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Abstract: We examine whether there has been a decline in the returns from
Australian public investment in research on broadacre agriculture. Complementing a
forthcoming paper by Mullen, we use alternative specifications for the regression
equation, which employs the log of total factor productivity (TFP) as the dependent
variable. The rate of return is computed on an annual basis rather than by using
multi-year averages. In contrast to Mullen’s earlier preliminary analysis, we have
now found some evidence of a decline in the rate of return on public R&D

investment, lending some support to recently voiced concerns on this matter.
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1. Introduction

The purpose of this paper is to examine whether there has been a decline in the returns
from Australian public investment in research on broadacre agriculture. Mullen
(forthcoming) discusses concerns that such a decline may have occurred (p. 2) and
provides a preliminary answer (“No”’) based on regression analysis (section 4). The

present paper presents more extensive analyses of the same data set.

Our starting point is Table 1, which reproduces Mullen’s (forthcoming) Table 5.

Section 2 discusses some of the merits and demerits of the linear and quadratic



versions of this model. Section 3 introduces a novel method for computing annual
rates of return on public R&D investments, and applies this method to the linear and
quadratic model versions. Section 4 discusses three kinds of alternative regression
models: fractional exponents, a time interaction term, and linear spline models. The
last type of model is found to be superior to all others, and the annual return method is

applied to it. Section 5 concludes.

2. The linear and quadratic models

Mullen and Cox (1995), Mullen (forthcoming), and Wang (2006), regressed total
factor productivity (TFP) against a knowledge stock variable, a weather index,
farmers’ terms of trade and farmers’ education, where all variables were in logs and
the models were linear. Mullen (forthcoming) additionally included a regression with

a quadratic logged knowledge stock term. The results are reproduced in Table 1.

Table 1: Econometric results and IRRs from the 35 and 16 year lag models (identical
to Table 5 in Mullen forthcoming)

35 year models

Period 1953-1988 1953-2003 1953-2003 1969-2003 1969-2003
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat
Knowledge stock:
Linear 0.16 3.44 0.14 2.58 -1.9 -5.53 -3.05 -1.68 0.25 3.93
quadratic 0.08 5.96 0.13 1.82
Weather 0.04 5.19 0.3 5.48 0.24 5.67 0.3 3.76 0.31 3.84
Education 2.22 3.05 2.35 2.72 3.7 5.36 333 2.87 4.42 4.31
Terms of Trade -0.27 -2.52 -0.49 -3.58 -0.29 -2.71 -0.27 -2.09 -0.30 -2.25
R? 0.95 0.95 0.97 0.94 0.93
D-W 2.02 1.13 1.96 1.92 1.74
Reset na 38.1 3.72 1.93 5.24
IRR% 17 10 15 16 13

16 year models

Period 1968-1988 1953-2003 1953-2003 1969-2003 1969-2003
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat
Knowledge stock:
Linear 0.22 2.22 0.001 0.25 -4.39 -5.45 -13.8 -3.11 0.22 2.49
quadratic 0.17 5.46 0.52 3.16
Weather 0.26 3.22 0.3 5.01 0.24 5.06 0.3 3.75 0.3 3.24
Education 2.11 0.98 2.94 3.24 6.08 6.65 6.89 6.71 6.01 5.34
Terms of Trade -0.27 -1.92 -0.8 -7.24 -0.43 -3.88 -0.3 -2.30 -0.49 -3.72
R? 0.83 0.95 0.97 0.94 0.92
D-W 1.73 1.23 1.69 1.86 1.53
Reset na 324 11.2 5.72 10.4
IRR% 30 0 23 39 21

In these regressions, the knowledge stock variable is constructed as a weighted

average of past R&D investments, based on 35-year and 16-year trapezoidal lag



profiles respectively (see Mullen and Cox 1995, Mullen forthcoming, and Wang 2006
for details).! As to the relative performance of these models, Mullen (forthcoming)
notes: “The RESET test provides some guidance as to whether quadratic or
interaction terms are missing from the model. Adding a quadratic knowledge stock
term led to a marked improvement in the properties of both models” as can be seen in
Table [1]... The econometric properties of both the 16 and 35 year quadratic models
are strong. All coefficients are precisely estimated and have the expected sign
(expectations about the signs on the knowledge stock variables are discussed further
below). For the 35 year model, the D-W and RESET statistics and the plot of the
CUSUM values all suggest few problems with the specification of this model. These
same specification statistics for the 16 year model suggested that specification
remains a problem. Non-nested testing of these two models provided clear evidence in
favour of the 35 year model and supported concerns about the specification of the 16

b

year model...” Additionally, the 16-year model featured a decreasing knowledge
stock term for some years as opposed to a uniformly increasing knowledge stock in
the 35-year model (Figure 5 in Mullen forthcoming). The more natural assumption,
of course, would be to expect the term to be uniformly increasing. Furthermore,
distinguished experts such as Huffman and Evenson (2006) and Alston (personal
communication) favour the longer lag specification over the shorter one. All these
considerations point towards the superiority of the 35-year model. We will thus in

this paper focus on it and ignore the 16-year model.

One potential point of concern relates to the possibility of spurious regression due to
some of the variables exhibiting unit roots (integrated of order one). A complicating
factor here is that the other variables do not exhibit unit roots (integrated of order
zero). As not all variables are integrated of the same order, our set of variables cannot
be said to be cointegrated, and some of the cointegration tests — such as the Johansen
(1988) algorithm — that might allow one to proceed with the regression analysis, are
unavailable. Fortunately, the Engle-Granger (1987) test is still available. Whilst this
test in the absence of unit roots in some of the variables no longer indicates

cointegration, it can still be used to allay concerns of spurious regression (Hamilton

" To obtain a full knowledge stock time series beginning in 1953, a backcasting procedure is used to fill
in the missing past investment figures.
* As suggested by Garry Griffith.



1994). In this two-step procedure, a regression is run on a vector of time series
variables, generating a time series of the residuals. This latter time series is then
subjected to a standard Dickey-Fuller unit root test. Engle-Granger tests on the linear
and quadratic models indicated an absence of a unit root in the residuals of each

regression, thus validating our usage of these regressions.

We now mention the issue of greatest concern with the quadratic model. It is actually
not straightforward whether the quadratic 35-year model is preferable to the linear

one, for the quadratic model does suffer from a major flaw: for the first seven years,

the marginal effect of central importance, namely ﬂt , defined as the elasticity of TFP,

with respect to K,
olnT. FPt
=—— = +2B, InK, ,

(where ﬂL and ﬂQ denote the linear and quadratic regression coefficients

respectively), is negative: see Table 2.

Table 2: Marginal effect of In K,on In 7FP, in quadratic regression model

t Beta(t) t beta(t) t beta(t) t beta(t)
1953 -0.088 1966  0.092 1979  0.268 1992 0.384
1954  -0.074 1967  0.107 1980  0.280 1993  (.388
1955 -0.059 1968  0.121 1981 0.292 1994 0.391
1956  -0.045 1969 0.135 1982 0.303 1995  0.394
1957 -0.031 1970 0.149 1983 0.314 1996  0.397
1958 -0.016 1971 0.163 1984  0.324 1997 0.399
1959 -0.003 1972 0.176 1985 0.334 1998  0.401
1960  0.011 1973 0.190 1986  0.343 1999  0.403
1961 0.024 1974 0.204 1987 0.351 2000 0.404
1962 0.037 1975 0.218 1988  0.359 2001 0.406
1963  0.051 1976  0.231 1989  0.366 2002 0.406
1964  0.065 1977  0.244 1990 0.373 2003  0.406

1965 0.078 1978  0.256 1991 0.384



Clearly, an increase in the knowledge stock ought to have a positive effect on
productivity. The fact that this marginal effect is negative for the early years is also
suggestive of a downward bias in the (positive) estimates of this effect for subsequent
years, at least well into the 1960s. This suggests model misspecification: imposition
of a quadratic curvature yields a downward-sloping fitted curve for (early and

therefore) low values of K.
3. A procedure for estimating annual rates of return

Mullen (forthcoming), following Mullen and Cox (1995), derives the rate of return on
public investment in R&D through a three-step procedure which is fairly standard in
the literature (see references cited in these two papers):

1. Construct the knowledge stock variable as a weighted sum of past R&D

investments, e.g. (the formula used in Mullen, Mullen and Cox, and in the

LR
present paper) InK, = er InR,_;, where L, is the maximum lag length (in
j=1

our case, 35), r; are a set of weights that sum to one and comprise the lag
profile (in our case, a trapezoidal one), and R; are annual research investments.
2. Regress In 7FP, on InK, and other explanatory variables, which in the

simplest (linear) case yields a constant coefficient [ but which more

generally yields a time-variant marginal effect ﬂt .
3. Compute the internal rate of return (IRR) i by solving the equation

L, Br,GM(TFP)GM (P
IOOOETVMP:ZﬂerM( ) ,j( ),
=0 (R)(1+i)

where TMVP (set equal to 1000 due to units used on the right-hand side)
stands for total value of marginal product, GM( ) stands for “the geometric

mean of...” and P is a price index.

The logic by which the formula of step 3 is derived is explained in Mullen and Cox
(1995). A critical part of this logic is that the purpose of the exercise is to obtain a
unique rate-of-return estimate, and hence the time-variant terms 7FP,, P, and R, are

replaced by their geometric means.



One problem with this approach is that it tends to overestimate R relative to 7FP —
step 1 indicates that R has a distributed-lag effect on 7FP, and as both R and TFP tend
to grow over time, the relevant value of R used here ought to be lower than its
geometric mean. This bias can be corrected by using the geometric mean of an earlier
time series of R.

A more fundamental problem, and one central to the present paper, is that i itself is
not time-invariant and has inherently no unique solution. Note also that the problem

is compounded for regression models that are not strictly linear, as some averaging
procedure has to be devised for 3 as well. It is more meaningful to compute an IRR
for each year of investment. The IRR is then based on a stream of future benefits for
the investment in that year, using the relevant values of ﬂt , TFP,, P,and R, which are

weighted by the weights 7;:

L, B, TFP, P,
1000=TMVE, =) Prot) Y
~0 R (1+lt)

This procedure is much more consistent with steps 1 and 2. If the analyst is interested
in a unique IRR value characterising the entire data set, it can be obtained by first
computing annual IRRs and then averaging these geometrically. The time series of Z,

generated by our revised time-variant IRR formula serves our present primary
interest, which is to extract evidence on a possible change in IRR. Figure 1 and Table

4 show the annual IRR time series thus obtained.



Figure 1: IRRtine series for linear, quadratic, and spline regression nodel s
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This procedure relates R&D investment in any given year to the actual values of

future T7FP and P properly weighted in accordance with the lag profile used.
Variations based on future K are also affecting the result via the time-variant ﬂt

term. For example, the investment in 1953 contributes — assuming that the lag profile
used is correct — via the future knowledge stock to future 7FP through 1987. Thus,
the last investment year for which full information on the future flow of benefits is
available is 1969. We thus obtain time series of 17 years of IRR for each model,
which is not quite long enough for formal hypothesis testing but which does allow the
drawing of preliminary conclusions.

Figure 1 shows a striking contrast between the linear and quadratic regression models.
Whilst the linear model indicates a fairly dramatic decline in the IRR from over 28%
for 1953 investments to less than 13% for 1969 investments, the IRR time series
based on the quadratic model is generally flat, never falling below 14% and never
exceeding 19%. However, we know that the linear and quadratic models are both

flawed. The linear model completely misses the increasing slope that is highly

significant in the quadratic model — it is constrained to produce a single 3 which is
likely an overestimate (underestimate) of ﬂt for the early (later) years. The quadratic

model, on the other hand, evidently underestimates ﬂt for the earlier years, as

discussed in the previous section. Let us, then, look for alternative model

specifications.

1969



4. Alternative regression models

In this section we consider, in turn, fractional exponents, a time interaction term, and

linear spline models.

The fact that the quadratic model outperforms the linear one in most respects may be
taken to indicate that there is a significant nonlinear component in the model. The
first alternative to look at naturally would be the polynomial approach, i.e., having
found the quadratic term highly significant when that is the highest order, to also try
including a cubic term in addition to the lower-order terms, etc., and to stop when the
highest-order term is insignificant. However, inclusion of a cubic In K term in the
regression yields insignificant quadratic and cubic terms. This result implies that the
polynomial approach stops at the quadratic level.

Another approach is to include a single nonlinear term along the linear one. Why
should this nonlinear component be quadratic? One way to examine this is to allow

for a capital stock term with variable exponent £. There is no a priori reason why, in

a regression with a nonlinear term with multiplicative parameter B N>

InTFP=a+ B, nK+ B, (InK) + ...

E should equal 2. We attempted to estimate this regression using STATA’s
‘nonlinear’ least squares’ (Davidson and McKinnon 1993) routine, but this turned out
to be too sensitive to the specification of the initial parameter value for E. As an
alternative, we repeatedly estimated ordinary least squares increasing the exponent
parameter in the above equation by one decimal point at a time, that is, using £ = 1.1,

1.2, 13, ...... The purpose of this exercise was to try and remedy the problem of
negative and low positive values of the marginal effect ﬂt for the earlier years in our
data set in the quadratic OLS regression. That regression was, of course, replicated

by setting £ = 2. Estimates for ﬂt (for = 1953, 1954, ..., 1963) as a function of E

* The usage of the word nonlinear in the term “nonlinear least squares” refers to the regression being
nonlinear in the parameter £ and should not be confused with the usage of the word in the rest of this

paper.



are shown in Figure 2. Values of £ are depicted on the horizontal axis at ﬂt = 0.

Estimates of f3, for £ =2 correspond to those in Table 2.
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Figure 2: Marginal effect as a function of exponent in nonlinear regression term
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These results show that the issue of a negative or small positive marginal effect for
the earlier years in our data set cannot be resolved by substituting an exponent value
different from 2. Even for £ = 7, there are still a few negative marginal effect
statistics left, whilst the marginal effects for the first eleven years (all the ones

depicted in the graph) are still arguably too low. Moreover, for the higher values of £
shown in the graph, B, becomes insignificant. In summary, the variable-exponent

approach is not satisfactory as an alternative to the linear and quadratic regression

models.

Next, consider the possibility of a time interaction term. This is based on a simple
idea: in contrast to the linear model, we would like the marginal effect of In K on In
TFP to be time-variant. Then why not have it directly be a function of time? This

translates into the equation

InTFP =0 +(B, + Bt ) InK + ..........

which implies that ., rather than a separate time trend coefficient (tried

unsuccessfully before — see Mullen forthcoming and Wang 2006), is a time
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interaction coefficient. This variation of the regression model yields a significant
ﬂim and an insignificant but negative B ; - Using the ‘best estimate’ value for B I

instead of zero, which in spite of its insignificance is the statistically preferable

approach, we obtained values for the marginal effect,

ﬂt = ﬂL + ﬂintt )

that were negative for the first 23 years. This clearly indicates that the time

interaction approach has to be rejected too.

Finally, we considered a linear spline approach (Greene 2007). This approach allows
for structural change to occur in the course of the data set. It includes multiple linear
segments (‘bins’) with different slopes, separated by kink points (‘knots’). The
regression is conducted under the constraint that at the knots the left-hand and right-
hand limits of the fitted line are equal, i.e. that the function be continuous. We
attempted a three-bin spline regression with approximately 30 possible combinations
of the two knots, but found that consistently the slope parameter in the first bin was
insignificant. Furthermore, using three bins for the small number of observations may
be asking too much of the data. We thus settled on two bins instead. We considered

as candidate years for the knot the years. Results are reported in Table 3.

Table 3: Results of two-bin spline regressions

Knot beta1 beta2 R-sq RESET AIC BIC
75 0.0847954 | 0.3491876 0.972 6.77 -124.3266 -112.7356
76 0.0924833 | 0.3564951 | 0.9718 7.02 -124.0772 -112.4862
77 0.1007951 | 0.3704909 | 0.9721 6.82 -124.4601 -112.8692
78 0.1107759 | 0.3868867 | 0.9718 717 -124.0525 -112.4616
79 0.1222749 | 0.4050378 | 0.9711 8.23 -122.7413 -111.1503
80 0.1331629 | 0.4314032 | 0.9709 8.7 -122.3016 -110.7107
81 0.1415096 | 0.4683473 | 0.9717 7.35 -123.7859 -112.1949
82 0.1477874 | 0.5077437 | 0.9724 6.21 -125.0773 -113.4863
83 0.1533036 | 0.5539901 | 0.9731 5.12 -126.343 -114.7521
84 0.1576375 | 0.5931646 | 0.9726 5.57 -125.3746 -113.7837
85 0.1619398 | 0.643485 0.972 6.09 -124.4154 -112.8244
86 0.1670265 | 0.7148216 0.972 5.97 -124.4353 -112.8443

The RESET results were satisfactory for all the knots considered, but these are

essentially t-statistics that are not appropriate for knot selection. Instead, we consider
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R-squared, the Akaike Information Criterion (AIC), and the Bayesian Information
Criterion (BIC) (Greene 2007) for knot selection. These consistently point to 1983 as
the knot with the best performing spline. Moreover, 1983 is the middle year of the
three consecutive years 1982-1984 that comprise the top-three results in terms of each
of these criteria. Thus we selected 1983 as the preferred knot in the linear spline
approach. This yielded a time series of IRRs for the years 1953-1969 that is displayed

in Figure 1. Values are provided in Table 4.

Table 4: IRR time series and means for linear, quadratic and linear spline regressions

Year Quadratic Linear Linear spline
1953 14.33% 28.54% 26.11%
1954 15.24% 27.12% 24.78%
1955 14.81% 23.72% 21.60%
1956 16.60% 24.87% 22.68%
1957 17.79% 24.94% 22.76%
1958 17.99% 23.57% 22.76%
1959 18.10% 22.11% 20.23%
1960 18.43% 21.17% 19.47%
1961 18.45% 19.94% 18.50%
1962 18.28% 18.63% 17.51%
1963 18.10% 17.52% 16.75%
1964 17.23% 15.77% 15.50%
1965 17.31% 15.18% 15.30%
1966 17.48% 14.78% 15.31%
1967 16.42% 13.16% 14.36%
1968 16.52% 12.79% 14.50%
1969 16.63% 12.45% 14.74%

GEO MEAN  16.99% 19.11% 18.63%

The linear spline model avoids the linear model’s upward bias as well as the quadratic
model’s downward bias in estimating the marginal effect [B, for the earlier years.

For the last several years in Figure 1 and Table 4, the linear and quadratic models’
biases are likely reversed, and the spline model may be avoiding these as well. These
features are reflected in Figure 1, with the spline-based IRR values being below the
linear-based ones and above the quadratic-based ones, with these inequalities being
reversed for the last several years for which IRR estimates are available. The spline-

based IRR series does show a general decline in IRR, which however is less
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pronounced than for the linear-based IRR series. Furthermore, there is a subtle but
potentially important difference between the spline-based series and the linear series
for the last three years 1967-1969, where the former exhibits a levelling off or even a

slight recovery in IRRs whereas the latter exhibits a continued decline.

5. Conclusions

Among the models examined here, all exhibit serious pitfalls except the linear spline
model, which is therefore the most likely to produce reliable results. Using the linear
spline model, there is some evidence of a decline in the rate of return on public
investment in R&D for investments made in the years from 1953 trough 1969;
however, there appears to be levelling off or a slight recovery for investments made in
the last three years of this period. As we are using a 35-year model with observations
through 2003, 1969 is the last year for which full information about benefit streams is
available. Given the small number of observations and some strong assumptions
made, particularly with regard to the construction of the knowledge capital stock,

these results should be treated with caution.
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