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Abstract 

Using panel data, we estimate technology gaps for four distinct sheep-producing 

regions in Eastern Australia (Northern New South Wales, Central and South-Eastern 

New South Wales, South-Western New South Wales and South-West Victoria) that 

reflect spatial environmental and technological differences in wool production. A 

deterministic stochastic metafrontier production function model is estimated that 

envelops the stochastic frontiers of the four regions. This metafrontier approach 

enables us to estimate the environment-technology gap ratio that reflects these 

spatial differences in the environment and variations in production technologies in the 

wool enterprise for benchmarked farmers in each region. As a result, a more 

accurate estimation is possible of changes in total factor productivity on farms in the 

different regions. The major findings are that environment-technology gaps do exist 

between regions but they are relatively small. Greater variation is apparent within 

regions. Variation in technical efficiency seems to depend on the harshness of the 

production environment and whether consultancy advice is regularly received by the 

benchmarking group. 
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Introduction 

We would expect a significant technology gap to exist between producers operating 

in different regions of Australia for most agricultural enterprises. Whether one exists 

for wool production is problematic given the long history of various modes of 

adaptation to regional conditions that have taken place in the industry over the past 

two centuries. 

Physical conditions have historically favoured wool production in wide areas of rural 

Australia given the nature of exogenous factors such as soil, climate, vegetation, 

location, pests and diseases (Williams 1973). In the early period of European 

settlement, the wool enterprise was well suited to managing the risks associated with 

agricultural production and marketing, saving scarce labour resources, and avoiding 

the need for large amounts of capital expenditure. Limited labour supply and high 

land-labour ratios encouraged industries that did not rely on intensive labour use, and 

encouraged labour-saving production methods that were suited to a pastoral activity 

such as wool production rather than the more intensive activities found on small 

farms in European agriculture at the time. Capital supply was initially restricted in 

agriculture in general, encouraging the use of on-farm capital accumulation in 

pastoral industries, such as post-and-rail fences cut from timber on the property. The 

storability and high value-weight ratio of wool has made it especially suitable as an 

export product that could be produced in remote areas. 

We analyse the environment-technology gaps caused by spatial differences in the 

environment in which wool is grown on benchmarked farms in four sheep-producing 

regions of New South Wales and Victoria. 

Environmental and technological constraints on wool 
production 

Although wool output is less sensitive to environmental conditions than many other 

agricultural products, the production environment varies considerably for wool in 

Australia. Environmental differences in wool production are a function of spatial and 

temporal variations in the production conditions such as soil, vegetation, topography 

and climate. They also affect technology choice as wool producers have long been 

adjusting their production and marketing technologies to suit their operational 

environment. As a result, wool produced in Australia is not a homogeneous product, 

with farmers opting to produce wools of different qualities. But it is doubtful whether 
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producers are able to adjust their production technology fully to the environment to 

bridge the productivity gap between a producer operating in a favourable 

environment and one operating in a difficult environment because of the often 

extreme difficulties imposed by adverse and variable conditions. Yet we expect the 

technology gap that exists between wool producers operating in different regions of 

New South Wales and Victoria to be relatively small because of the various 

adaptations and innovations that have occurred in the industry over a long period. 

The wool industry is based mainly on Merino sheep, which are especially well suited 

to Australian production conditions, even the harsher environments. Further 

adaptations and innovations that have increased the productive capacity of the wool 

enterprise include (Duncan 1972, Peel 1973, Sturgess 1973, Stafford Smith and 

McKeon, 1998, ABARE 2007, Abel and Langston n.d., Howden et al. n.d.): 

• Further genetic improvements and selection of sheep breeds and sires to suit 

particular production environments, such as genetic improvements for blowfly 

resistance and the trend to produce finer wool. 

• Management of pasture and grazing pressure, such as the introduction of 

improved pasture species, rotations, fertiliser application, aerial sowing and 

fertiliser application in hilly farming areas, and better use of native pastures. 

• Managing pests, diseases and weeds. 

• Development and management of on-farm water supply. 

• Animal husbandry and health management, such as drenching, modified 

timing of mating to suit seasonal conditions and aerial mustering. 

• Flexibility in farming operations to manage environmental risk, including 

enterprise diversification and stocking rate changes in response to rainfall and 

the strategic trading in sheep. 

• Greater ecological understanding by graziers. 

• Use of decision support tools, such as those that help to make better 

predictions about future production conditions. 

• Institutional support, such as wool research and development, the role of the 

family farm and local support networks, structural adjustment programs, 

drought assistance and the provision of extension advice and materials. 

• Development of the transport and marketing infrastructure. 
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These different forms of adaptation and innovation have varied in relative importance 

between regions (for instance, the development of on-farm water supply have been 

particularly important in the Pastoral Zone), but have generally had the effect of 

reducing the influence of the natural environment on productivity. Rainfall is often 

considered a major factor placing different limitations on production possibilities in 

agricultural production between regions. But it has not had such a dominant effect on 

wool production as other factors often combine to diminish its effect. In their analysis 

of pasture growth in sheep production, Sanford et al. (2003) found that annual rainfall 

was a poor predictor of annual herbage accumulation in the High-Rainfall Zone. 

Conversely, degradation that reduces the landscape function, scrub encroachment, 

salinity and loss of biodiversity (Abel and Langston n.d.) may have accentuated 

differences in productive capacity between regions by having differential effects on 

the natural resource base. As Abel and Langston (n.d., p. 22) pointed out in respect 

of the Pastoral Zone, ‘Much of the adaptive capacity [of rangelands] resides in its 

biodiversity.’ 

Study regions 

The sheep production environment chosen for analysis covers most of New South 

Wales and parts of Victoria (and a small portion of South Australia). It is divided into 

four regions, as shown in Figure 1: 

• Northern New South Wales (R1) 

• South-Western New South Wales (R2) 

• Central and South-Eastern New South Wales (including a small part of North-

Eastern Victoria) (R3) 

• South-Western Victoria (including a small part of South-Eastern South 

Australia) (R4) 
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Figure 1 Regions of sheep production covered in the analysis. 

 

Northern New South Wales (R1) has summer rainfall and is a mixture of High-

Rainfall Zone and Wheat-Sheep Zone, with a small area of Pastoral Zone. Climatic 

conditions tend to be variable over time and soils, topography and climate conditions 

vary across space. These conditions make it difficult for producers to bridge the 

productivity gap. If they can, it is considered hard to do so on a regular basis. 

South-Western New South Wales (R2) is in the pastoral zone with low winter rainfall. 

Rainfall tends to be extremely variable over time and across space. Once again, 

these conditions should make it difficult for producers in this region to bridge the 

productivity gap and, if so, it is hard to achieve on a regular basis. 

Central and South-Eastern New South Wales (R3) is mainly in the Wheat-Sheep 

Zone, but contains small areas of Pastoral Zone and High Rainfall Zone. It has 

 

Northern NSW (R1) 

Central and 
South-Eastern 

NSW (R3) 

South-Western 
NSW (R2) 

South-Western 
Victoria (R4) 
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evenly spread to winter rainfall. These conditions are more favourable for wool 

production, which should make it easier for producers to operate at high levels of 

technical performance. 

South-Western Victoria (R4) is in the High Rainfall Zone with winter rainfall. 

Environmental conditions tend to be favourable for wool production. 

Propositions 

We examine the following three propositions by estimating environment/technology 

gap ratios (ETGRs) and technical efficiency (TE-R) scores for wool producers in the 

four regions: 

1. Variations in ETGRs between regions are expected to exist. 

2. ETGRs are expected to be more widely distributed in the more 

environmentally challenging areas of Northern New South Wales (R1) and 

South-Western New South Wales (R2). 

3. TE-R scores are expected to be more widely distributed in R4, due to lack of 

consultancy advice to some of the producers in this region. 

Data 

We use pooled farm-level data obtained over ten years from two benchmarking 

groups: 

1. A commercial organisation provides consulting advice to all farmers in regions 

R1, R2 and R3 but only some farmers in R4. Farms in these regions are 

expected to have higher technical efficiency scores with lower variances. 

2. A government-based organisation collects benchmarking data but does not 

provide any consultancy advice to most farmers in R4. Farms in this region 

are expected to have lower technical efficiency scores with higher variances. 

The unbalanced panel data set contains 1157 observations from 372 farmers 

covering the ten-year period from 1994/95 to 2003/04. The data set contains farm-

level input and output data for farm enterprises including wool, beef, prime lamb and 

some crops. We confine our analysis to wool enterprise only. The wool output 

variable was calculated as the sum of deflated wool revenue, to measure implicit 

wool output, and net trading profit or loss on adult sheep. Implicit output was 

obtained by dividing wool revenue in each year by the wool price index published by 

ABARE (2004). Lamb output is the value of lamb sales deflated by the lamb price 
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index, also published by ABARE (2004). Both outputs were calculated per dry sheep 

equivalent (DSE). 

Seven input variables were included in the estimated models: agistment, health, 

pasture, selling, shearing, labour and overheads. All input variables were calculated 

per DSE and deflated with the index of prices paid by farmers (ABARE 2004). Basic 

information about the data set and variables are provided in Table 1. 

Table 1: Basic information and descriptive statistics of output and input 
variables ($/ DSE)* 

Items R1 R2 R3 R4 ALL 

No. of observations 221 307 123 506 1157 

No of cross-sections 98 109 42 123 372 

Wool income 21.33 
(7.069) 

17.97 
(4.91) 

19.97 
(5.97) 

22.55 
(11.53) 

21.15 
(9.05) 

Agistment (X1) 
1.99 

(3.23) 
2.53 

(4.69) 
2.27 

(3.61) 
2.33 

(2.35) 
2.27 

(3.20) 

Health (X2) 
1.51 

(0.74) 
1.30 

(0.74) 
1.34 

(0.92) 
1.056 
(0.62) 

1.25 
(0.77) 

Pasture/Feed (X3) 
2.19 

(1.29) 
1.08 

(1.72) 
2.81 

(1.67) 
2.55 

(1.23) 
2.37 

(1.50) 

Overhead (X4) 
4.91 

(1.76) 
5.78 

(2.78) 
4.80 

(1.90) 
8.74 

(5.90) 
6.65 

(4.59) 

Shearing (X5) 
3.88 

(1.23) 
3.83 

(1.24) 
3.47 

(1.16) 
3.066 

(1.093) 
3.41 

(1.20) 

Selling (X6) 
1.97 

(0.94) 
1.84 

(0.79) 
1.89 

(1.16) 
1.90 

(0.82) 
1.90 

(0.94) 

Labour (X7) 
4.83 

(2.29) 
5.84 

(3.58) 
4.94 

(2.00) 
4.96 

(3.53) 
5.02 

(2.99) 

* Figures in parentheses are standard deviations. 

Method of Analysis 

Several approaches are used to accommodate potential environmental and regional 

variations of agricultural production and obtain comparable technical efficiencies. 

Efficiency estimation in stochastic frontier models typically assumes that the 

underlying production technology is the same for all farms. Unobserved differences in 

technologies might be inappropriately labelled as inefficiency if variations in 

technology are not taken into account. A number of methods could be used to 

address this issue. They include the stochastic metafrontier framework (Battese and 

Rao 2002, Battese, Rao and O’Donnell 2004, O’Donnell, Rao and Battese 2007), 
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latent class model (Greene 2004), random parameter model (Greene 2004) and 

switching regression model (Sriboonchitta and Wiboonpongse 2004). O’Donnell and 

Griffiths (2006) used a state-contingent frontier where states of nature for different 

environments are treated as a latent variable and estimated using a finite mixture 

model. Results from the applications of the above models reveal that failure to 

account for environmental variables can lead to biased estimators of the parameters 

of the frontier and technical efficiency inefficiencies. Among these approaches, we 

chose the metafrontier framework because of a lack of data needed to apply the 

other models and its ability to estimate the technology-gap ratios, in addition to 

estimated parameters of frontiers and technical inefficiencies. Under the metafrontier 

framework, the following approaches are followed: 

o A standard stochastic frontier production function was estimated for each 

region.  

o A pooled-stochastic frontier model was then estimated to test whether the 

application of a metafrontier is warranted.  

o Once it was established that a metafrontier needs to be estimated, linear 

programming was used to accomplish this task. 

Suppose we have k regions in the industry. We can estimate the stochastic region-k 

frontier using the standard stochastic frontier model defined as: 

)()(),( )()()(
kiki UV

kkiki eXfY −= β    i = 1, 2,…, N(k) (1) 

where Yi(k) denotes the output of the i-th firm for k-th region; Xi(k) denotes a vector of 

functions of the inputs used by the i-th firm in the k-th region; β(k) is a vector of 

unknown parameters to be estimated associated with the k-th region; Vi(k) represents 

statistical noise assumed to be independently and identically distributed as N(0,σVk
2) 

random variables; and Ui(k) are non-negative random variables assumed to account 

for technical inefficiency in production and assumed to be independently distributed 

as truncations at zero of the N(μi(k),σU(k)
2) distribution. Using data on outputs and 

inputs of firms in the k-th region a maximum-likelihood estimates of the unknown 

parameters, β(k), can be estimated using FRONTIER (Coelli, 1996a). Accordingly, the 
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technical efficiency of the i-th firm with respect to the region-k frontier can be 

obtained using the result: 

( )

( )

( )
( )

( ) ( )( , )
i k

i k

Ui k
i k V

i k k

Y
TE e

f X eβ
−= =

  (2) 

Equation (2) allows us to examine the performance of the i-th firm relative to the 

individual region frontier. In order to examine the performance of the i-th firm relative 

to the metafrontier, the stochastic metafrontier production function approach is used. 

The metafrontier is considered to be an envelope function of the stochastic frontiers 

of the different regions such that it is defined by all observations in the different 

regions in a way that is consistent with the specifications of a stochastic frontier 

model (Battese and Rao, 2002, p. 89). 

Following, Battese and Rao (2002) and Battese, Rao and O’Donnell (2004), a 

deterministic stochastic metafrontier production function model in the industry can be 

expressed as: 

* *( , )i iY f X β=  i = 1, 2,…, N  (3) 

where ( (.)f ) is a specified functional form; *
iY  is the metafrontier output; and β* 

denotes the vector of metafrontier parameters satisfying the constraints 

*
( )( , ) ( , )i i kf X f Xβ β≥  for all k = 1, 2,…, K. (4) 

Equation (4) indicates that the metafrontier dominates all region frontiers. For 

equation (4) to hold, the metafrontier production function is obtained by solving the 

optimisation problem that minimises the sum of the absolute deviations of the 

metafrontier values from those of the region frontiers, as discussed in more detail by 

Battese, Rao and O’Donnell (2004). The optimisation problem is defined as: 
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[ ]
),(ln),(ln..

),(ln),(lnmin

)(
*
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*
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N
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XfXf

ββ

βββ

≥

−∑
=
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where )(kβ is the estimated coefficient vector associated with the region-k stochastic 

frontier. The standard errors for the estimators for the metafrontier parameters are 

obtained using bootstrapping methods. The method draws a vector from a 

multivariate normal distribution using the maximum-likelihood estimate of the region 

frontier and associated covariance matrix. Each draw is used to estimate the 

metafrontier, and the sample standard deviations of the metafrontier parameters are 

estimates of the standard errors. 

The observed output defined by the stochastic frontier for the k-th region in equation 

(1) can be alternatively expressed in terms of the metafrontier function in equation 

(3), such that 

( ) ( )( ) *
*

( , )
( , )

( , )
i k i kU Vi k

i i
i

f X
Y e f X e

f X
β

β
β

−= × ×
 (6) 

The first term on the right-hand side of equation (6) is the same as that in equation 

(2), which denotes the technical efficiency of the i-th firm relative to the region-k 

frontier. The second term is what Battese and Rao (2002) term the technology gap 

ratio (TGR). In view of the environmental constraints in wool production, we call this 

ratio the environment-technology gap ratio (ETGR), which is expressed as 

),(
),(

*
)(

β
β

i

ki
i Xf

Xf
ETGR =   (7) 

The ETGR measures the ratio of the output for the frontier production function for the 

k-th region relative to the potential output that is defined by the metafrontier function, 

given the observed inputs (Battese and Rao 2002, Battese, Rao and O’Donnell 

2004). The TGR has values between zero and one.  



 10

The technical efficiency of the i-th firm, relative to the metafrontier, is denoted by *
iTE  

and is defined in a similar way to equation (2). It is the ratio of the observed output 

relative to the last term on the right-hand side of equation (6), which is the 

metafrontier output, adjusted for the corresponding random error, such that 

( )

*
*( , ) i k

i
i V

i

YTE
f X eβ

=
.  (8) 

Accordingly, following equations (2), (6) and (7), *
iTE  can be expressed as 

ikii TGRTETE ×= )(
* . 

Stochastic frontier models defined by equations (1) and (3) were estimated assuming 

a translog functional form: 

)()(

7

1
)()(

7

1
)(

7

1
)()()(0)( lnln

2
1lnln kiki

j
kiskij

s
kjs

j
kijkjkki UVXXXY −+++= ∑∑∑

= ==

βββ  (10) 

where j represents the j-th input (j = 1, 2, …, 7) of the i-th firm (1, 2,…, Nk) in the k-th 

region (k =1, 2, …, 5); )()( kjikij ββ =  for all j and k; Yi represents the wool income; and 

Xij are as defined in the Table 1. All variables are mean-corrected to zero, which 

implies that the first-order estimates of the model represent the corresponding 

elasticities. 

Results  

On fitting the stochastic production frontier to individual regions and the pooled data 

set, the likelihood ratio test results suggest that we cannot reject the frontier models 

for each region and in the pooled sample. In addition, our generalised-likelihood ratio 

test result suggests that the group frontiers are not identical (p-value = 0.0000). 

Accordingly, the estimation of the metafrontier production model is justified. 

The estimates of the metafrontier estimations are presented in Table 2 (parameter 

estimates of the group frontiers and pooled frontier are available upon request). The 

standard deviations of the metafrontier estimates were calculated using parametric 

bootstrapping as Battese, Rao and O’Donnell (2004) suggested. Apart from labour 
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and pasture/feed, estimated coefficients of the stochastic metafrontier production 

function were found to be significant and of expected sign.  

Table 2: Estimates of Parameters of the Metafrontier Production Function 

Variable Coefficient Standard error t-statistic 

Constant 0.539 0.042 12.79a 

Agistment -0.034 0.008 -4.44 a 

Health 0.053 0.035 1.54c 

Pasture/Feed 0.016 0.014 1.16 

Overhead 0.250 0.043 5.87 a 

Shearing 0.076 0.039 1.96b 

Selling 0.215 0.032 6.78 a 

Labour 0.035 0.037 0.96 

Note: This is an abridged version of the translog model. 
a,b,c indicate significant at 1, 5 and 10 per cent levels, respectively. 

Estimated ETGRs and technical efficiencies with respect to regional frontiers and 

metafrontier are presented in Table 3. The value of ETGR ranges from 0.20 to 1. The 

maximum value of 1, which was observed in all regions, indicates that all regional 

frontiers were tangent to the metafrontier. The mean values of the ETGRs vary from 

0.72 (R2) to 0.80 (R3). This result implies that, on average, wool farmers in R2 

produce only 72 per cent of the potential wool output given the technology available 

and most suitable environmental conditions in the industry as a whole. The average 

ETGRs were found to be significantly different for all regions. 

On average, farmers in R1 and R2 achieved higher technical efficiencies relative to 

their respective regional frontiers but they tended to be furthest from the potential 

output as indicated by their lower ETGRs. This is expected given the harsher 

environment in these regions. Results of statistical tests indicate that the mean 

ETGRs and TE-Rs for R1 and R2 are not statistically different. 
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Table 3: Estimated ETGRs, TE-Rs and TE-Ms 

Statistic Region Mean Standard 
deviation 

Minimum Maximum 

R1 0.73 0.10 0.31 1.00 

R2 0.72 0.17 0.20 1.00 

R3 0.80 0.12 0.35 1.00 

Environment-
technology gap 
ratios (ETGRs) 

R4 0.77 0.13 0.27 1.00 

R1 0.86 0.08 0.33 0.96 

R2 0.86 0.09 0.54 0.97 

R3 0.80 0.13 0.30 0.97 

Technical efficiency 
with respect to the 
regional frontiers 
(TE-Rs) 

R4 0.74 0.15 0.09 0.94 

R1 0.63 0.11 0.23 0.95 

R2 0.62 0.16 0.17 0.93 

R3 0.64 0.14 0.16 0.94 

Technical efficiency 
with respect to the 
metafrontier (TE-M) 

R4 0.57 0.15 0.08 0.91 

 

Distributions of ETGRs, TE-R and TE-M scores are presented in Figure 2. Results 

support the three propositions outlined above. Higher mean ETGRs were found to 

exist in R4 (0.77) and R3 (0.80) than in R1 (0.73) and R2 (0.72). Both R3 and R4 

have a substantial proportion of TE-R observations on or close to the metafrontier. 

R3 has relatively high mean ETGR and TE-R scores of 0.80, in line with 

expectations. 

Observations are relatively widely spread in R4, with a mean TE-R score of 0.74, 

which we believe is a result of a lack of consultancy advice for all farmers in this 

region. A statistical test indicates that there is a significant difference in TE-R scores 

between those farms with consultancy advice and those that do not receive any 

advice, with the former having a higher mean technical efficiency. In contrast, R1 has 

very few observations on or near the metafrontier, but they are relatively closely 

grouped such that the mean TE-R score is high at 0.86. R2 recorded a relatively low 

mean ETGR of 0.72 and a high mean TE-R score of 0.86, similar to R1, but there 

were quite a few high individual ETGRs. 
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Variation in technical efficiency seems to depend on the severity of the production 

environment and whether consultancy advice is regularly received by the 

benchmarking group. While the inter-regional differences in ETGR were found to be 

present they were not large, ranging from 0.72 to 0.80. Greater variation is apparent 

within regions. 

 

 

Figure 2 Distributions of ETGRs, TE-Rs and TE-Ms by region. 

Conclusion 

The major finding of the study is that, while environment-technology gaps were found 

to exist in wool production between four selected regions in Eastern Australia, they 

are not particularly great. This result can probably be attributed to the various 

processes of adaptation to suit environmental conditions facing producers that have 

taken place since the wool industry began in Australia. Another finding of interest is 

the wider distribution of technical efficiency scores within the South-Western Victoria 

region than in other regions, which is most likely due to the variation in consulting 

advice received by sampled farmers in this region. 

Northern New South Wales (R1)

0

15

30

45

60

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

ETGR TE-R TE-M

South-western New South Wales (R2)

0

15

30

45

60

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

ETGR TE-R TE-M

Central and South-eastern New South Wales (R3)

0

15

30

45

60

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

ETGR TE-R TE-M

South-western Victoria (R4)

0

15

30

45

60

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%

ETGR TE-R TE-M



 14

References 

ABARE 2004, Australian Commodity Statistics 2004, Australian Bureau of 

Agricultural and Resource Economics, Canberra. 

Abel, N. and Langston, A. n.d., Evolution of a socio-ecological system: Adaptation 

and resilience in the New South Wales rangelands 1850 to 2020, Draft paper, 

Sustainable Use of Rangelands in the 21st Century, CSIRO. Downloaded on 9 

January 2008 from: 

http://www.cse.csiro.au/research/aglands/nswrangelands/pubs/index.htm 

Battese, G.E. and Rao, D.S.P, 2002, ‘Technology gap, efficiency, and a stochastic 

metafrontier function’, International Journal of Business and Economics 1, 87-93. 

Battese, G.E., Rao, D.S.P. and O’Donnell, C. 2004, ‘A metafrontier production 

function for estimation of technical efficiencies and technology gaps for firms 

operating under different technologies’, Journal of Productivity Analysis 21, 91–103. 

Coelli, T. 1996, A guide to frontier version 4.1: a computer program for stochastic 

frontier production and cost function estimation, CEPA Working Paper 96/07, Center 

for Efficiency and Productivity Analysis, University of New England, Armidale. 

Duncan, R.C. 1972, ‘Technological change in the arid zone of New South Wales’, 

Australian Journal of Agricultural Economics 16, 22-30. 

Greene, W. 2004, ‘Reconsidering heterogeneity in panel data estimators of the 

stochastic frontier model’, Journal of Econometrics 126, 269-303. 

Howden, M. et al. n.d., An Overview of the Adaptive Capacity of the Australian 

Agricultural Sector to Climate Change, Sustainable Systems, CSIRO, Canberra. 

Downloaded on 10 January 2008 from: 

http://www.cse.csiro.au/publications/2003/AGOAgClimateAdaptationReport.pdf 

O’Donnell, C. and Griffiths, W. 2006, ‘Estimating state-contingent production 

frontiers’, American Journal of Agricultural Economics 88, 249-266. 

O’Donnell, C., Rao, D. S. P., Battese, G. 2007, ‘Metafrontier frameworks for the study 

of firm-level efficiencies and technology ratios’, Empirical Economics, Online First 

http://www.springerlink.com/content.  

Peel, L.J. 1973, ‘History of the Australian pastoral industries to 1960’, Ch. 2 G. 

Alexander and O.B. Williams (eds) 1973, The Pastoral Industries of Australia: 

Practice and Technology of Sheep and Cattle Production, Sydney University Press. 



 15

Sanford, P. et al. (2003), ‘SGS pasture theme: effect of climate, soil factors and 

management on pasture production and stability across the high rainfall zone of 

southern Australia’, Australian Journal of Experimental Agriculture 43, 945-959. 

Sriboonchitta S. and Wiboonpongse, A. 2004, ‘On estimation of stochastic 

production-frontiers with self-selectivity: Jasmine and non-Jasmine rice in Thailand, 

Paper presented at the 2004 Asia-Pacific Productivity Conference, Brisbane, July. 

Stafford Smith, M. and McKeon, G.M. 1998, ‘Assessing the historical frequency of 

drought events on grazing properties in Australian rangelands’, Agricultural Systems 

57, 271-299. 

Sturgess, N.H. 1973, ‘Management economics in the pastoral industries’, Ch. 14 in 

G. Alexander and O.B. Williams (eds) 1973, The Pastoral Industries of Australia: 

Practice and Technology of Sheep and Cattle Production, Sydney University Press. 

Williams, O.B. 1973, ‘The environment’, Ch. 1 in G. Alexander and O.B. Williams 

(eds) 1973, The Pastoral Industries of Australia: Practice and Technology of Sheep 

and Cattle Production, Sydney University Press. 

 


