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Determining Optimal Levels of Nitrogen Fertilizer Using Random Parameter
Models

Abstract

The parameters of yield response functions can vary by year. Past studies usually assume yield
functions are nonstochastic or ‘limited’ stochastic. In this study, we estimate rye-ryegrass yield
functions where all parameters are random. Optimal nitrogen recommendations are calculated for
two yield response functions: linear response plateau and Spillman-Mitscherlich. Nonstochastic
models are rejected in favor of stochastic parameter models. However, the economic benefits of
using fully stochastic models are small since optimal nitrogen rates do not differ greatly between
stochastic and nonstochastic models.

Key words: cereal rye-ryegrass, linear response plateau, Monte Carlo, nitrogen, random
parameters
Introduction

Models predicting crop yield response to nitrogen (N) fertilizers are often used to make fertilizer
recommendation rates (Lanzer and Paris 1981; Cerrato and Blackmer 1990; Babcock 1992;
Makowski and Wallach 2002; Mooney et al. 2008). Unfortunately, model based nitrogen rate
recommendations are vulnerable to misspecification of the yield response function. The objective
of this study is to determine expected profit maximizing nitrogen rate recommendations for a
winter cereal rye (S.cereale)/ryegrass (Lolium multiflorum Lam) forage crop based on models
that differ in functional form and whether or not model parameters are assumed stochastic.

Previous work on crop response to nitrogen fertilizer has usually used either limiting
nutrient response functions or polynomial models. Plateau functional forms tend to best fit data
from field studies (Heady and Pesek 1954, Lanzer and Paris 1981, Grimm, Paris, and Williams
1987). Past studies have often assumed that the parameters of the yield function are
nonstochastic or ‘limited’ stochastic (Some parameters are considered stochastic and others are
not), and that all model errors are independent. This assumption often leads to estimating the

parameter values of the assumed yield function by ordinary least squares. Research suggests,

however, that parameters of yield response functions can vary by year.
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Random parameter models have been suggested by Berck and Helfand (1990), Paris
(1992), Makowski and Wallach (2002), and Tembo et al (2008). Berck and Helfand (1990), and
Paris (1992) consider linear response plateau models where the intercept and plateau parameters
are random, but without random effects. Tembo et al (2008) adds uncorrelated random effects to
the intercept and plateau, but not to the slope. Of these studies, only Makowski and Wallach
(2002) treat all of the model parameters as random. Makowski and Wallach (2002) consider a
linear-plus-plateau function in which wheat yield response is related to N uptake, and nitrogen
uptake is related to applied nitrogen.

We consider three crop response functions: the linear response plateau (LRP), the
Spillman-Mitscherlich, and the quadratic; and we make all model parameters random. Our
random parameter model lets parameters vary stochastically by year. The data used are annual
rye-ryegrass forage data collected from a long-term nitrogen fertilization experiment in south-
central Oklahoma. We conduct nested likelihood ratio tests to choose between nonstochastic and
stochastic models (Greene, 2008), and evaluate the economic value of using the alternative
models by comparing expected profit. The ultimate goal is to make optimal nitrogen rate
recommendations for cool season cereal rye (S.cereale)-ryegrass (Lolium multiflorum Lam)
forage producers in southern Oklahoma.

Determining the Profit Maximizing Level of Nitrogen Fertilizer

Consider a risk-neutral forage producer whose objective is to maximize expected net
returns from winter cereal rye-ryegrass forage. The producer seeks to maximize expected net
return above nitrogen cost:

1) maxy E(R¢|N) = pE[y.] =N

st. y, =F(N),N >0,



where R; is the producer’s net return at time t, y; is the forage yield, N is the level of applied
nitrogen, r is the price of applied nitrogen fertilizer, and p is the price of forage. Yield
expectations are obtained through the production function F(N), which is stochastic due to
weather and other factors. We consider the three production functional forms in turn.

Linear Response Plateau

A stochastic linear response plateau function is specified as

(2) Yie = min(By + (S¢+B1)Nie, pp + Ve) + Ue + &g,
where y;, is the forage yield of cereal rye-ryegrass from the i plot in year ¢, N;, is the level of
nitrogen fertilizer, u,, is mean plateau yield, s, is the slope random effect, v, is the plateau year
random effect, u; is the (intercept) year random effect, and ¢;; is a random error term that is
normally distributed and independent of the three random effects. The intercept random effect is
added to the whole equation rather than just to 5, so that the model of Tembo et al. (2008) is a
special case. The variance parameters u;, s;, and v; are correlated and normally distributed.
Makowski and Wallach (2002) use a model where (By, B4, 1, )~N (B, £2). Our model is
parameterized differently, but is equivalent to Makowski and Wallach (2002).

The random effect u, shifts the whole function up or down, which could be due to a
variety of weather factors, insects or disease. The slope random effect s; may be due to nitrogen
losses from leaching, soil or weather characteristics, or weed pressure during critical growth
periods. The plateau year random effect v, shifts the yield potential from applying more
nitrogen, which mostly varies due to rainfall in a given year. For example, when growing
conditions are favorable in a given year, the plateau yield increases as does the amount of
nitrogen that the plants can use. When the model is nonstochastic, the random variables v, and s;

will be zero, but u; may still be included.



The function is continuous, but its derivatives do not exist with respect to either its
parameters or N at the knot point where the response and the plateau are joined, but the
derivatives of expected yield do exist for the stochastic model. Choosing the level of nitrogen
(N*) that maximizes equation (1) follows the rule from economic theory that marginal
factor/input cost (MFC) should equal marginal expected product value (MVP).With a
nonstochastic linear response plateau function, equation (2) will exhibit constant positive
marginal product when u, > B, + 1N . If MVP > MFC, then nitrogen should be applied until
MVP=MFC. Increasing N beyond the level required to reach p,, will generate negative marginal
returns. Therefore, with the nonstochastic LRP, N* would either be the level required to reach
the plateau (N,) or zero:

N, if VMP > MFC
(3) ve=fr .
0, otherwise.

For the stochastic LRP, the random variable u; in equation (2) enters linearly, and

therefore it drops out after taking expectations. Therefore, the expectation of y becomes

(4) E(y) = E[min(ﬁo + (By + se)N, uy, + vt))]-
Since s; and v, are random and correlated, the expectation in (4) requires integrating with
respect to s; and v;, which defines a double integral that must be solved numerically:

(5) E(y,) = ff[min(ﬁo + By + 5N,y + vt)]go(st'vt)astavt :
where ¢ (s;, v;) is the multivariate normal probability density function. Tembo et al. (2008) use
the approach developed for Tobit models and obtain N* by evaluating a univariate normal
probability density function since they do not allow the slope to be random. Makowski and
Wallach (2002) solve the integral using Monte Carlo integration. The integration in (5) can also
be solved using other numerical approximation methods such as Gaussian cubature (DeVuyst

and Preckel 2007). We use Monte Carlo to solve the double integral. The optimal level of N is



obtained by direct non-linear optimization (grid search would also work since there is only one
choice variable).
Spillman-Mitscherlich
The Spillman-Mitscherlich yield response function is an exponential function (Spillman 1923). A
univariate stochastic form of this function is
(5) Yie = a— (b +spexp ((—¢ + v)Ny) + ug + &,

where a is the maximum or potential yield obtainable by applying nitrogen under the conditions
of the experiment; b is the increase in yield due to applied nitrogen; c is the ratio of successive
increments in output a to total output y; u;, s;, and v, are correlated random effects; and ¢;; is
the independent error term. When the model is nonstochastic, the random variables s; and v, are
zero, but u, is still included.

Equation (5) shows that as the application rate of nitrogen increases, the yield increases at
a decreasing rate and asymptotically approaches a maximum as the application rate
(theoretically) approaches infinity. The function does not strictly adhere to the law of the
minimum like in the case of the linear response plateau (allows for convex rather than right-
angled isoquants), but unlike the polynomial functions, it exhibits a plateau. The function
exhibits sufficient flexibility to accommodate from near perfect substitution to near zero factor
substitution if the data and production process so suggest (Frank, Beattie, and Embleton1990).

The optimal level of nitrogen is obtained by substituting (5) into (1) and then solving the
optimization problem. For the nonstochastic Mitscherlich yield function, the optimal level of

nitrogen (N*) is obtained by solving the first order condition for N, which gives

6 N ==|n (M)]

-C cb

For the stochastic Mitscherlich, since the random variables s; and v; do not enter linearly in (5),

the expectation of y is obtained by numerically solving the integral:
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7 E(p) = j j [a+ (b + 50) exp(—c + v;) N1g(sp, 1)95,97:.

The double integral is solved using Monte Carlo integration. Monte Carlo approximates (7) with
a summation, which is then substituted into (1) and the optimal level of nitrogen is then obtained
by nonlinear optimization.
Quadratic Response
A random parameter quadratic response model is specified as
8)  Yie =Bo+ (B +VvINy + (B2 + sONG +up + &g,

where £, is the intercept parameter whose position (value) can be shifted up or down from year
to year by the year random effect u;, 8, is the linear response coefficient with random effect
parameter v;, 8, is the quadratic parameter whose value can be shifted up or down by the
random effect s;, and &;; is the independent error term assumed to be normally distributed. The
random effects v;, s; and u, are correlated and normally distributed. When the model is
nonstochastic, the random effects v; and s, would be zero, but u;, is still included.

Since (8) is continuously twice differentiable and all the random parameters enter in (8)
linearly, (1) gives the same analytical solution for both stochastic and nonstochastic models.
Note that for the nonstochastic model, the values of v;, s; and u, are all zero. Hence the problem

of calculating N* simplifies to the usual:

9) N* = By —1/p)/ 2B

Model Fit and Selection Criteria
Likelihood ratio tests are used to choose between stochastic and nonstochastic models (Greene
2008). The calculated likelihood ratio statistics have a chi-square distribution under the null

hypothesis. To choose between competing model functional forms, Davidson and Mackinnon



(1981) suggest using formal non-nested tests such as the J-test and P-test. These tests, however,
cannot be used here since they can only be used when the nonoverlapping parameters are
associated with fixed effects.

The literature on non-nested hypothesis tests provides a variety of criteria to select the
model that best fits data based on the information of the true model with respect to the fitted
model. When competing non-nested models are fully parameterized and estimated by maximum
likelihood, a popular criterion is the adjusted model log-likelihood such as AIC (Akaike, 1974)
and BIC (Schwarz 1978). However, these criteria do not take into account whether the
differences in the penalized log-likelihoods are statistically significant or not. When observations
are independent and identically distributed, a test can be done following Vuong (1989). Pollak
and Wales (1991) introduced the Likelihood Dominance Criterion (LDC). The LDC provides
rationale to compare two models based on the difference in estimated likelihoods, with
adjustments for differences in the number of parameters, and for a given significance level
(Pollak and Wales 1991; Grewal, Lilien, and Mallapragada 2006). The criterion involves a
fictitious experiment where two competing hypothesis are nested in a composite and the concept
of dominance ordering is used to choose among the two. This criterion is the one we use for
testing hypothesis to choose between our non-nested models.

Let H; and H, be two models (hypotheses) with n; and n, parameters, respectively, and
let L; and L, be the log likelihoods. Let C(v) denote a critical value of the chi-square distribution
with v degrees of freedom at significance level a. According to the LDC:

1. Select H; if L,— Ly < [C(nz + 1) — C(ny + 1)]/2.

2. Select Haif L, — Ly > [C(n, — ny + 1) — C(1)]/2.

3. Otherwise, model selection is indeterminate.



When n; = n; (our case), the indeterminate region reduces to zero and the criterion reduces to a

simple comparison of estimated maximum likelihood values (Pollak and Wales 1991).

Data

Forage yield data are cross-sectional times-series from a long-term experiment conducted by the
Agricultural Division of The Samuel Roberts Noble Foundation (1997-2008) at Red River
demonstration and research station near Burneyville, in south-central Oklahoma. The experiment
began in 1979 and was aimed at evaluating the effect of nitrogen fertilization rate and harvest
timing on the annual rye-ryegrass forage production system, using a randomized complete block
design. Details of the experimental set up are described in Altom et al. (1996) who analyzed the
data from 1979 to 1992.

Our dataset covers 14 years from fall 1993 to spring 2007. Six treatment levels of
nitrogen (34-0-0) were administered: 0, 100, 150, 200, 300, and 400 pounds per acre per year.
Treatments were replicated three times for each level of nitrogen. Split applications were used.
Ammonium nitrate was broadcast and incorporated prior to planting in the fall. Spring
applications were not incorporated. Fall fertilization was done between September 24 and
October 25. Spring fertilization was between February 20 and March 17. Phosphorous was
banded with the seed at a rate of 50lbs P,Os/acre every year, Potassium was broadcast and
incorporated prior to planting at an average rate of 100 Ibs K,O/acre. Lime was applied to the
plots used in the study.

Forage yields were determined by clipping individual plots that were 12 by 13 ft. Plots
were clipped multiple times to simulate grazing. Yearly dry matter forage yields were the sum of
all clippings for that year. Average annual rye-ryegrass yield response to nitrogen fertilization is

shown in figure 1.



Estimation

The models are estimated using NLMIXED procedure in SAS (SAS Institute Inc. 2003).
The dependent variable is yield, and the independent variable is nitrogen. For the quadratic,
nonstochastic LRP and nonstochastic Mitscherlich models, the error term and random effects
enter the equation linearly. In the stochastic LRP and the stochastic Mitscherlich models, the two
non-intercept random effects enter the equations nonlinearly. The random effects are estimated
as free correlated parameters, but the error term is independent.

The NLMIXED procedure fits nonlinear mixed models by maximizing an approximation
to the likelihood integrated over the random effects (SAS Institute Inc. 2003). As is common in
nonlinear optimization, convergence can be difficult and computing the objective function and
its derivatives can lead to arithmetic overflows (SAS Institute Inc. 2003). The models have no
closed form and can only be approximated numerically. To achieve convergence, three efforts
are employed: scaling, varying starting points, and using different optimization techniques
available in SAS.

Pinheiro and Bates (1995) provide evidence that of the several different integrated
likelihood approximations methods, adaptive Gaussian quadrature is one of the best. We use
adaptive Gaussian quadrature to approximate the likelihood function integrals and maximize the
function by the dual quasi-Newton optimization algorithm. Other optimization techniques that
enabled convergence are the Newton-Raphson method with ridging and the Trust-Region
Method (SAS Institute Inc. 2003). The quadratic and nonstochastic Mitscherlich models
converge with less need of scaling and changing starting point values. Estimates obtained are

then used to determine the optimal level of nitrogen.
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For the stochastic LRP and stochastic Mitscherlich, the estimated parameters are used in
Monte Carlo integration. The random vector [s;, vi] ~N(0, Q). We use the Cholesky
decomposition, Q = P'P, where P is a lower triangular matrix. Let Z be a 2x1 vector of
independent draws, then PZ~N(0, ). With sufficient draws, the sample average of the function
being integrated provides an approximation to the integral (Greene 2008). We use 10,000 draws
for our approximation. To obtain the optimal level of N, we use the SAS PROC NLP procedure

and maximize our objective function (1) using Newton-Raphson with ridging.

Results

Estimated parameters are reported for the quadratic model in table 1, linear response
plateau in table 2, and Mitscherlich in table 3. For all models, the mean parameters and variance
estimates are statistically significant at the 5% level based on Wald t-tests. Covariance
parameters of the stochastic quadratic model are not statistically significant at the 5% level.
Covariance parameters of the stochastic Mitscherlich and the covariance between the plateau and
the slope in the stochastic LRP are statistically significant. The likelihood ratio (LR) statistic for
the stochastic quadratic versus the nonstochastic quadratic model is 170; the LR for the
stochastic linear response plateau versus the nonstochastic linear response plateau is 269.4; and
the LR for the stochastic Mitscherlich versus the nonstochastic Mitscherlich is 262.8. All the LR
statistics are greater than the critical chi-square (X2) value® at any conventional significance

level. Stochastic models fit our data better than the alternative non-stochastic models.

! Note that there is a potential nuisance parameter problem with this hypothesis test since
imposing that the two variances are zero also imposes that the three covariances are zero. We do
not explore this issue since all null hypotheses are rejected even using the more conservative
critical value.

11



Based on the LDC (Pollak and Wales, 1991), we choose the model functional form that
fits our data best. The estimated maximum likelihood value for the stochastic LRP is 2295.1. The
likelihood value for the stochastic quadratic is 2348.6, and for the Mitscherlich it is 2300.0. Both
models have the same number of parameters (n=9). Hypothesis testing on model functional form
according to the LDC ranking favors the stochastic LRP over the stochastic Mitscherlich and the
stochastic Mitscherlich over the stochastic quadratic model. From the illustration in figure 1, a
quadratic model may be considered a poor choice for this dataset on the basis that it assumes
symmetry. It indicates that yield decreases past the peak at the same rate it increases before the
peak. We base our optimal N rate recommendations on the LRP and the Mitscherlich models.

Profit maximizing level of nitrogen is evaluated at 2009 input and output prices.
Although nitrogen 34-0-0 ammonium nitrate was used in the experiment, The Samuel Roberts
Noble Foundation Agricultural Division currently recommends using 46-0-0 urea. The prices of
34-0-0 and 46-0-0 are $.51/Ib of N and $.41/1b of N, respectively. We do a sensitivity analysis by
determining nitrogen rate recommendations as input prices vary. The per pound price of forage is
determined as the cost of beef gain per pound divided by the pounds of forage required by a
stocker animal to produce a one-pound gain. Based on the National Research Council (1984) net
energy equations used to estimate livestock requirements, Ishrat , Epplin, and Krenzer (2003)
and Krenzer et al (1996), show that one pound of beef gain requires 10 Ibs (dry matter) of
standing forage. Within the south-central Great Plains, the cost per pound of gain has ranged
from $0.32/1b since 2005 to $0.55/Ib in 2008. Currently, due to decreased prices of corn and
fertilizer, this cost has declined to $.45/lb, (which is approximately the mean across the period).
Therefore, at the cost of beef gain per pound of $0.45, the price per pound of forage is
$0.45/10=%$0.045. Our optimal nitrogen rate recommendations are based on nitrogen prices of

$0.41/1b and forage sale prices of $0.045/Ib.
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The estimated optimal nitrogen rates and their standard errors for the models are included
in the respective tables of results. At current prices, the profit maximizing level of nitrogen
obtained with the nonstochastic linear response plateau model is 182.3 Ibs/acre, the level of
nitrogen required to reach the plateau. Applied nitrogen increases yield at a rate of 13.8 Ibs/acre
until the plateau yield level of 8235.7 Ibs/acre. At $0.045 sale price of forage, the marginal value
product of nitrogen is $ 0.62 per pound, which is greater than the $ 0.41/Ib price of nitrogen. The
95% confidence interval of the optimal level of nitrogen obtained the nonstochastic LRP is 209.4
Ibs/acre to 154.6 Ibs/acre. Maximum profits for the stochastic linear response plateau are
achieved with nitrogen fertilization of 143.6 Ibs/acre. The 95% confidence interval of this
estimate is to apply 115.5 Ibs/acre to 171.8lbs/acre of nitrogen. The expected profit function of
the nonstochastic LRP is higher than that of the stochastic LRP (Figure 2a). The loss from using
the nonstochastic LRP to predict optimal nitrogen levels when the stochastic LRP is the true
model is approximately $9.0 per acre. This loss is small because the expected profit function of
the stochastic LRP is relatively flat at current input and output prices.

Profit maximizing level of nitrogen obtained with a non-stochastic Mitscherlich is 113.5
Ibs/acre. The 95% confidence interval of this estimate is 95.4 Ibs/acre to 130.4 Ibs/acre of
nitrogen. The optimal level of nitrogen obtained with a stochastic Mitscherlich model is 107.4
Ibs/acre. The 95% confidence interval for the optimal level of nitrogen obtained with the
stochastic Mitscherliuch is 103 Ibs/acre to 110.6 Ibs/acre. The expected profit function of the
non-stochastic Mitscherlich model is higher than that of the stochastic Mitscherlich (Figure 2b).
The loss from using the non-stochastic Mitscherlich model to predict the optimal level of
nitrogen when the stochastic Mitscherlich is the true model is approximately $1.0 per acre. The
economic benefits of using fully stochastic models are small since optimal nitrogen rates do not

differ greatly between stochastic and nonstochastic models. Profit maximizing level of nitrogen
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obtained with a nonstochastic quadratic model is 144.3 Ibs/acre, and the optimal level of nitrogen
obtained with a stochastic quadratic model is 171.4 Ibs/acre.

We notice from figure 3 that fertilizer recommendations for the stochastic linear response
plateau and the stochastic Mitscherlich can be less or more than fertilization rates recommended
with the alternative nonstochastic model, depending on price ratios of the input and the output.
The stochastic quadratic model consistently estimates higher optimal levels of nitrogen than the
alternative nonstochastic model.

Summary and Conclusions

Models predicting crop yield response to nitrogen fertilizer are often used to recommend
optimal fertilizer rates. Past studies usually assume the parameters of the yield function are
nonstochastic or ‘limited’ stochastic, and that all model errors are independent. Given that
research suggests that the parameters of the yield functions vary by year, estimating a random
parameter model could give a more realistic model of producers’ profit expectations. In this
study, we consider yield functions where all parameters are random. The approach was applied
to cereal rye/ryegrass forage data collected from a long-term nitrogen fertilization experiment in
south-central Oklahoma to determine and compare the profitability of nitrogen estimated from
stochastic models and the alternative nonstochastic models. The model functional forms
considered are the linear response plateau, the quadratic, and the Spillman-Mitscherlich.

Constant parameter models are rejected in favor of random parameter models. The
quadratic model fits the data poorly. At current prices, a nonstochastic LRP gives an optimal
level of nitrogen that is 38.7 Ibs/acre higher than the stochastic LRP. The loss from using a
nonstochastic LRP instead of a stochastic LRP to predict optimal nitrogen level when the
stochastic LRP is the true model is only $9.0 per acre. At the optimum, a non-stochastic

Mitscherlich model gives an optimal level of nitrogen that is 6.1 Ibs/acre of nitrogen higher than
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the stochastic Mitscherlich model. The loss from using a nonstochastic Mitscherlich model to
estimate the optimal N rate when the stochastic Mitscherlich is the true model is only about $1.0
per acre. The finding by Makowski and Wallach (2002) that it pays to use a random parameter
model to calculate nitrogen rates is supported but the loss from not using random parameters
models to determine the optimal level of nitrogen is very small. The observation by Cerrato and
Blackmer (1990) and other researchers that the quadratic model estimates a higher optimal
nitrogen rate than a linear response plateau is supported for stochastic models but not for
nonstochastic models.

Current recommendations of fertilizing annual cool season cereal rye-ryegrass pastures
from the Noble Foundation are to apply 100 to 200 Ibs/acre. Our estimated optimal rates are
within this range. Based on the estimates from the stochastic LRP, the 95% confidence interval
level is to apply between 115.5 Ibs/acre to 171.8lbs/acre annually. Based on the estimates from
the stochastic Mitscherlich, however, the 95% confidence interval for recommendations is

between 103 Ibs/acre to 110.6 Ibs/acre annually.
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Table 1. Rye-Ryegrass Yield (1000Ibs/acre) Response to Nitrogen (100lbs/acre) Using the
Nonstochastic and Stochastic Quadratic Models

Stochastic Nonstochastic
Parameter Quadratic Quadratic

Estimate SE Estimate SE
Intercept (B,) 5.74 0.54 5.77 1.15
Slope (8;) 1.74 0.44 1.64 0.18
Quadratic term (B,) -0.24 0.10 -0.25 0.04
Variance of intercept random effect (¢2) 13.46 3.29 19.32 7.08
Variance of error term (c2) 1.89 0.11 2.43 0.14
Variance of slope random effect (¢2) 1.93 0.35
Variance of quadratic term random
effect (62) 0.47 0.20
Covariance (67, 02) 1.62 1.51
Covariance (02, d2) -0.004  0.38
Covariance (67, 02) -0.03 0.06
Optimal level of N (100lbs/acre) 1.71 0.12 1.44 0.15
-2 Log Likelihood 2348.6 2433.6
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Table 2. Rye-Ryegrass Yield (1000lbs/acre) Response to Nitrogen Using the Nonstochastic
and Stochastic Linear Response Plateau Models

Stochastic Linear Nonstochastic Linear
Parameter Plateau Plateau

Estimate SE Estimate SE
Intercept (B,) 5.67 0.29 5.72 1.15
Slope (8,) 1.62 0.31 1.38 0.17
Yield plateau (u,,) 8.01 0.12 8.23 1.14
Intercept random effect (o) 13.96 1.53 19.32 7.08
Variance of error term (c2) 1.85 0.11 2.42 0.14
Plateau random effect (a2) 3.65 0.33
Variance of slope random effect (¢2) 0.89 0.16
Covariance (¢2,02) -1.41 0.74
Covariance (62, 02) 0.89 0.82
Covariance (02, a%) 1.54 0.18
Optimal level of N (100lbs/acre) 1.44 0.14° 1.82 0.14°
-2 Log Likelihood 2295.10 2429.80

& The standard error of N* for the stochastic LRP is obtained by Monte Carlo methods, while the standard error of
N* for the nonstochastic LRP is obtained using the delta rule.
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Table 3. Rye-Ryegrass Yield (1000Ibs/acre) Response to Nitrogen Using the Nonstochastic
and Stochastic Spillman-Mitscherlich Models

Stochastic Nonstochastic
Parameter Mitscherlich Mitscherlich
Estimate SE Estimate SE
Maximum (potential) yield (a) 7.91 0.12 8.47 1.15
Response due to nitrogen (b) 3.28 0.38 2.81 0.23
Ratio of successive increments (c) 1.31 0.26 0.89 0.16
Variance of error term (&;) 1.85 0.11 2.42 0.14
Intercept random effect (¢2) 19.44 1.10 19.35 7.09
Variance of slope random effect (¢2) 5.89 1.45
Plateau random effect (¢72) 0.37 0.15
Covariance (¢2,02) 8.36 1.16
Covariance (¢2,02) 1.67 0.36
Covariance (62, 02) 0.80 0.19
Optimal level of N (100Ibs/acre) 1.07 0.02° 1.13 0.09°
-2 Log Likelihood 2300.0 2431.4

® The standard error of N* for the stochastic Mitscherlich is obtained by Monte Carlo methods, while the standard

error of N* for the nonstochastic Mitscherlich is obtained using the delta rule.
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Figure 2. Expected profit functions (Price of ryegrass =$.0450/Ib, price of nitrogen=3$.41/1b)
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Figure 3. Optimal level of N at varying prices for the LRP models and quadratic models
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