of the highly productive and low 

erosive lands, while smaller or rural lifestyle farmers (satisficer) mostly occupy less 

productive and highly erosive lands. Maybery et al., 2005, in their study in Australia also 

identified three different types of landowners (profit maximizer, rural life style, and 

conservationist) similar to one done at the Big Creek watershed.  

 Genetic algorithms (GAs) have been frequently used in economics to study the 

social behaviors of human agents with respect to their economic decision-making. Studies 

by Riechmann (1999); Arifovic (1994) have shown that GA can generate human behavior 

consistent with the experimental data obtained with actual human subjects. In most of the 

agent-based studies using GAs, economist have used it to model heterogeneous agents to 

optimize a given objective. In this study an agent-based model of various typologies of 

farmer decision-making abilities is modeled using a single objective GA. The advantage of 

using GA over other classical optimization techniques such as direct (linear programming) 
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and gradient based (non-linear programming) method is that, it is well suited to solve 

complex problems (e.g. non-convex, discontinuous) such as human decision making 

(Parker et al., 2003), its global perspective in finding optimal or near optimal solutions 

(Debb 2001, Nicklow et al., 2004, Nicklow 2000), and its inherent parallel processing 

ability (Debb 2001) which are essential criteria for multi agent-based models. 

A genetic algorithm (GA) is a subset of EAs that applies the principle of biological 

genetics, including natural selection. GA was first described by Holland (1975), which 

applies the principle of the “survival of the fittest” to a population of competing 

individuals or solutions within a given environment technically called the search space. 

The major difference between GAs and the other classical optimization techniques is that 

the GA works with a population of possible solutions, on the other hand classical 

optimization techniques work with a single solution. An individual solution in a population 

of solutions is equivalent to a natural chromosome. Just as a natural chromosome 

completely specifies the genetic characteristics of a human being, an artificial chromosome 

in GAs completely specifies the values of various decision variables representing a 

decision or a solution.  

The steps involved in a GA are similar to the process that occurs in biological 

genetics. The GA starts with a randomly generated number of solution samples, 

collectively called the population, within the feasible search space. Each of these samples, 

called a chromosome, is defined by a sequence of decision variables known as genes. The 

representation of GA genes can be in binary strings of ones and zeros of user specified 

length, or real value numbers or integers. Each chromosome in the initial population is 

assigned a measure of fitness, based on the objective function value. These chromosomes 

are referred to as species of the first generation. For a maximization problem, the higher 
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the fitness values, the higher the chance for survival. The next step is the selection of 

chromosomes, to create the next generation. For this the chromosome of the first 

generation would be ranked in ascending order of their fitness value for a minimization 

problem, and in descending order of their fitness for a maximization problem. 

Chromosomes with the highest fitness value will be given a higher probability to obtain a 

mate, so as to produce offspring that may better fit the environment. This process of 

selecting mates is called selection. Once mates are selected, genes of corresponding mates, 

or parents, are systematically exchanged with the conception that the resulting solutions or 

offsprings will have higher fitness values. The process of creating new individuals by 

systematically assigning genes of chosen mates to the new individuals is known as 

crossover. The new chromosomes replace the old chromosomes, which have low fitness 

values.  

 The process of selection and crossover do not inject new genes, so the solution can 

converge to a local optimum. As a remedy of this concern, a process called mutation is 

performed. Among individuals of a current generation, the algorithm conducts a random 

selection of chromosomes, often a user-specified percent of individuals in the generation, 

as well as a random selection of gene sequences or gene locations within the 

chromosomes. Mutation allows GAs to search a wide search space and prevents the 

premature convergence to local optimum.  In a binary coded GA, mutation is achieved 

through a local perturbation, i.e., by replacing 0 with 1 or vise versa. The process of 

selection, crossover, and mutation is repeated for many generations with the objective of 

reaching the global optimal solution after a sufficient number of generations. The 

convergence criterion could be a maximum number of generations to be allowed or 



 13

stability of statistics such as mean and/or variance of the population fitness values from 

generation to generation. The flow chart below (figure 2) shows the progression of GAs. 

 

 

 

 

 

 

 

 

 

 

Figure2: Flow Chart of a single objective genetic algorithm 

 The three economic agents that are modeled are based on variations in their 

objective functions and constraints. For the profit maximizing landowner the objective 

function will be to maximize farm profit, for a conservationist the objective function will 

be minimization of soil loss, while the satisficing landowner is modeled using a goal 

programming approach that tries to minimize the soil loss subject to a satisfaction level or 

aspiration level (Simon 1957). The constraints considered are the labor and machinery 

requirement for various size farms within the watershed, environmental constraints such as 

soil loss, and season of planting.  

Data 

A 10m by 10m resolution DEM for the watershed area was obtained from Natural 

Resource Conservation Service (NRCS), which was used to calculate the average slope. A 
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30m by 30m pixel based land use maps for the watershed, for the years 1999 to 2004, were 

obtained from National Agricultural Statistics Service (NASS), which was used to identify 

the actual land use cover for the study area during those years. And a 30m by 30m 

resolution soil map from SSURGO-NRCS was obtained which is used to classify soil types 

within the watershed. Field delineation of the Big Creek watershed was done using the 

imagery acquired from the 2004 National Agricultural Imagery Program (NAIP). About 

2098 fields were delineated for the Big Creek Watershed, out of that 1284 fields were in 

agricultural land use, pasture or CRP, rest of the fields were in forest, urban, water and 

other miscellaneous land use. Of approximately 34,000 acres in the Big Creek watershed, 

about 16043 acres were being used for agricultural purposes (cropping and grassland) in 

2002 (figure3); the average acreage of these farming units was 245 acres. A clustering 

routine available in the ARC/INFO software package was used to allocate these 16043 

acres into 92 farming units, based on the special tabulation of the census of agriculture.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Landuse for year 2001 
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The construction of these faux farms was necessary because accurate property boundaries 

were not available. The farms were classified into large (>350 acres), medium (140-350 

acres) and small farms (<140 acres). 

The landuse for the study area for the year 2005 were primarily a mix of cropland 

(25.8%), pasture (42.5%) which includes hay, grasslands, and CRP, forests (28.6%), and 

the rest under urban and water uses. Farms in the watershed range in size from 4 acres to 

580 acres with a mean of 213 acres. The labor and machinery availability was based on 

farm size, large farm were assumed to have one and quarter labor units available, while 

medium and small farms were assumed to have one full labor available for the farm. The 

machinery size for large farm was assumed to be big, meaning less percent of an hour 

required to cover an acre of farm compared to medium and small farms that have small 

size machinery. The landuse alternatives included crops such as corn, soybean, and alfalfa 

hay, grasslands, and CRP. Conservation management included tillage type such as 

conservational and no-till. 

The crop yield for each field is the weighted average soil specific crop yields for 

that field. The market price for agent-based model is the five-year average market for 

various crops from year 2000 to 2005. The historic landuse that is used to jump-start the 

model is from the year 2001, since NASS had a separate classification for CRP. The crop 

rotation penalties associated with two-year rotation is based on previous studies and from 

the Illinois Agronomic Handbook (2005).  

Methodology 

 In this study an agent-based model for various farmer typologies interacting with 

the agricultural landscape that provide multifunctional commodity outputs is developed by 

integrating genetic algorithm (GA) with geographical information systems (GIS). This 
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model is an advanced version of the Kraft and Toohill (1984) representative farm model. 

The three economic agents that will be modeled will be based on variation in the objective 

function and constraints. For profit maximizing land owner the objective function will be 

to maximize gross margin (profit), while for conservationist the objective function will be 

minimization of soil loss, and for satisfying landowner the objective function will be to 

minimize the soil loss but subject to a goal or satisfaction level or aspiration level 

constraint (Simon 1957). The resource constraints considered are the labor and machinery 

requirement for various size farms within the watershed.  

 The agents’ complex decision making processes are modeled as independent GA 

agents that respond to socioeconomic driving forces such as profit maximizations or 

conservation, resource availability such as labor and machinery, environmental policy such 

as soil conservation, and prior landuse. Depending on the agent type each agent will start 

with a population of potential land use choices (solutions/chromosomes) based on an 

actual landuse for the prior year. The historical landuse for the year 2001 was chosen as the 

prior year landuse since conservation reserve program was included as a separate 

classification only for the year 2001. The historical landuse map is shown in the figure X.  

The very heart of the genetic algorithm is the selection and reproduction operator. The 

selection operator selects the best land management alternative for a particular agent type 

based on binary tournament selection. In a binary tournament selection two land use 

alternatives are picked at random, and one with the higher fitness score wins. Selection 

process ends once all the parents for reproduction are selected through the binary 

tournament selection process. The fitness of an agent depends on his/her objective 

function. So for a profit-maximizing agent the land use management alternative that 

maximizes the gross margin will be have a better chance of being selected as a parent 
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compared to a land use management alternative that has a lower gross margin. While for a 

conservationist higher fitness values are given to those land use management alternatives 

that has the lowest soil loss, and for a satisficer higher fitness is given those land use 

alternatives that minimizes soil loss and also have the goal constraint satisfied.  

 Once the parents are selected they under go crossover, which is the exchange of 

information between two parents to produce offsprings. The crossover probability 

determines the percent of parents that will undergo crossover, and the rest will be copied 

on to the next generation. Reproduction means the process of deriving new land use 

alternatives from the old population.  So the process of selection and crossover will weed 

out those landuse alternatives that perform relatively low based on a particular agents 

objective, copy the successful alternative landuse strategy through crossover, and take it to 

the next generation. Repeated selection and crossover can move the search algorithm to a 

local optimum, so a mutation operation is performed which extents the search space. 

Mutation can create a random land use management alternative that has never been used 

before. Mutation operator in single objective GA depends on the mutation probability. 

Mutation probability determines the percent of population that will undergo mutation. The 

whole process is repeated until the user specified number of generations is reached. The 

final solution obtained for each agent will be the optimal land use management alternative 

that optimizes each agent’s objective.  

The framework of agent model methodology is shown in figure 4. Agent 

distribution to various farms within the watershed is predetermined based on crop 

productivity and soil erosion. The distribution of the three agents across the watershed is 

shown in Figure 5. Farms with high crop productivity index and with low and medium soil 

erosion were assigned to profit maximizers and those farms with low crop productivity and 



 18

high erosion were assigned to conservationist. The rest of the farms were randomly 

assigned to satisficers, profit maximizers and conservationist. Based on the agent 

distribution for Big Creek watershed, 44% of the farms where profit maximizers, and the 

rest 56% is split evenly between satisficers and conservationist, which was consistent with 

the previous study done by Kraft et al., (1989). Based on area 46% were profit maximizers, 

while 30% and 24% of the watershed were satisficers and conservationist respectively. 

 

Figure 4: Framework of Agent based model 

 

 

 

 

 

 

 

 

Figure5: Agent typology Distribution 
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The agent based model starts by randomly generating user specified number of 

initial solutions for a single farm from the watershed. The decision variables for the agents 

are the landuse, tillage type and planting time, which are represented by unique real 

numbers. Based on the combinations of landuse, tillage type, and planting time there were 

43 different decision variables, which is shown in table 1. The agent model randomly 

generates a decision alternative from the 43 different alternatives for each field within in 

the farm and then for each individual within the population. During random generation of 

initial population the model make sure that, if the particular field was enrolled in CRP the 

previous year, the field remains in CRP the next year. Each farm individual of the 

population represents a particular decision strategy or alternative for that farm agent. Next 

the fitness of each individual within the population is calculated to determine the best 

decision strategy for that agent. Here the fitness function is the objective function. The 

objective functions (state variable) for the agent model vary depending on the typology of 

farm agent and based on the prior landuse. For a profit maximizing agent the objective 

function is calculated as follows: 
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where: 

Z = gross margin maximizing objective function.  

i = index of farm. 

j = index of crop cover types (corn, soybean, hay, CRP, grass pasture). 

ak = area of field k. 

fkj = soil crop productivity of field k for cover type j . 

pj = price for cover type j. 

cj = variable cost of production per unit area for cover type j. 

xkj = soil loss for farm field k from cover type j. 

n = total number of fields for farm i. 

k =  index of farm fields 

m = land uses considered. 

rj= labor and machinery requirement for cover type j. 

T= amount of soil loss in tons. 

R= amount of labor and machinery available for farm i. 

 

The objective function for a profit-maximizing farm is to maximize the farm gross margin♣ 

subject to soil loss conservation and resource constraints such as labor and machinery. If 

the farm agent is a satisficer the objective function is calculated as follows: 

 

 

 

                                                 
♣ Gross margin represents the short-term profit for a firm or enterprise, which is the calculated by deducting 
variable cost of production from the gross revenue. 
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Minimize S = soil loss 
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where: 

S = minimizing soil loss.  

i = index of farm. 

j = index of crop cover types (corn, soybean, hay, CRP, grass). 

ak = area of field k. 

fkj = soil crop productivity of field k for cover type j . 

pj = price for cover type j. 

cj = variable cost of production per unit area for cover type j. 

N = total number of profit maximizing farms. 

n = total number of fields within each farm. 

k =  index of farm fields 

m = land uses considered. 

G = goal or the aspiration level. 

rj= labor and machinery requirement for cover type j. 

R= amount of labor and machinery available for farm i. 

For a satisficer farm agent the objective is to minimize the soil loss subject to a 

goal constraint G. The goal or aspiration level of a satisficing agent is a random value 
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between one third and three fourth of the profit maximizing level depending on the size of 

the farm. The objective function is also subject to a resource constraint of labor and 

machinery. Soil loss calculation for a farm is described below. While for an agent type 

conservationist the objective function is calculated as follows: 

Minimize C = soil loss 

                                             Subject to 

0
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where: 

C= conservationist objective function.  

i = index of farm. 

j = index of crop cover types (corn, soybean, wheat, hay, CRP, double crop). 

ak = area of field i. 

fkj = soil crop productivity of field i for cover type j . 

pj = price for cover type j. 

cj = variable cost of production per unit area for cover type j. 

xkj = soil loss for farm field i from cover type j. 

N = total number of profit maximizing farms. 

n = total number of fields within each farm. 

k =  index of farm fields 

m = land uses considered. 
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rj= labor and machinery requirement for cover type j. 

R= amount of labor and machinery available per farm. 

The objective of conservationist is to first and foremost minimize soil loss  subject 

to gross margin constraint greater than zero, and also labor and machinery constraints. The 

fitness function for the farm varies depending on agent typology.  

 The Soil loss constraint is calculated using the USLE soil loss equation 

(Wischmeier and Smith, 1978) for each farm field based on the weighted average of all soil 

type properties. The equation for USLE is: 

                                 PCLSKRUSLE ××××=  

where: USLE is the average annual soil loss in tons per acre, 

             R is the rainfall factor, 

             K is the soil erodability factor, 

  LS is the length and steepness of slope factor, 

             C is the cropping and management factor, 

             P is the conservation practice factor. 

The LS factor for the Big Creek watershed is derived from the 10m x 10m digital elevation 

model (DEM), K factor for each soil type is obtained from the NRCS-SSURGO. The crop 

management factor C varied based on tillage operation, crop, and timing of tillage activity. 

For example, the C factors for corn were estimated at 0.18 for conservation tillage fall-

plowed, and 0.05 for no-till. The conservation factor P, was held constant at 0.85 across all 

farm fields. 

The objective function value is calculated based on the farm agent type. Once the 

objective function calculation is over, the individuals of the population are ranked based on 

the objective function value. For a profit-maximizing farm, a feasible individual with the 
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Table1: Landuse codes 
Landuse code Description Real number 
ALF1 Alfalfa Hay 1 
CNT1 Corn-notill-planting1 2 
CVF1 Corn-conservation till Fall planting1 3 
CVS1 Corn-conservation till-spring planting1 4 
CNT2 Corn-notill-planting2 5 
CNT3 Corn-notill-planting3 6 
CNT4 Corn-notill-planting4 7 
CNT5 Corn-notill-planting5 8 
CNT6 Corn-notill-planting6 9 
CVF2 Corn-conservation till Fall planting 2 10 
CVF3 Corn-conservation till Fall planting 3 11 
CVF4 Corn-conservation till Fall planting 4 12 
CVF5 Corn-conservation till Fall planting 5 13 
CVF6 Corn-conservation till Fall planting 6 14 
CVF7 Corn-conservation till Fall planting 7 15 
CVF8 Corn-conservation till Fall planting 8 16 
CVS2 Corn-conservation till-spring planting 2 17 
CVS3 Corn-conservation till-spring planting 3 18 
CVS4 Corn-conservation till-spring planting 4 19 
CVS5 Corn-conservation till-spring planting 5 20 
CVS6 Corn-conservation till-spring planting 6 21 
CVS7 Corn-conservation till-spring planting 7 22 
CVS8 Corn-conservation till-spring planting 8 23 
SNT1 Soybean-notill-planting1 24 
SVF1 Soybean-conservation till Fall planting1 25 
SVS1 Soybean-conservation till-spring planting1 26 
SVF2 Soybean-conservation till Fall planting 2 27 
SVF3 Soybean-conservation till Fall planting 3 28 
SVF4 Soybean-conservation till Fall planting 4 29 
SVF5 Soybean-conservation till Fall planting 5 30 
SVF6 Soybean-conservation till Fall planting 6 31 
SVS2 Soybean-conservation till-spring planting 2 32 
SVS3 Soybean-conservation till-spring planting 3 33 
SVS4 Soybean-conservation till-spring planting 4 34 
SVS5 Soybean-conservation till-spring planting 5 35 
SVS6 Soybean-conservation till-spring planting 6 36 
SNT2 Soybean-no till-planting 2 37 
SNT3 Soybean-no till-planting 3 38 
SNT4 Soybean-no till-planting 4 39 
SNT5 Soybean-no till-planting 5 40 
SNT6 Soybean-no till-planting 6 41 
PCR1 Conservation Reserve Program 42 
GLM1 Grass Lands 43 
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highest gross margin among all population members is ranked first. For unfeasible 

solutions one with the lowest penalty is selected when compared with unfeasible solutions 

in the population. While for conservationists and satisficers landuse management strategies 

that minimizes soil loss and that are feasible are ranked higher compared to landuse 

management alternative that have high soil erosion. Once the fitness function associated 

with all the population members of that farm are rank ordered, the agent model undergo 

various GA operations such as selection, crossover and mutation for the user specified 

number of generation. After the user specified number of generation is reached the 

individual that is ranked the highest represent the optimal solution. For a farm, the optimal 

solution represents the best landuse management strategy based on agent type, soil 

conservation policy, resource availability for that farm and other exogenous factors such as 

market price for various crops and CRP rental rates.  

 Once the agent model has finished running for one farm, it selects the next farm 

from the watershed and undergoes the same process until the agent model runs for all 90 

farms are completed. Once the independent runs for each farm are completed the agent 

model undergoes an aggregation process of compiling the optimal landuse management 

strategy associated with each farm to form a watershed landscape based on the optimal 

decision strategy made by each agents acting independently. The multi agent-based model 

is run for 300 generations and 200 population members, with crossover probability and 

mutation probability of 0.6 and 0.2 respectively. The agent-based model took 12 minutes 

to complete a single run.  

According to Veldkamp and Lambin (2001), one of the important prerequisites for 

a landuse change model is its ability to validate future landuse changes. Validation refers 

to the estimation of model accuracy consistent with the intended application of the model. 
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The model validations are done based on the remote sensing data for the study region 

available through NASS. The agent-based model for agricultural land use management 

developed in this study plays an important role in the understanding of agricultural landuse 

change as a result of variations in the drivers of landuse change, such as agricultural 

policy. The model can be validated based on the quantity of agricultural landuse change 

occurring on the landscape and also based on the spatial patterns or locations of landuse 

change. The validation of the agent model runs are done based on error matrices calculated 

on a field-by-field basis for the study area. The error matrices will provide information on 

how various agents chooses landuses based on policy, biophysical variables, his/her 

objectives and other exogenous variables such as price, compared to the actual landuse 

map. The higher the percent correct prediction indicates the model captures the inherent 

drivers of agricultural landuse change.  

While the model verification represents how well the agent model capture the 

inherent real world process. Verification of the agent model is done by running and 

analyzing by using just profit maximizing agents. Agent model must be able to predict the 

reality accurately based on a theoretical and empirical basis such as average gross margin, 

spatial pattern of landuse change, and soil loss. The agents model has been verified by 

reproducing the past landscape for example 2002 landscape under average market prices 

for the past 5 years, policies and 2001 landuse by running multiple agents and also by 

single profit maximizing agents.  

Results and Discussion. 

 The multi agent model utilized 1000 population members and ran for 500 

generation with a crossover and mutation probability of 0.7 and 0.2 respectively. The 

model run took twelve minutes. The multi agent model predicts the landuse pattern for the 
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year 2002 based on agent objectives, market prices, soil conservation policy, and prior 

landuse for the year 2001. The agricultural landscape output is shown in figure 6. The map 

legend shows the landuse and tillage options for the various fields within the watershed. 

The landuse type forest, urban, and water, which was not the part of the agent decision-

making, was added back at the end to form the watershed landscape. The average farm 

gross margin was $39,206, where profit-maximizing farms netted an average gross margin 

of $67,143, while satisficers and conservationist had $37,070 and $27,450 respectively. 

The gross margin distribution for various farms within the watershed is shown in figure 7. 

Most of the farms with high gross margins are located on the bottom part of the watershed 

which is flat and fertile croplands, while the low gross margins are distributed on the top 

part of the watershed where the land is rolling and is highly suited for pastureland. The 

agent model predicted cropland of 4,378 acres that included corn and soybean uses and no-  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6: Model output for year 2002 
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till acres of 1,647 and conservation till acres of 2,731. The model output had 10,828 acres 

in pasture, which included alfalfa hay and grasslands and CRP of 4940 acres. The model 

had no constraints on the amount of CRP land that a farm could enroll.  

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 7: Gross margin distribution associated with farms 
 

The validation of the agent model is done by comparing the model-generated 

landcover with the landuse landcover map for the year 2002. The validation of the agent 

model with the actual landuse is done using an error matrix. For error matrix calculation 

the landuse classification was reduced to just two classes of cropland and pasture. Since 

the error in distinguishing corn from soybean was relatively high for the actual landuse 

map the landuses corn and soybean fields were combined to form the cropland, while CRP, 

alfalfa hay and grasslands were combined to form the pasture landuse. The validation on a 

field-by-field basis shows the model 75 percent correctly predicts the actual landuse 
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landcover map. The error matrix for the model is shown in table 2. The table shows that 

the model is little bit over predicting the landuse pasture and under predicting the cropland.  

 
 
 
 
 
 
 
 
 
 
 

Table2. Error Matrix 
 
Figure 8 shows the model correctness and errors associated with predictions. The 

field in red and yellow represents the correct prediction of pasture and croplands 

respectively. While the fields in green represents the regions of crop under prediction, and 

the fields in blue represents the regions of pasture under prediction, by the agent model. 

The error map based on agent types (figure 9) shows that satisficer and conservationist is 

being 81 and 85 percent correctly predicted while profit maximizer is being 67 percent 

correctly predicted. This validates the presence of heterogeneous agent types in the 

watershed other than just profit maximizer, which traditional economic models used to 

study human behavior. The verification of agent-model was done by comparing the 

predictability of the multi-agent model with a single-agent model of profit maximizers. 

The results show that assumption of just profit maximizers in the watershed gives a false 

impression of reality. The single-agent model correctly predicted only 60 percent of the 

fields within the watershed, which is 15% less correctly predicted than compared to the 

multi-agent based model.  
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Figure 8: Error map associated with agent run. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure9: Error Map based on agent type 

Profit Maximizers Satisficers Conservationist
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 The study can be used analyze the multifunctional nature of agriculture in 

providing both commodity as well as non-commodity outputs (ecosystem services). Figure 

6 shows the various landuse choices selected by farmers based on their objectives 

subjected to relevant market and policy conditions. The results indicate the optimal landuse 

choices for various farm agents responding to market conditions of prices, soil 

conservation policy, biophysical factors such as crop productivity and soil erosion, and 

available resources such as labor and machinery. Table 3 shows the break down of 

commodity and non-commodity output acres based on the types of agents. Profit-

maximizing agents have half of their land under commodity crops of corn and soybean, 

while satisficers and conservationist have their land mostly under alfalfa hay and CRP. The 

results of the study show that satisficers and conservationist are the major providers of 

various ecosystem services, which is captured indirectly by the amount of CRP acres and 

hay land. Here CRP and lands along with no-till conservation practices represents the 

production of various ecosystem services such as water quality, soil retention, wildlife 

habitat or carbon sequestration, which are available at the current CRP rental rates to 

farmers enrolled in the program. However in this paper, only soil loss was used as proxy 

for ecosystem services, but further development of the model is currently going on to 

include an index that captures multiple ecosystem services of alternative landuses and 

riparian buffers. 

Based on the study we have found that predicting landuse decisions based upon just 

profit maximization can be improved upon by utilizing multiple agents with profit-

maximizers concentrated on the highly productive and less erosive lands, while 

conservationist and satisficing farmers are distributed on less productive and more erosive 
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agricultural lands. The modeling environment is currently being used to study different 

policy and price scenarios.  

 
Conclusion: 

One of the main goal of modeling human-environmental interaction is to provide scientific 

information to policy makers and stakeholders that will aid in their planning and decision 

making process (Berger and Schreinemachers, 2006). The agent model developed here will 

help policy and decision maker identify the various agents within the watershed and assess 

various policy options based on that information. The study also helped to understand the 

Table 3: Commodity and no-commodity outputs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
interaction and feedback between the agents and their environment associated with various 

policy initiatives. The agent-based model developed here can be used as a tool to predict 

Economic Results  

  Profit Maximizer Satisficer Conservationist

INCOME (Gross Margin) ($) 

Total 2,685,747   937,876 613,935 

Average (per farm) 67,143 37,072 27,459 

ACRES 

Total 9,229 5,745 4,711 

Corn/Soybean   4,212 747       57 

Conservation 2,899 0 0 

No-till   1,449 747 57 

Alfalfa Hay   4,854 3,270 2,478 

CRP  0 1,728 2,176 



 33

future landuse decisions resulting from varying market conditions and policies which will 

have a drastic influence in the provision of commodity outputs as well as various 

ecosystem services that are critical for human welfare. The results of these modeling 

activities can be used as a decision tools by policy makers to guide the policies that target 

various agents on the landscape resulting in production suites of commodities and 

ecosystem services contributing to human welfare. 

The utilization of the genetic algorithm in modeling human behaviors provided 

added flexibility when compared to traditional optimization methods. The use of GA to 

model multiple agents out performed the previous study of single agent (profit 

maximizers) done using linear programming (Lant et al., 2005). Future development of the 

model is required in the area of scenario analysis over multiple years.  
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