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ABSTRACT 
 
 
Phytoremediation is the use of living plants, known as hyperaccumulators which absorb 
unusually large amounts of metals in comparison to other plants. The use of classical 
plant breeding and new molecular techniques offers great potential to develop crops with 
the ability to clean up polluted sites.  While these technologies have gained widespread 
attention, prior to commercial development, there are risks that must be considered – only 
a few of which have received even modest examination. Therefore, the focus of this 
working paper is to explore specific risks associated with phytoremediation and suggest 
ways in which these risks can be managed so that new, novel, and innovative plant 
technologies may be applied to provide low cost and efficient environmental solutions.  
 
 
Keywords:  risk, GMO, biotechnology, phytoremediation, phytoextraction, phytomining 
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Ecological Risks of Novel Environmental Crop Technologies Using 
Phytoremediation as an Example 

 
J. Scott Angle1 and Nicholas A. Linacre2 

 
 

1.  INTRODUCTION 

Phytoremediation is the use of living plants, known as hyperaccumulators which 

absorb unusually large amounts of metals in comparison to other plants3, for in situ 

remediation of contaminated soil, sludges, sediments, and groundwater through 

contaminant removal, degradation, or containment (Baker et al. 1994; Chaney,1983a; 

Glass 1999).  While these technologies have gained widespread attention, prior to 

commercial development, there are risks that must be considered – only a few of which 

have received even modest examination. Therefore, the focus of this working paper is to 

explore specific risks associated with phytoremediation.   

Phytoremediation offers the possibility of addressing an intractable global 

problem by providing an alternative, cheap and effective technology that could 

significantly improve the prospects of cleaning-up metal contaminated sites (Garbisu and 

Alkorta 2001; Salt et al. 1995).  The advantages of phytoremediation over traditional 

methods of remediation are well known. The many benefits of the technology have been 

reviewed by Wolfe and Bjornstad (2002).  However, few attempts to assess the specific 

risks of the technology have been reported.  

Theoretical aspects of the risk analysis process were recently reviewed by Linacre 

et al. (2003). The primary conclusion of this paper was that risks must be identified, 

                                                           
1 College of Agriculture and Natural Resources, 1201 Symons Hall, University of Maryland, College Park, 
MD 20742, USA 
2 International Food Policy Research Institute, 2033 K Street NW, Washington, DC  20006 
3 http://www.epa.gov/tio/download/remed/phytoresgude.pdf 
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quantified, managed and communicated if phytoremediation is going to find broad public 

acceptance.  Indeed, as a corollary, some of the current concerns related to use of 

genetically modified agricultural commodities arise from past lack of appreciation for 

risk assessment, management and communication (MacKenzie 1994).  Acceptance of 

genetically modified organisms (GMOs), at least in the US, has been directly attributed to 

the eventual public understanding of risks and benefits.   

Risk may be defined as the likelihood of occurrence of a negative consequence 

(Kaplan and Garrick 1981). In the context of phytoremediation, risks are primarily the 

result of exposure of living organisms to metals.  Risk, therefore, depends on the 

likelihood of exposure, the level of exposure and on the toxic effects of exposure. It is the 

combination of these factors that dictates the risk which can vary from negligible to high 

when the likelihood, level and consequences of exposure are significant.  Using a source-

pathway-receptor model to identify possible risks, the failure to clean up contaminated 

sites (source) could lead to risk or harm to plants, animals, humans and natural resources 

such as water (receptors) via significant pollutant linkages (pathways). 

Risks in phytoremediation can arise from a number of potential sources. Some 

risks relate to the direct exposure to metals, while other risks relate to the preparation, 

cultivation and disposal of materials. This review is divided into a number of sections and 

discusses: (1) preplanting risks created by soil preparation, (2) risks associated with the 

transfer of planting materials, (3) potential ecotoxicity, (4) potential weediness, (5) gene 

flow and introgression, (6) and (7) cultivation risks, (8) volunteers, (9) “additional” risks 

associated with GMO phtyoremediators, and (10) biomass disposal. 
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2.  PRE-PLANT CONSIDERATIONS 

Prior to planting of hyperaccumulators, soils are often prepared by adding 

materials to reduce soil pH.  Numerous studies have shown that most hyperaccumulators 

take up more metal at low pH due to enhanced solubility (Marschner 1995).  pH 

reduction is therefore considered a critical component to most phytoremediation 

technologies.  The only exception to this rule was reported by Li et al. (2003) and Kukier 

et al. (2004) who showed that maximum uptake of Ni by Alyssum murale was at pH 

greater than 7.5.   

However, low pH in the presence of high metal content can exasperate 

ecotoxicity.  Numerous studies have shown that metals can be toxic to most non-

hyperaccumulator plants (and even some hyperaccumulators) when soil pH is reduced to 

6.0 and below (Chaney 1983b).  Further, many soil bacteria and other organisms are 

sensitive to high metal concentrations which are also affected by lowering pH of high 

metal soils.   

This risk is currently a focus of an on going program in our laboratory.  We 

examined the extent of damage done to an ecosystem when soil pH was reduced for a 

high metal soil, and whether this damage was permanent or if the ecosystem could be 

restored to normal by subsequent increase in the soil pH at the end of phytoremediation.  

Results demonstrated that both microbial number and function are highly sensitive to the 

toxic effects of soil metals at low soil pH.  When soil pH was returned to more 

appropriate agronomic levels, most parameters, but not all, returned to normal within a 

six month period.   



 

 

4

Reducing pH of low metal soil can also enhance metal solubility to the point 

where leaching is a concern.  Angle et al. (unpublished data) has shown that when soil pH 

is reduced to values less than 6.4 for Cd and 4.7 for Zn enriched soils, loss from soil via 

leaching is a significant concern.  Metal contaminated groundwater is one of the most 

difficult media to remediate and should be avoided at all possible costs.  

Another soil management option that has been examined is to add organic 

chelators to soil to increase solubility and thus metal uptake (Blaylock et al. 1997; Lombi 

et al. 2001).  Both aminopolycarboxylic acids (Shen et al. 2002; Huang et al. 1997) and 

organic acids (Huang et al. 1998; Ebbs et al. 1998) have been studied for their ability to 

increase metal uptake into plants.  While occasionally effective (Meers et al. 2004), these 

materials have significant limitations that until now have restricted their utility.  For both 

materials, enhanced leaching of chelate-bound metals into groundwater as a result of 

increased solubility is an important concern (Cunningham et al. 1997; Kedziorek and 

Bourg 2002).  Greman et al. (2001) showed that EDTA added to soil increased leaching 

losses of metals by up to 40%.  One of the paramount rules of remediation is to avoid 

contaminant dispersal.  While it might be possible to balance chelate addition to soil so 

that only metal taken up by the plant is available at any point in time, the temporal 

considerations related to full season phytoremediation suggest this to be quite difficult. 

A further potential concern is the cost of adding amendments to soil.  Sulfur 

added to lower soil pH is relatively cost effective and thus insignificant to the overall cost 

of phytoremediation.  However, chelates can be quite expensive.  Chaney et al. (2004) 

has reported that the cost of adding 10 mmol EDTA kg-1 soil is about $30,000 per ha.    
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3.  NATURALLY OCCURRING HYPERACCUMULATORS 

Hyperaccumulators are either direct seeded into contaminated or mineralized soils 

or plantlets are transplanted into the soil.  In either case, seed or soils associated with 

transplants can carry soil bacteria, fungi and viruses that are not indigenous to the area 

being phytoextracted, potentially posing risks to soil microflora and indigenous plants.  

However, risk management approaches exist such as soil sterilization and growing 

plantlets in locally collected soils. One consequence of this approach that is difficult to 

mitigate the impacts of deliberately introduced soil bacteria important for 

phytoremediation. 

Abou-Shanab et al. (2003) showed that the rhizosphere of Alyssum murale, the 

most important Ni hyperaccumulator studied to date, has bacteria within its rhizosphere 

that can increase Ni solubility and thus Ni uptake into the plant.  While the presence of Ni 

solubilizing bacteria in soil is beneficial in that phytoremediation efficiency is increased, 

if these bacteria were also to increase uptake into non hyperaccumulator plants, results 

could be harmful to the food chain.  Abou-Shanab et al. (2003) reported that specific 

bacteria when inoculated into soil increase Ni uptake by up to 33%.  Other studies have 

shown that the rhizosphere of hyperaccumulators increases metal uptake into plants, 

although specific reasons for this observation were not considered (Schwartz et al. 2003; 

Whiting et al. 2001). 
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3. ECOTOXICITY  

During phytoremediation, hyperaccumulators are direct seeded or transplanted into metal 

enriched soil.  Early in the process, plant biomass content is low, and ecotoxicity is 

seldom a concern.  However, soon after germination or planting, metal content in 

biomass increases to levels that can potentially be toxic to the ecosystem.  Several studies 

have shown that hyperaccumulators fail to grow well when foliar concentrations of select 

metals are low (Li et al. 2004).  Li et al reported that Thlaspi caerulescens needs 1000x 

more Zn to grow ‘normally’ when compared to non-hyperaccumulators.  For example, T. 

caerulescens can concentrate up to 40,000 ug g-1 Zn (Brown et al. 1994, 1995) while A. 

murale can accumulate similar amounts in above ground biomass (Chaney et al. 2000).  

Although the exact reason for metal hyperaccumulation has yet to be fully understood, 

many scientists believe this phenotype evolved as a way of induced foliar toxicity and 

thus reduce feeding by a variety of insects (Boyd and Martens 1994). 

Several studies have examined impacts of high metal biomass on insects.  This 

information has been extensively reviewed by Boyd and Martens (1992 1998).  Boyd et 

al. (1998) examined direct toxic effects on high metal biomass on both feeding preference 

and toxicity on insects.  It was shown that most insect species prefer low metal biomass 

when given a choice in feeding studies.  Less direct effects on reproductive success are 

more poorly understood.  Effects related to behavior may be important but have not yet 

been examined to our knowledge.   

Interestingly, some insects seem to have developed methods for avoiding metal 

exposure.  Aphids for example, due to rapid pass through of fluids, are able to excrete 

much of the metal consumed during feeding from the phloem.  Further, phloem sap 
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generally has lower metal content compared to materials flowing up into the shoot given 

that this is an important part of the hyperaccumulation process.   

We are not aware of any studies that have directly examined toxicity to higher 

animals consuming high metal hyperaccumulator biomass.  However, it is quite 

reasonable to assume that that exposure to and consumption of high metal biomass could 

be toxic to wildlife.  During large-scale phytoremediation, it will be nearly impossible to 

fence out all herbivores.   We are also aware of concerns related to farm animals getting 

into fields of hyperaccumulators.  Fencing, screens and netting are generally ineffective 

in preventing movement of all animals into a field in phytoremediation.   

Fortunately, most hyperaccumulators are relatively unpalatable probably due to 

the high alkaloid and metal content found in hyperaccumulators.  Thus, while it might be 

possible that animals will graze on hyperaccumlators, the likelihood of significant 

consumption is minimal.  Our observations of large fields planted to hyperaccumulators 

are that few, if any, large herbivores forage in these fields.  Only when few other foods 

are present can animals be expected to ingest significant quantities of hyperaccumulator 

biomass.   

Despite the relative unpalatibility of high metal hyperaccumulators, it is always 

possible that insects could develop resistance to metals, and thus increase feeding and 

exposure.  This has been observed recently for Bt crops as well as for a host of more 

traditional insecticides. 

Further, while most large herbivores have a large grazing range and can simply 

move to other locations, small herbivores and territorial animals may not have this 

opportunity.  Voles, shrews etc have very limited foraging range and may simply not 
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have the ability to move beyond the confines of a field planted contiguously to 

hyperaccumulators.  Given quantities of roots, stems and leaves consumed and the 

average metal content of hyperaccumulators, it is readily conceivable that these animals 

could ingest potentially lethal amounts of metal. 

There are no current standards for maximum ingestion of metals by wildlife, but 

such data are available for livestock.  Table 1 (Madejon, et al. 2002) shows the maximum 

levels of metals tolerated by common livestock species.  Hyperaccumulator 

concentrations for all metals far exceed levels considered toxic to cattle, sheep, swine and 

chickens, often by orders of magnitude.  

Table 1--Metal concentrations for ‘typical’ agronomic  plants, phytotoxic metal 
concentrations in plants, metal concentrations used for delineation of 
hyperaccumulators and maximum metal concentrations tolerated by 
livestock. 

___________________________________________________________________ 
Metal Plant avg.  Phytotoxicity  Hyperacc Max. conc. tolerated by animals 
 

-----------------mg kg-1-------------------- ----------mg kg-1 in diet---------- 
       
      Cattle Sheep Chicken 

             
Cd 0.1 – 1  5 – 700 >1,000  0.5 0.5 0.5 
Cu 3 – 20  25 – 40 >10,000 100 25 300 
Mn 15 – 150 400 – 2,000 >10,000 1,000 400 2,000 
Ni 0.1 – 5  50 – 100 >10,000 50 100 300 
Zn 15 – 150 500 – 1,500 >10,000 300 1,000 1,000 
Adapted from Madejon et al. 2002 
 

Acknowledging that some herbivores with limited foraging range may be killed or 

injured by the consumption of hyperaccumulators, this hazard must be assessed in terms 

of risks of doing nothing or the risks of more traditional methods of dig and haul.  Doing 

nothing is often not an option while dig and haul, with replacement of the contaminated 

soil – and resident small herbivores, will almost certainly be fatal to all wildlife of limited 
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foraging range.  Loss of some small herbivores might well be a ‘cost’ of return of the soil 

ecosystem to a healthy state. 

If hyperaccumulator consumption by wildlife is a concern, there are well-

established methods to reduce wildlife ingestion of hyperaccumulators.  Fencing, 

deterrents such as periodic noise, and planting of offensive plant species can all be used 

to reduce contact between wildlife and hyperaccumulators.  While not fully effective, 

these methods will at least reduce exposure.   

 

4. ‘WEEDINESS’ 

Most hyperaccumulators evolved under extreme conditions thus they tend to be 

quite hardy.  Many of these plants evolved on soils that were highly infertile with little 

water holding capacity.  The climate under which many hyperaccumulators evolved is 

often extreme with cool moist winters and hot and dry summers (Brooks 1998).  Our 

experience has been that hyperaccumulators are quite hardy and survive with little care.  

Indeed, this is one of the characteristics that make these plants amendable to cultivation.   

By definition, most hyperaccumulators are ‘weeds’, in that they: 1) reproduce 

rapidly, 2) grow under conditions of low fertility, and 3) are adapted to a wide range of 

environmental (soil and climate) conditions.  Consequently one of the most immediate 

concerns related to phytoremediation is the potential escape of hyperaccumulators from 

the site of remediation and the possibility that these plants will become environmental 

weeds.    

Numerous examples documenting the ‘escape’ of plants moved from one location 

to another have been reported.  Kudzu, autumn olive, multiflora rose, and Japanese 
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honeysuckle were all intentionally imported into the US, often for agricultural or 

ornamental purposes.  Currently the US spends over $15B annually to control weeds.  

Most weeds were originally imported into the US either intentionally or accidentally.  

Most hyperaccumulators will not be used commercially where they evolved, thus import 

into other areas will be necessary.  However, importing a non-indigenous species into 

many countries can be a problem. Therefore the first choice when selecting a plant 

species for use is to select an indigenous hyperaccumulator.   

A more general notion of a weed is that of “a plant growing in a place where it is 

not wanted.”   In this sense evidence exists that the physiological limitations of 

hyperaccumulator plants may limit their potential for weediness. Many 

hyperaccumulators have been reported to survive only on metal enriched soils.  It has 

been suggested that high shoot metal content, and subsequent toxicity to pathogens and 

insects is one of the primary reasons why metals are accumulated (Pollard et al. 2002).    

When hyperaccumulators were grown in low metal soil, we have observed that plants 

rapidly die from fungal disease.  Most often, we have identified Pythium or Phythopera 

root disease as the causative agent of death and decline.   

It is suggested that hyperaccumulators have abandoned other methods of 

protection from disease for genetic efficiency.  Thus, when metals are low, uptake is 

reduced and the plants are left ‘defenseless’.  For this reason, it is unlikely that 

hyperaccumulators that escape from the site of cultivation would survive to become a 

permanent component of the ecosystem.  Plants would most likely die as a result of being 

left without the high metal defense.  We, therefore, do not believe that control using 
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herbicides will be necessary to protect against escape outside areas of metal 

contamination or artificial enrichment.   

Even if movement of seed is restricted beyond the original area of establishment, 

pollen from hyperaccumulators can travel with wind and insects for many kilometers.  

Numerous crop species have been shown to hybridize with wild relatives, including 

sunflower, radish, canola and millet.  Traits that increase gene flow and outcrossing 

include self-incompatibility, high outcrossing rates and biotic pollination.  Thlaspi is 

generally considered to be self-pollinating but cross-pollination ranges from 5 to 25%.   

This concern will be discussed in more detail in the next section. 

 

5. GENE FLOW AND INTROGRESSION 

Pollen dispersal may be critical because it affects the likely breadth of dispersal of 

genetic material containing metal accumulating genes.  It has been reported that the 

primary method by which genes may move from a GMO crop to a weedy relative is 

through pollen movement (Kareiva et al. 1994).  It might be possible that genes coding 

for metal uptake and sequestration could be transferred to other crop or non crop plants.  

For crop plants, transfer of high metal uptake is a very serious concern. Incorporation of 

metal uptake genes into crops plants could lead to food and feed that exceed national and 

international standards for metal concentration.  In addition to food quality concerns, 

export markets can be negatively affected by high metal content.   

The primary method for flow of genes from both GMO and non-GMO crops to 

related relatives is through the process of introgression.  Introgression is defined as the 

natural spread of genes of one species into another through the process of interspecific 
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hybridization followed by successive backcrosses to the parent.  This process results in 

offspring that have similar genotypes to the wild type but incorporate new genes from the 

domesticated, exotic or GM plants.  

Most plant species outcross to some extent with other plants.  Although T. 

caerulescens was originally thought to have only limited outcrossing, i.e. approximately 

5% (Riley 1956) more recent evidence has suggested that outcrossing for this species 

might be much higher.  Koch (1998) demonstrated that outcrossing rates in T. 

caerulescens could reach as high as 88%.  It has also been suggested that higher 

outcrossing may occur on contaminated soils compared to plants grown on less polluted 

soil (Dubois et al. 2003). 

 Just about every cultivated crop has shown hybridization with at least one wild 

relative (Arias and Rieseberg 1994; National Research Council 1989).  Sexually 

compatible weeds or indigenous species almost always occur within the growing area of 

most known cultivated plant species.  For this reason, outcrossing during 

phytoremediation should be anticipated and controlled to the extent possible. 

There are many factors that can affect the flow of pollen and genes from one plant 

to another – some of which can potentially be managed and reduced.  The most important 

factors affecting gene flow include the degree of out-crossing and the potential for biotic 

pollen movement.  In general, high out-crossing rates and biotic pollination, such as with 

bees, will increase the rate of gene flow between plant species. Pollen can be dispersed 

by a variety of vectors: wind, insects, mammals and birds.  The role different vectors play 

in long versus short distance dispersal is species specific. And, in the case of GM crops, 

the type of gene may affect the rate of introgression.  Glover (2002) cites the example of 
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insect protected cotton where there has been a 37-54 percent reduction in insecticide use.  

This in turn may increase local insect populations, increasing the abundance of pollen 

vectors therefore increasing the rate of introgression.  

 

6.  CULTIVATION ON CONTAMINATED AREAS  

For many soil metal contaminants, especially Zn and Ni, within a metal 

contaminated area, hyperaccumulator plants are likely to do well since foliar 

concentrations will be high.  This may result in the plants spreading within the 

contaminated area and displacing other “indigenous” species. However, diversity on 

contaminated sites is typically low with the more aggressive species being dominant and 

many species previously growing on contaminated sites are themselves considered 

weeds.  Therefore since this is an area needing remediation, spreading within the 

contaminated area and displacement of other “indigenous” species is generally 

considered a positive attribute.     

On the other hand, for metals such as Cd in contaminated or mineralized soils, 

soil concentrations never or rarely approach levels that are toxic to plants.  Cadmium 

tends to have few effects on plant growth, yet can still exhibit toxicity to animals.  While 

this does not obviate the ecotoxicity of high Cd plants, Cd hyperaccumulators will not be 

able to grow beyond the area of soil contamination.  Thus, escape of Cd 

hyperaccumulators beyond the area of contamination is not likely to be a concern.  These 

observations suggest that escape from the original site must be assessed based upon both 

the plant and soil. 

 



 

 

14

7.  CULTIVATION ON NATURALLY ENRICHED AREAS 

Cultivation of hyperaccumulators on naturally enriched areas offers the greatest 

promise for use in phytomining.  Phytomining is a more specific form of 

phytoremediation where the purpose of metal removal from soil is economic gain.  For 

example, millions of acres of Ni rich ultramafic soil are found around the world.  These 

soils are potentially amendable to Ni phytomining.  However, many of these areas are 

populated by a number of rare and endangered species. For example, serpentine soils in 

northern California and southern Oregon are populated by rare and endemic species that 

exist only on these soils (Kruckeberg 1954;1984).  Given the unique flora of enriched 

soils, concern has been raised that highly competitive and aggressive introduced 

hyperaccumulators may displace some of the natural flora.   The literature is replete with 

examples of introduced plant species dominating fragile ecosystems.  We have 

experience working on a serpentine pine barren.  Pines were never part of the indigenous 

ecosystem, and only came to dominate as part of human activity (clear cutting).   This has 

threatened much of the indigenous flora in serpentine areas and has led to debate as to 

whether pines should be removed by logging.   

 

As discussed, concerns related to escape of introduced hyperaccumulators exist 

and must be addressed prior to project initiation.  It is therefore critical to establishment a 

protocol to monitor the potential for escape from the original area of introduction.  Where 

escape in found, survival should be observed to determine whether this is temporary or 

whether escaped hyperaccumulators have the potential to become established as a 

permanent component of the ecosystem.   
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Angle et al. (2001) has reported that many hyperaccumulators are readily 

controlled with herbicides.  Therefore, where escape is found, it is possible to control 

these individuals with herbicides.  However, this is both an expensive and time 

consuming process and there can be no guarantee that all escaped plants will be found 

and killed.   

Another method to reduce the potential for escape from the original site of 

planting is to harvest plants prior to seed set.  Most hyperaccumulators set seed in mid 

summer.  Since most hyperaccumulators are perennials, they will typically be harvested 

at the time of maximum metal accumulation, then plants will continue to grow for an 

additional harvest the same year or in the following year.  Fortunately, maximum metal 

accumulation usually occurs just about at the time of flowering.  It is therefore possible to 

harvest plants before seed are produced.  Alternatively, for locations where it is unlikely 

that plants will survive the entire year (i.e. growing temperate hyperaccumulators in 

tropical areas), plants can be grown as annuals and again harvested before seed set.    

 

8.  VOLUNTEERS 

After remediation is complete there remains the limited potential for some seed, 

stored in the soil seed bank, to germinate, which may pose a small risk.  However, this 

risk may be managed using on site volunteer management.  Different approaches are 

available and will depend on the crop.  Generally, rotation with another crop, against 

which any phytoremediation volunteers will be visually obvious, allows the volunteers to 

be identified and removed.  The potential for volunteers can also be reduced by 
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harvesting before seed set, which reduces the likelihood of seed entering the soil seed 

bank. 

9.  GMO HYPERACCUMULATORS 

Genetic studies related to hyperaccumulators have been underway for many years 

Karenlämpi et al. 2000; Whiting et al. 2004).  Most studies have focused on the 

identification of genes involved in the process of hyperaccumulation – uptake, transport 

and sequestration (Rutherford, et al. 2004; Wang et al. 2002).  However, a few studies 

have resulted in the development of GMO hyperaccumulators, hopefully with enhanced 

potential to extract metals from soil.  Dhankher et al. (2002) reported the development of 

a plant with enhanced tolerance and uptake of arsenic.  More recently, several studies 

have described transgenic plants with the ability to take up and volatize selenium (Van 

Huysen et al. 2003; 2004).  Brassica juncea was engineered to over express a key 

enzyme in the sulfur assimilation pathway, which resulted in significantly greater uptake 

of Se.  Probably the greatest amount of study, and resulting publicity has occurred for 

poplar trees engineered for Hg uptake.  Bizily et al. (2001, 2003) and Pilon-Smits and 

Pilon  (2000) studied the insertion of genes that could potentially enhance Hg uptake and 

volatilization.  This work has successfully resulted in the production of transgenic trees 

that increase Hg uptake and volatilization from soil.  Similar reports that transgenic plants 

can increase Se uptake and volatilization have also recently been reported (Pilon-Smits et 

al. 1999a, 1999b). 

While the genomics of phytoremediation is proceeding at a rapid pace, concerns 

have been raised regarding this approach.  Imagine the public reaction to the following 

GMO hyperaccumulator: 
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“A non indigenous, weed that has been genetically engineered to be 
poisonous to most organisms that come into contact with it.”  

 

Each of the attributes noted above (weediness, non-indigenous import, poisonous, and  

GMO) raises serious individual concerns.  Multiplying each of these risks 

together might be more than the public is willing to tolerate.  Multiplication of concerns 

only exasperates the need to study, discuss and balance potential concerns with potential 

benefits. 

Two general approaches are current underway to develop GMO 

hyperaccumulators.  The first approach, which is by far the less common of the two, is to 

move genes that code for ‘large’ plant growth into true hyperaccumulators.  Most, but 

certainly not all, hyperaccumulators are small plants with low biomass.  Since 

phytoremediation efficacy is a function of both biomass produced and biomass metal 

content, most consider the small size of these plants to be the primary limiting factor.  By 

moving these genes into small hyperaccumulators, the goal is to create a GMO 

hyperaccumulator that expresses higher biomass production.  This approach might find 

greater use in the future since genes that code for enhanced growth are relatively well 

characterized.  This is in contrast to genes that code for metal hyperaccumulation which 

are not yet fully understood and at best appear to be controlled by at least several genes.   

The most significant concern with this approach is the subsequent transfer of 

genes that code for large plant growth from the GMO hyperaccumulator to local weeds.  

As previously noted, it is likely that plants within the same genus as the GMO 

hyperaccumulator will be found in the area under phytoremediation.  Most of these plants 
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can be weeds under the right conditions. For this reason, all practices to control 

introgression should be used.   

Another approach for control that could potentially be used is to create sterile 

plants via the insertion of suicide genes.  Suicide genes (DeBlock and Debrouwer 1993; 

Strauss et al. 1995) have been used for a variety of crops, primarily to prevent seed 

production that could be saved, thus leading to loss of control of the intellectual property 

(this could also be used to prevent hyperaccumulator GMOs from inappropriate use that 

violates the original patent). 

The second approach for the development of GMO hyperaccumulators and the 

one that is under active investigation is to identify genes that enhance metal uptake and 

transfer these genes to plants with much higher biomass.  Most studies previously 

discussed are following this approach.   The most important question for this approach is 

the selection of the crop plant that will be engineered for enhanced metal uptake.  It is 

very important that that we avoid introduction of metal-accumulation genes into crop 

plants that could either escape or via introgression spread them into nearby crop plants.  

We have spent decades trying to keep excess metals out of crop plants in order to protect 

human and animal health as well as to protect export markets (Chaney et al. 2001).  Now 

we are inserting genes that enhance metal uptake of crop plants to potentially toxic levels.   

One final concern that has been raised in several public forum is that enhance 

uptake and volatilization of volatile metals (Hg and Se) might exasperate downwind air 

pollution.  While volatilization is certainly a consequence of Hg and Se removed from 

soil (and is also a natural soil process), the overall contribution to air in comparison to 

amounts released via volatilization by indigenous bacteria is minor.  And since many 
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areas beyond several interior California valleys are Se-deficient, increased aerial 

deposition might be a positive attribute of the process since downwind soil concentrations 

might actually be increased. 

 

10.  BIOMASS DISPOSAL 

Once plants are harvested, biomass must be either disposed of using appropriate 

techniques or recycled to recover valuable metals.  Most phytoremediation scenarios 

envision that the biomass will be incinerated either to reduce volume, recover energy or 

both.  However, burning of metals, regardless of the form it is in, can lead to the 

formation of metal oxides.  Some metals are extremely volatile (Hg and Cd) while others 

belong to an intermediate group (Zn and Pb).  Metals such as Ni, Cr. and Cu are 

considered non  volatile (Belevi and Moench 2000).  Metal oxides are both toxic and 

carcinogenic.  Thus, care must be taken to control emissions during the incineration or 

smelting process.  Numerous methods are available to reduce gas emissions yet all are 

very expensive.   

Ash that results from the burning process can contain as high as 30% metal on a 

weight basis.  This concentration is several times higher than hard rock ore mined from 

the ground.  Thus, the ‘bio-ash’ or ‘bio-ore’ is a rich and potentially valuable ore 

depending upon the price of the extracted metal.  Through smelting or electro-wining 

processes, metals can be extracted from the bio-ore (Prasad and Freitas 2003; Kumar et 

al. 1995).   

A concern that has yet to be adequately addressed is the potential toxic nature of 

either biomass or bio-ore.  Biomass can contain up to 4% and bio-ore can contain up to 

30% metal on a dry weight basis.  Does either of these values cause the material to be 
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classified as a hazardous waste?  The questions remains unresolved in the US, yet for 

countries like Switzerland, the high metal concentration of the burned biomass would 

clearly classify the ash as a hazardous waste, and thus restrict ash disposal in a landfill 

(Swiss Federal Legislation 1996).  For this reason, high metal biomass would have to be 

incinerated with low metal materials (such as municipal solid waste) to dilute metals to 

acceptable levels.   

The USEPA classifies a hazardous waste as: “by-products of society that can pose 

a substantial or potential hazard to human health or the environment when improperly 

managed. The waste must also pose at least one of four characteristics (ignitability, 

corrosivity, reactivity or toxicity), or appears on special EPA lists.” 

The confusion relates to the source of the metal in the hyperaccumulator.  For 

example, high Ni in soil can result either from mining and smelting operations or occur 

naturally in soil from mineralization of ultramafic minerals.  Nickel removed from 

naturally enriched soil should not be considered a pollutant and thus guidelines that 

govern hazardous waste need to be questioned.  This conflict has yet to be addressed in a 

regulatory forum.  Nickel extracted from soil contaminated by anthropogenic activities 

might better fall within a regulatory agency thus needing more through review.    

Hazardous wastes are subject to a variety of rules and regulations, especially as 

related to transport.  It is theoretically possible that the bio-ore resulting from incineration 

could be classified as a hazardous waste. If true, simple transport of the bio-ore will be 

subject to a variety of Department of Transportation regulations.  At best, the burning of 

biomass and generation of the bio-ore will be conducted all on a single site.  This might 



 

 

21

even be the smelter that originally caused the contamination.  At worst, the biomass and 

or bio-ore might need to be transported via public roads to other locations.   

 

11.  CONCLUSIONS 

In conclusion, there are real risks associated with phytoremediation that require 

assessment and identification of management options prior to implementation of any field 

based operations.  Management options using confinement strategies such as onsite 

processing, discing, harvesting before seed set, and volunteer management, may reduce 

the likelihood of pollen and seed movement thus reducing potential risks. Data collection, 

interpretation and communication of risks must be evaluated if phytoremediation is going 

to find wide public acceptance. This argues for a balanced approach in the discussion of 

the benefits and risks of phytoremediation.   

In any discussion of risks, however, specific risks must be considered in 

comparison to doing nothing – leaving the site unaltered.  Risks of phytoremediation 

must also be assessed compared to the more traditional methods of remediation 

including, excavation and landfilling, soil incineration, soil washing and vitrification 

(EPA 1997, MADEP 1993).  Traditional methods of remediation have many real risks, 

both to human and environmental health that must also be considered.  Thus, while 

acknowledging that there are risks associated with phytoremediation, these risks are 

temporary that last only during the process of phytoremediation.  We believe that in most 

cases phytoremediation risks are small compared to the risks of doing nothing or the 

financial and engineering risks of ‘dig and haul.’  
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