Estimating China’s Energy and Environmental Productivity Efficiency: A Parametric Hyperbolic Distance Function Approach

Zibin Zhanga, Xiangrong Jina, Xuebing Donga, and Michael E. Wetzsteinb

a Department of Economics, Zhejiang University
b Department of Agricultural & Applied Economics, University of Georgia

Address correspondence to:
Zibin Zhang
Department of Economics
Zhejiang University
Hangzhou, Zhejiang 310027
China
Tel: +86-571-8795-2835
Fax: +86-571-8795-2835
Zbzhang@zju.edu.cn

Copyright 2010 by Zibin Zhang, Xiangrong Jin, Xuebing Dong, and Michael E. Wetzstein. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Data

A panel dataset including 32 provinces in China from 2000 to 2007:
- Innominate capital stock (Lk), labor, energy consumption (Et)
- Output: real GDP (RGDP), SO2 emissions (SO2)
- Using the methodology of Zhang et al. and their 2000 time data, provincial capital stock is estimated
- All data are from the Chinese Statistical Yearbook (various years)

Enhanced Hyperbolic Distance Function

Let input vector \(x = (K, L, L) \) and \(T \) denotes the technology set
\[T = \{x, \text{RGDP}, \text{SO2}\} \]

Following Zhang et al., the enhanced hyperbolic distance function \(D_h \) is defined as
\[D_h(x, \text{RGDP}, \text{SO2}) = \|x - T\|_2 \|x - T\|_2 \]

The properties of the enhanced hyperbolic distance function \(D_h \) are stated:
- high average environmental efficiency
- the presence of neutral technical inefficiency
- inputs are measured as output and vice versa

Environmental Efficiency Measurement

Through the stochastic frontier analysis (SFA), the estimated environmental efficiency for each province is measured as:
\[-\ln(\text{BF}_h) = \text{Translog}\((L, E, \text{SO}_2, \{\text{parameters}\}) \} \]

Let \(t \in \{1, 2, \ldots, n\} \) is the model component that captures time varying inefficiency.

Finally, time-varying environmental (enhanced hyperbolic efficiency function) can be calculated for each province as
\[\frac{\text{BF}_h(t)}{\text{BF}_h(0)} \]

Conclusions

- China has a great potential for reducing \(\text{SO2} \) emissions and energy consumption.
- During 2000 to 2007, average energy consumption in China declined by 12.58%, translating to reducing energy consumption from 40.31 to 34.66 million ton oil equivalent per year.
- China has proportionally saved energy inputs by 82.36%, translating to reducing energy consumption from 37.72 to 66.53 million ton oil equivalent per year.
- The average environmental TE increase over time with 3.84% annually going from 2007 to 2009.
- The environmental TE varies across provinces:
 - In Shenghai, the central region is the most efficient.
 - In Guangdong, the central region is the least efficient.

Further Research

- Investigate how the industrial structure will affect environmental productivity efficiency.
- Identify potential different contributions of productivity growth for each province in China.
- Examine how the energy saving program will affect the environmental productivity growth for each province.

References

Grant Support

Research is supported by the Education Department of Zhejiang Province: Y200909381, and the China Academy of Western Region Development at Zhejiang University.

Contact Information

Zhejiang University, Zhejiang University Hangzhou, 150028 T: +86-571-8795-2256 Fax: +86-571-8795-2257

Estimating China’s Energy and Environmental Productivity Efficiency: A Parametric Hyperbolic Distance Function Approach