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Abstract 
 

The passage of U.S. laws mandating and subsidizing advanced cellulosic biofuels may 
spur the development of a commercial cellulosic biofuels industry.  However, a cellulosic 
industry will only develop if the overall economics including government incentives render 
investment in the sector attractive to private investors.   

 
 This study compares the profitability of three biofuel production types: grain based 

ethanol, cellulosic biochemical ethanol, and cellulosic thermochemical biofuels.  In order to 
compare the current profitability of each of the production types, the Biofuels Comparison 
Model (BCM) was developed.  The BCM is a spreadsheet model that estimates the net present 
value (NPV) for each production type given input and output prices, technical, and financial 
assumptions.  The BCM can be updated to reflect the current profitability through embedded 
web price links.  

 
The study finds that grain, biochemical, and thermochemical production types are all 

currently unprofitable when subsidies and mandates are ignored.  However, the grain based 
ethanol process is predicted to be the most profitable (lowest loss) compared to the cellulosic 
biofuels.  When the 2008 Farm Bill subsidies are added to the BCM, all three production types 
are projected to be profitable.  With the addition of the different subsidies, the cellulosic biofuels 
are estimated to have higher NPV’s than grain based ethanol.   

 
When compared on an energy equivalent basis, the estimated cost of producing grain 

ethanol is $114/bbl. crude oil equivalent, biochemical ethanol $141/bbl., and thermochemical 
gasoline $108/bbl. 
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1. I TRODUCTIO  

 
1.1 Overview 

 
Since 2004, ethanol production capacity in the United States (U.S.) has increased 

drastically; from 3.1 billion gallons per year (BGY) in 2004 to a January 2009 capacity 
of 10.6 BGY (Renewable Fuels Association, 2009).  Currently, almost all of the ethanol 
produced in the U.S. is produced from corn.    

 
 The rapid increase of grain based ethanol production in the U.S. likely resulted 
from high oil prices, federal mandates and a continued fixed subsidy program (Tyner, 
2008).  Though these initiatives were successful in increasing ethanol production, many 
believe they led to higher commodity prices; affecting both livestock producers who 
rely on corn as a feedstuff and world consumers who purchase grain and meat products.  
In fact, the previous blending subsidy of 51 cents per denatured gallon was said to 
increase the price of corn by $1.07 per bushel (Abbott et al, 2008).  Because of the 
negative externalities associated with producing grain based ethanol, there has been 
political pressure to start producing advanced cellulosic biofuels.       
 
 Cellulosic biofuels are gaining attention as a possible solution to decrease our 
dependency on foreign oil and produce a cleaner burning fuel while not significantly 
affecting the price of agricultural commodities.  The key distinction between grain 
based ethanol and cellulosic biofuel production is that the cellulosic production can 
utilize any organic material to produce biofuels; namely wood wastes, corn stover or 
switchgrass.  Two processes, biochemical and thermochemical production, are both 
advanced cellulosic production methods that likely will be utilized in the United States.   
Though both of the advanced biofuel production pathways hold promise; there are 
currently no commercial scale cellulosic plants in the production or construction phases 
in the U.S. 
 
   Cellulosic plants have been regarded as uneconomical in the U.S., especially 
compared to grain based ethanol.  A 2007 study concluded it cost 44% more to produce 
cellulosic biofuels than grain based ethanol; largely due to the high capital costs 
associated with building the plants (Wright and Brown, 2007).  However, assuming 
technology continues to progress, it is possible that cost will decrease for cellulosic 
plants; making cellulosic biofuels economically feasible.     
 
 To jumpstart the advanced biofuel industry, the United States Congress passed 
the “Energy Independence and Security Act of 2007” which mandates the use of 
advanced biofuels.  The Energy Independence and Security Act of 2007 amends the 
“Renewable Fuels Standard (RFS)” that was signed into law in 2005.  An important 
aspect of this legislation is that 21 billion gallons of the mandated biofuels must derive 
from advanced biofuels; such as cellulosic ethanol, and 16 of the 21 billion must come 
from cellulosic feedstocks (U.S. Congress, 2007).  In addition to this mandate, the 2008 
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Farm Bill created subsidy differentiation based on how the ethanol is produced.  The 51 
cents blending subsidy for all ethanol was reduced to 45 cents per denatured gallon for 
the grain based platform in January 2009, and the effective subsidy for cellulosic 
methods was increased to $1.01 per gallon (U.S. Congress, 2008).  These increased 
subsidies and mandates could spur investment in advanced biofuels especially in 
biomass rich areas such as Indiana, if investors believe they will be upheld throughout 
the investment life1.    
 

During the course of this research, a spreadsheet model was developed to 
compare the profitability of each of the production plant types using current and future 
technology estimates, current market prices for inputs and outputs, financing 
assumptions, and assumptions regarding state and federal subsidies.  Previous cellulosic 
economic analysis models are not linked to current price levels, thus making 
profitability comparisons difficult when markets change.  This economic analysis will 
compare each production type on both a pre and post tax net present value basis (NPV), 
conduct a sensitivity analysis to the key cost and revenue drivers, and estimate cash 
flows for each production type.   

1.2 Objective and Approach 
 

The key objective of this study is to conduct an economic analysis of cellulosic 
and grain based biofuels under a range of policy and economic assumptions.  This 
section focuses on defining the research goals and explaining the studies approach. 

 
1.2.1 Cellulosic Economic Analysis Objective and Approach 

 
The objective of the biofuels comparison analysis is to determine the 

profitability of advanced cellulosic biofuels compared to traditional grain based ethanol.  
Determining the profitability of the advanced biofuels industry is crucial for both 
investors and policy makers.  The biofuels comparison analysis will focus on comparing 
the economics of three biofuel production types: grain based ethanol, cellulosic 
biochemical ethanol, and cellulosic thermochemical biofuels.  The underlying objective 
of this analysis is to determine if cellulosic biofuels are becoming more competitive 
with traditional grain based ethanol in continually changing markets, in terms of 
profitability, and establish which inputs are the key drivers of profitability by 
conducting sensitivity analysis.  Of course, since there are no commercial plants, the 
comparative analysis is somewhat speculative. 

 
The first step in conducting the biofuels profitability analysis is to build an 

Excel spreadsheet model, the Biofuels Comparison Model (BCM), which compares 
grain based ethanol to advanced cellulosic biofuels on both a pre and post-tax NPV 
basis.  Part of the spreadsheet model follows a framework similar to Douglas Tiffany’s 
dry mill ethanol spreadsheet that has been cited numerous times in the literature and at 
major conferences (Tiffany, 2003).  The BCM is built in a way that allows the user to 
                                                           
1 Currently the cellulosic subsidy is set to expire in 2012. 
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easily adjust price, financial and technical assumptions.   This flexibility is crucial 
because no large scale cellulosic plants are currently in the production or construction 
phases, and it is highly likely that technical and cost estimations for the biochemical and 
thermochemical processes will change, thus changing the economic outlook of each 
plant type. 

 
The BCM is built to allow instant updates to key input and output prices through 

direct web links.  The links allow for instant updates on ethanol, diesel, gasoline, oil, 
corn, liquid propane, electricity and dried distillers grains with solubles (DDGS) prices.  
This feature allows the user to obtain a ‘snapshot’ of current un-hedged profitability for 
both the grain based and cellulosic production methods.  Alternatively, users can 
specify their own price inputs. 

 
The second step in conducting the biofuels profitability analysis is to calculate 

profitability on both a pre and post tax NPV basis using the current profitability outputs 
from step one.  This NPV analysis assumes that all of the revenues and costs will 
remain fixed throughout the 20 year life of the plants.  That is, the subsidies, revenues 
and expenses of today will be the same throughout the entire plant life.  The BCM 
accounts for inflation by deflating the debt payment over the life of the plant.  Other 
revenues and expenses are not adjusted and are assumed to be constant in real terms.  
Output from the BCM includes pre-tax NPV, post-tax NPV and a graph indicating the 
predicted post-tax cash flows.         

 
The third step in this portion of the study is to conduct sensitivity analysis on 

which input and output prices have the largest impact on profitability for each of the 
production types.  Key costs including feedstuff, energy, enzyme and capital costs were 
all individually subjected to a 20% price shock.  The post tax NPV output from the 
model was then compared to the base case scenario to establish how changes in key 
inputs affect the overall profitability for each production type. 

 
1.3 Organization 
 

The paper will study the economics of cellulosic biofuel production compared to 
the established grain based ethanol industry.  In section 2, an extensive review of the 
literature will be conducted on methodologies for estimating the economics of these 
alternative investments.  Section 3 consists of the economic biofuel analysis and 
includes a description of the BCM, base case results, sensitivity analysis, and policy 
implications. Finally, the last section provides conclusions, study limitations, and future 
research suggestions. 



 

4 
 

2. LITERATURE REVIEW 
2.1 Overview 
 

Chapter 2 will examine the literature related to both the economics of the corn 
based ethanol and cellulosic biofuel industries.  It should be noted that very little 
literature exists about the specific issues studied, thus much of the literature reviewed is 
indirectly related to the subject.   

 
2.1.1 Cellulosic Economic Analysis Literature Review 

 
 The cellulosic biofuel industry is still in its infant stages, thus the literature that 
focuses on cellulosic biofuel economics is limited and often contradicting in terms of 
technical and cost assumptions.  With that being said, there have been several 
publications that exclusively examine the economics of biochemical and 
thermochemical cellulosic production plants.    
 
 One of the first studies to economically compare advanced biofuel production 
methods to grain based ethanol production is a publication by Wright & Brown (2007).  
This publication examined the economics of grain based ethanol, cellulosic ethanol 
(biochemical process), methanol, hydrogen and Fischer-Tropsch (thermochemical 
process).  The Wright and Brown publication reviewed the literature and then adjusted 
the literature estimates to reflect 2005 dollars as well as scaling all plants to a 150 
million gallon per year gasoline equivalents.  Wright and Brown reported that there 
would be substantial economies of scale with the larger cellulosic plants in terms of 
both capital and operating costs, and used a capital cost scaling factor of .63 for the 
biochemical platform and .7 for the thermochemical platform (Wright & Brown, 2007).  
Wright and Brown concluded that the capital and total costs per gallon of gasoline 
equivalents would be substantially higher for the advanced cellulosic fuels compared to 
the grain based ethanol process.  Wright and Brown reported in Table 2.1 that the total 
costs per gallon would be 44% higher for the biochemical cellulosic ethanol process 
compared to the grain based process and 48% higher for the thermochemical cellulosic 
biofuel process compared to grain based ethanol production.  The total costs per gallon 
consist of feedstuffs, operation and management, credits and capital charges.  In 
addition, they concluded that it would require approximately 6.8 times as much initial 
capital dollars to build a biochemical cellulosic ethanol plant compared to a grain based 
plant that produced the same in terms of gasoline equivalents.  Similarly, a 
thermochemical cellulosic biofuel plant would require approximately 7.7 times as much 
capital to generate the same amount of gasoline equivalents (Wright & Brown, 2007).  
This cost data was not used directly in our analysis.  
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Table 2.1: Capital and Total Cost for 150 MMGPY Plant 

Biofuel Type 

Total Capital 

Costs  Capital Cost  Total Cost 

   ($ millions) ($/gal.)* 

Grain Ethanol 111 $.74  $                    1.22 

Cellulosic Ethanol 756 $5.04  $                    1.76 

Fischer-Tropsch 854 $5.69  $                    1.80 

* Gallons gasoline equivalent 
Source: Wright & Brown (2007). 

Another publication from the National Renewable Energy Laboratory (NREL)  
by MaAloon et al. (2000) focused on the technical and cost parameters for the cellulosic 
biochemical ethanol process.   This publication gave cost estimations for biomass, other 
raw materials, overhead expenses and capital expenses.  MaAloon et al. reported that a 
25 million gallon per year plant would cost approximately $136 million 1999 dollars.   
In addition, the report compared the operating cost of a biochemical cellulosic plant to a 
dry mill grain based ethanol plant. The study concluded that the total  cost would be 
approximately $1.50 per gallon of fuel ethanol compared to 89 cents per gallon of 
ethanol derived from grain based production.  Figure 2.1 shows the break-down of costs 
for both the grain based ethanol and biochemical cellulosic ethanol process (MaAloon 
et al., 2000).  Clearly, these cost numbers are dated. 

 

 

Source: MaAloon et al. (2000). 

Figure 2.1: Production Costs in Dollars per Gallon of Fuel Ethanol (1999$) 
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The literature also gives economic estimations for the thermochemical 
production process.  A 2002 publication by Tijmensen et al. (2002) examined the 
thermochemical process in technical detail and derived estimations for both capital and 
operating costs.  Tijmensen et al. reported that several types of biofuels could be 
produced by the thermochemical process depending on the process method and whether 
hydrocracking is used to further refine the biofuels into products such as diesel and 
kerosene.   In addition, this publication reported that the economies of scale for a 
thermochemical cellulosic plant diminish greatly once 400 megawatt thermal of energy 
is produced; which is approximately a plant that produces 50 million gallons per year of 
biofuels.   

 
The National Renewable Energy Laboratory (NREL) produced an in-depth 

report on renewable biofuels; which includes cost and technical projections for 
cellulosic biofuel production.  A key estimate in the study is that 89.7 gallons of ethanol 
can be produced per ton of agricultural residues for the biochemical process compared 
to 80.1 gallons of ethanol per ton for the thermochemical process.  The study also 
suggests that the thermochemical process can also be configured to produce 94.1 
gallons of mixed alcohols per dry ton of feedstuff (Bain, 2007).        

 
The NREL study reported detailed estimates for the biochemical cellulosic 

conversion processes.  The study estimated that a cellulosic plant with a 1,608 ton of 
biomass conversion per day capacity (~53 million gallons per year), would cost $187.17 
million dollars to build based on 2005 dollars (Bain, 2007).   In addition, the study 
estimated the total feedstuff (feed), variable operating costs, fixed operating costs and 
capital costs on a dollar per gallon of ethanol basis for various sized plants.  Figure 2.2 
indicates that economies of scale exist for the capital portion of the total cost of 
production.  In addition, the study suggests that the capital costs represent the largest 
portion of the total cost for facilities that produce 50 million gallons of ethanol per year 
or less, and feedstuff acquisition represents the largest portion of the cost for larger 
plants.   
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(Source: Bain, 2007) 

Figure 2.2: Comparison of Biochemical Ethanol Costs for Various Plant Sizes 

 

 The capital and operating costs were also given for biofuels produced through 
the thermochemical process. The NREL study predicts that a 1,800 ton per day plant 
(~53 million gallons per year) would cost approximately 190.34 million 2005 dollars 
(Bain, 2007).  Figure 2.3 shows the estimated total cost for thermochemical biofuel 
production for various plant sizes.  The graph and subsequent table indicate that the cost 
per gallon for thermochemical biofuel production is less than the cost per gallon for 
biochemical production when assuming the thermochemical plant is producing the 
higher yielding mixed alcohols.  The lower costs result from lower capital cost per 
gallon in addition to lower variable costs (Bain, 2007).  
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(Bain, 2007) 

Figure 2.3: Comparison of Thermochemical Biofuel Costs for Various Plant Sizes 

It should be noted that portions of the above literature contain many assumptions 
surrounding the theoretical and probable capital and operating costs that future 
cellulosic plants will likely incur.  In addition, several of the studies report what costs 
are likely to be for the nth plant; that is, the cost after several large scale plants have 
been developed.   
 

3.  BIOFUELS ECO OMIC A ALYSIS 
 
3.1 Introduction 

The BCM allows the user wide-ranging flexibility in choosing parameters for 
inputs and outputs to directly compare grain based ethanol to biochemical and 
thermochemical cellulosic production methods.  It is important to note that the technical 
and cost parameters surrounding this model are the result of an extensive literature 
review and dialogue with industry experts.  Because the commercial cellulosic industry 
is still in the design phases, most costs and technical projections are uncertain.  Thus, 
this model will serve as the best estimate of today’s costs and revenues and will be 
updated as new technologies and/or costs are developed.  In other words, this model 
provides a consistent framework for analysis that can be easily updated as technical and 
economic conditions change in the future.  In this section we will examine the following 
topics: the current ethanol industry, current policy, model reasoning, model description, 
base case analysis, sensitivity analysis and policy options.   
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3.2 Current Industry 
 

Ethanol has been used as a transport fuel since the development of the first 
prototype combustion engine in 1826.  More recently, ethanol has become the bedrock 
of several pieces of federal legislation that call for an increased use of renewable fuels.  
This new demand for ethanol has greatly expanded the US production capacity from 
175 million gallons per year in 1980 to an estimated present day production capacity of 
10.6 billion gallons per year with 2 billion gallons under construction (Renewable Fuels 
Association, 2009 

 
The most prevalent ethanol production method in the US is corn based dry-mill 

fermentation.  This process involves completely grinding the whole corn kernel into 
flour and then converting the starch to ethanol via fermentation.  The major co-products 
are distillers dried grains with solubles (DDGS), an animal feed, and carbon dioxide, 
which is sometimes marketed but usually vented. An alternative grain-based production 
method is wet-milling.  This process separates the corn kernel into its separate 
components via a water medium.  The components are then transformed to several 
marketable products including ethanol, high fructose corn syrup, and corn gluten meal 
and feed. 

 
Current ethanol production is from grain; but advanced biofuels such as cellulosic 

fuels are gaining momentum.  Cellulosic fuels are energy products produced from 
organic materials such as corn stover, switchgrass or wood waste.  Two major cellulosic 
platforms are being considered for long-term alternative fuel production:  biochemical 
and thermochemical production.  

 
The thermochemical production platform at present appears to be a promising 

pathway for biofuel production.  Organic materials are converted to fuel products 
through gasification or pyrolysis.  The thermochemical platform subjects the biomass to 
heat which breaks the biomass down in order to convert it to usable fuels.  Pyrolysis 
produces liquid fuels in the almost total absence of oxygen.  The pyrolysis oils can be 
hydro-cracked in the presence of catalysts to produce a range of liquid fuels including 
gasoline. Gasification produces a syngas (a mixture of H2 and CO) in the presence of 
some oxygen.  The most common fuels produced during this process are known 
collectively as FT-liquids (Fischer-Tropsch); or individually diesel, kerosene and 
naphtha.  A key advantage of the thermochemical process is that a wide variety of fuels 
may be produced.  These fuels may be substituted directly for gasoline and diesel.  They 
do not pose the blending and infrastructure problems associated with ethanol biofuels.  
For simplicity, the BCM assumes at present that gasoline will be the only product 
produced.  By assuming gasoline as the only output, we can more clearly and easily 
compare the three production processes.  To the extent that diesel is produced, the 
thermochemical process would be more attractive than the numbers we obtain since 
diesel contains more energy and currently is priced higher.  
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The second proposed cellulosic production platform is biochemical production.  
Several small-scale plants are currently in operation including the KL Process Design 
Group plant in Upton, Wyoming, that produces 1.5 million gallons annually 
(Renewable Fuels Association, 2009).  The biochemical process utilizes an acid 
pretreatment and enzymatic hydrolysis to break down the organic material into 
fermentable sugars.  These sugars are then converted to fuel grade ethanol as in the 
grain based process.  Though small scale plants are currently producing ethanol, large 
scale commercial plants that would produce more than 40 million gallons of ethanol per 
year have yet to be developed. 
 
3.3 Policy 
 

A major driver of the ethanol industry in the United States has been federal and 
state policy in the forms of subsidies and mandates.   The first ethanol subsidy arose 
from the Energy Tax Act of 1978 in the form of a 40 cent per gallon excise tax 
exemption.  Effective January 2009, the federal blending tax credit is 45 cents per 
gallon with additional production subsidies in several states.  The 2008 Farm Bill 
changed the blending subsidy for corn and cellulosic based ethanol from 51 cents per 
gallon to 45 cents per gallon.  Cellulose based biofuels receive a total subsidy of $1.01.  
If the final product is ethanol such that the fuel receives the 45 cent blender credit, then 
the producer credit is reduced by 45 cents to 56 cents.  Note that since this subsidy is 
volumetric instead of being based on energy content, it is actually much larger for 
ethanol on an energy basis than for biofuel based gasoline or diesel. 

Mandates are also fueling the grain based ethanol industry and the emerging 
cellulosic industry.  The new driver is the “Energy Independence and Security Act of 
2007” which mandates 36 billion gallons of renewable fuel by 2022.  The “Energy 
Independence and Security Act of 2007” amends the “Renewable Fuels Standard 
(RFS)” that was signed into law in 2005.  An important aspect of this legislation is that 
21 billion of these gallons must be from advanced biofuels; such as cellulosic ethanol 
(U.S. Congress, 2007), and 16 of the 21 billion must come from cellulosic feedstocks. 

 
3.4 Biofuels Comparison Model Reasoning 

 
Because of the emerging advanced cellulosic industry; it is imperative to analyze 

the economics of three proposed ethanol production methods: grain-based ethanol, 
cellulosic biochemical, and cellulosic thermochemical production.  The idea of 
analyzing these three production methods is not a new concept.  Wright and Brown 
conducted an economic analysis in 2007 by comparing each of the production methods 
on an equal 150 million gallon gasoline equivalent basis (Wright and Brown, 2007). 
This analysis was based on a literature review of each of the production methods.  
Though the BCM also relies on current literature for technical parameters, it is designed 
to allow the user flexibility in choosing input, output, and efficiency values.  A 
limitation of Wright and Brown’s analysis is that all production types were subjected to 
a scaling factor in order to achieve the 150 MMGPY gasoline equivalents, thus greatly 
reducing the capital costs.  Though it allowed an equal comparison, the ideal plant size 
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and economies of scale are very uncertain. Thus Wright and Brown possibly 
underestimated the true capital costs for 1st generation advanced plants.    

 
One distinguishing characteristic of the BCM is that the user can insert current 

market prices for inputs and output products through direct web links to show economic 
comparisons under specific market conditions as well as varying plant sizes.   The 
spreadsheet format of the BCM follows a framework similar to Douglas Tiffany’s dry-
mill ethanol spreadsheet (Tiffany, 2003).  Limitations of the Tiffany dry-mill model 
include: manually sourcing price information, inability to change all inputs, and 
inability to compare production technologies.   Because of these limitations in the 
current literature and drastic changes in market conditions, the BCM was developed.  

 
3.5 Model Description 
 

The BCM utilizes the Microsoft Office 2007 Excel program.  Following are key 
advantages of the BCM: 

 
• The user can select historical price predictions, current prices or insert their own 

value for most input and output prices in the model. 
 

• Input and output prices are directly linked to websites to allow for current price 
quotes. 
 

• The model shows which production process is the most profitable given the 
economic and technical parameter values selected by the user. 
 

The model is organized by the following tabs located at the bottom of the work 
book: (1) Instructions, (2) Assumptions, (3) Grain Based, (4) Biochemical, (5) 
Thermochemical, (6) Comparison, (7) Asset Based Economic Analysis, and (8) Finance 
Based Economic Analysis.  The model is designed for the user to start at tab (1) and 
work through the sheets to tab (8).  All changes in worksheets (1) through (5) will 
automatically be updated to evaluation tabs (6) through (8).  Each individual worksheet 
of the model will now be discussed in greater detail.  

 
3.5.1 Instructions 

 
The instructions tab is designed to give the user stand alone instructions to 

properly utilize the model.  Important aspects of this sheet include the “Click to Update 
Prices to reflect Current Market Conditions” and “Plant Startup” buttons located in the 
center of the page.  Clicking the price button will automatically update input and output 
prices to reflect current market prices via embedded web links.  In order to utilize this 
tool, the user must be connected to the internet and allow ‘macros’ upon security system 
request.  The “Plant Startup” buttons give the user a choice between the ethanol plants 
starting in 2009 or in 2015.  Currently this choice only influences the biochemical and 
thermochemical platforms.  Through interaction with Andy McAloon, USDA-ARS-
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ERRC biofuels expert, we were able to develop enzyme and capital cost estimates for 
the years 2009 and 2015 for the biochemical platform.  Year 2015 represents the nth 
year, or in other words, costs after several plants have been built.  It also represents a 
“best guess” of technical progress likely to occur through research and development 
over the next six years.  The BCM also predicts the 2015 thermochemical capital cost 
by assuming that the same technical and economic advances will be made as for the 
biochemical platform. 

 
3.5.2 Assumptions 

 
3.5.2.1 Decision Variable Section 
 

The (2) Assumptions tab is where price, production, efficiency and financial 
decisions are made.  Key is the section labeled “Decision Variables,” which is outlined 
in a bold box.  This section allows the user to select among multiple options for each of 
the input/output decisions.  The choices for each decision variable are given by a drop 
down tab in column E under “Choose Values Here.”  By clicking on the cell, the user 
will see the following options: “current market price”, “adjusted price” and “predicted 
market price.”  It should be noted that the “predicted market price” option is not 
available for every assumption decision.  By selecting the “current market price” you 
are selecting the current market value as reported through the direct web-links.  To be 
consistent, all prices are quoted from recognized exchanges, government agencies or 
recognized third parties.  Where possible, Midwestern or Eastern spot prices are used.  
The direct web-links and sources are located in columns K and M of the model.  By 
selecting “predicted market price” you are selecting historical regressions determined 
by the price of oil and corn (Tyner and Taheripour, 2007).  In terms of long term 
accuracy of the model, this option may prove the most valuable as historical regressions 
may predict future prices more accurately than current market prices.  However, in 2009 
because of the surplus of ethanol on the market, the historic link between crude oil and 
corn has weakened substantially, so user caution is advised.  The last choice the user 
can make is selecting “adjusted price.”  Selecting this option allows the user to insert 
their own perceived value for inputs/output prices in the yellow cells.  This option is 
useful in accounting for regional differences in prices and for conducting sensitivity 
analysis.  Following is an explanation of the key variables: 

 
• Corn Price:  The reported current corn price is based on the nearest futures 

contract on the Chicago Board of Trade (CBOT).  The model does not account 
for any basis differences that could occur, as they vary substantially by company 
and region.  The user may select “adjusted price” to insert their preferred corn 
price if it differs from the current futures price. 
 

• Natural Gas Price:  The current market price is based on the Henry Hub spot 
price plus $1.00 per MBtu for transportation expenses.   
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• Current Ethanol Prices:  The current ethanol price can be inserted four different 
ways (options available through drop down list located in cell E26):  1) Ethanol 
price pulled from the near futures price on the Web, 2) User input of ethanol 
price, 3) Calculation of the ethanol price based on the energy equivalence to 
gasoline, the applicable ethanol subsidy, and the fraction of the subsidy assumed 
to be passed on from the ethanol blender to the ethanol producer (subsidy pass-
through rate), or 4) Calculation of the base ethanol price using a volumetric 
approach; that is, equal value on a per gallon basis with gasoline instead of per 
unit of energy, using the nearby gasoline futures, the applicable ethanol subsidy 
and the subsidy pass-through rate.  Using method 3, the current ethanol price is 
established from the NYMEX nearby gasoline futures using energy equivalents:   
 

DE = 0.98 * G * 0.67 + 0.02 * G (1)  
 
where DE is the base denatured ethanol price, G is the nearby gasoline futures 
price, and 0.67 is the ethanol energy fraction of gasoline.  This equation reduces 
to: 
 

DE = 0.6766 * G (2)  
 

To take into account the subsidy (S) and fraction of the subsidy assumed to be 
passed on to ethanol producers (F), one gets the result in equation 3 for current 
denatured ethanol price (CDE) using method 3 above: 
 

CDE = DE + F * S (3)  
 
The BCM model currently uses the ‘calculation on a volumetric basis’ as the 
default in the base case when calculating oil price sensitivity.  Though an 
assumption, this option was used because of the recent decoupling between the 
actual ethanol price and the ethanol price predicted based on energy 
equivalence.  Using option 4), the current ethanol price is established from the 
NYMEX gasoline futures using equation 4:  

 
DE= G + S * F (4)  

 
where DE is the base denatured ethanol price, G is the nearby futures price, S is 
the blending subsidy in the form of a tax credit, and F is the percentage of the 
blending tax credit that is being passed to ethanol producers.  The BCM assumes 
that S is 45 cents, and F is 100%, thus establishing the base ethanol price by 
equation 5: 

 
DE= G + $.45  (5)  

 
The ethanol price is the price of the denatured product, which is the only product 
that can be marketed by ethanol plants according to the US Bureau of Alcohol, 
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Tobacco and Firearms regulations.  The CDE can differ between technologies if 
the subsidy level is different or other policy interventions cause the cellulose 
ethanol price to differ from the corn ethanol price. To avoid problems with 
different denatured ethanol prices with different production types, the user 
should select option 3), ‘calculation on volumetric basis or 4) ‘calculation by 
energy eqv.’.  This option will allow the user to select different subsidy levels 
for both grain based and cellulosic ethanol.  The BCM will then adjust the 
current denatured ethanol price throughout the model to account for the subsidy 
difference.  If the user chooses to input directly the ethanol price, option 2), the 
user will be able to enter different prices for corn ethanol and cellulose based 
ethanol (biochemical) to account for possible differential subsidies.   

 
• Feedstuff Base Cost:  The BCM has estimated price and extraction rates for two 

feedstuffs: corn stover and switchgrass.  The predicted base cost for these 
feedstuffs is based on a 2008 Indiana study (Brechbill, 2008).   Brechbill’s 
estimated costs include machinery, labor, material, land (for switchgrass only), 
transportation and a farmer’s premium.  Thus, this cost represents the total cost 
to the ethanol producer.  The cost reported on the assumption page is the price 
per dry ton delivered within five miles of the proposed cellulosic plant.  The 
model automatically calculates the weighted average feedstuff cost based on the 
size of the plant, and the corresponding radius of feedstuff sourcing to account 
for transportation expenses.  In addition, the user can choose an alternative 
cellulosic feedstuff by selecting “other” in the drop list located in cell E 33.  If 
this option is chosen, the user must adjust the feedstuff cost in cell G 34.   
 

• Biochemical Conversion Rate:  The literature varies greatly on the conversion 
rate for biochemical production.  The conversion rate is the number of 
anhydrous gallons of ethanol (or other biofuel) produced per dry ton of 
feedstuff.  A 2007 publication by the National Renewable Energy Laboratory 
estimated that 89.7 gallons of anhydrous ethanol could be produced per dry ton 
of biomass (Bain, 2007).  This differs from Douglas Tiffany’s estimate of 69.7 
gallons of denatured ethanol per dry ton for corn stover (Tiffany, 2007).  To be 
conservative, the values that are quoted in the model for a 2009 plant startup are 
based on Tiffany’s calculation and are adjusted to accommodate the differences 
in BTU availability between corn stover and switchgrass.  The model assumes 
that a plant starting production in 2015 will yield 89.7 gallons per ton as 
reported by NREL (Bain, 2007).  Please note that observed literature values in 
this category range from 55 to 110 gallons per dry ton.  There is also confusion 
in the literature regarding whether the conversion yields are anhydrous or 
denatured. 
 

• Thermochemical Conversion Rate:  The thermochemical base conversion rate of 
61.4 gallons per dry ton is based on a study from Wright & Brown and is 
assumed to be the conversion rate for a plant starting operation in 2009 (Wright 
& Brown, 2007).  The NREL estimate of 94.1 gallons of mixed alcohols per ton 
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is considered the yield for plant that starts production in 2015 (Bain, 2007). 
Again it should be noted that the actual conversion rate for large scale 
operations is likely to vary from this base.   
 

• Ethanol Extracted per bushel:  The base rate used in the model is 2.65 anhydrous 
gallons per bushel of corn with the reported range being 2.5 to 2.8 gallons per 
bushel (Mosier, 2008). The base rate comes from personal communications with 
Professor Nate Mosier.  Dr. Mosier indicated that the average new corn ethanol 
plant achieves 2.65 gallons of anhydrous ethanol per bushel of corn.  This 
equates to a denatured ethanol yield of 2.70 gallons per bushel.    
 

• DDGS and CO2 Yields:  The literature suggests that the approximate value for 
both dried distiller’s grains with solubles (DDGS) and CO2 is 18 lbs per bushel 
of corn (Tyner and Taheripour. Appendix A, 2007).     
 

3.5.2.2 Subsidy, Efficiency, Production and Financial Decisions 
 

The subsidy, efficiency, production, and financial decision section of the BCM uses 
toggle buttons to allow the user easy adjustment for key decisions.  The model is 
utilized by choosing either the left or right arrow buttons located in column E.  The 
‘Value Used in Model’ is your adjusted value.  The base values (column G) are set to be 
the default upon opening the BCM.  

 
• Grain and Cellulosic Subsidy levels:  The base values for both grain and 

cellulosic blending subsidies are derived from the 2008 farm bill.  The new farm 
bill calls for ethanol blending subsidies to drop from .51 cents per gallon to .45 
cents per gallon. It is important to note that these are blending credits paid 
directly to the gasoline blenders in the form of tax credits.  The actual amount 
that the ethanol producer receives is based on the ‘subsidy pass-through’ rate.  In 
addition to the blending subsidies, the 2008 farm bill also includes provisions 
for direct production subsidies for advanced biofuels.  Biochemical ethanol 
producers will receive a 56 cent per gallon subsidy and thermochemical 
producers will receive a $1.01 direct subsidy, but no blender credit.  Since these 
payments are made directly to the producers, the ‘subsidy pass-through’ has no 
influence on the revenue received (Capehart, 2008).2    
 

• Denatured Blend:  The denatured blend is the amount of ethanol that is in each 
gallon of product shipped from the producer, assumed to be 98% in the grain 
and biochemical models.  The model assumes that only gasoline can be used to 
denature the ethanol to meet federal requirements.  Because thermochemical 

                                                           
2 The 56 cent production subsidy is actually 46 cents plus the 10 cent small producer credit.  It is expected 
that, at least initially, most producers would qualify for the small producer credit.  If not, the total 
production tax credit becomes 46 cents instead of 56. 
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production does not directly produce ethanol, that process does not require 
denaturing.  
 

• Debt/Equity Ratio:  The base value for the model is a 60/40 debt/equity ratio for 
financing.   
 

• Annual Interest Rate:  The appropriate debt interest rate will need to be selected 
based on the individual plant and the financing route that is taken.  It is likely 
that financing for cellulosic plants will demand a higher interest rate as the 
technologies are currently commercially unproven.  The default value is 8%.   
 

• Rate of Return on Equity:  The base value is the opportunity cost of money that 
investors could earn in a standard stock market fund.  The required rate of return 
may be higher or lower depending on the individual’s personnel preferences and 
is reported on an after tax basis.  The default value is 12%. 
 

• Plant Life:  The base value for plant life is 22 years, 2 years for construction and 
20 for production.  The model assumes that at the end of the 20 year production 
period there will be no salvage value.  The plant life’s main influence in the 
model is in the (7) Asset Based Economic Analysis section where NPV and IRR 
are calculated.   The model already takes into account maintenance/repair costs 
that will keep the plant operating.   
 

• Loan Life: This variable sets the loan length in years.  The loan length will vary 
with financial institutions but is commonly accepted to be 15 years for similar 
style plants. The loan amount was amortized into equal payments using the PMT 
function in Excel.   
 

• Construction Period: The construction period is the number of years that is 
required to go from ground excavation to production.  The model assumes that 
working capital will be required during the last year of construction and that 
loan costs will be amortized in the loan payment once production begins.  The 
amount of working capital is determined by the following formula and is 
reflected in the financial calculations: 
 Working Capital =(OC of ϐirst year of plant operation − OC last year of construction) x WCF  
 
where OC is operating cost and WCF is the working capital fraction. The WCF 
was assumed to be 25% in this model.  The working capital was added back into 
the cash flows in the final year of the plant life to determine the profitability of 
the project.  
 



 

17 
 

• Depreciation Life:  The model assumes that the plant will depreciate on a 
straight line depreciation schedule over 15 years.  Depreciation begins in the 
first year of production. 
 

• Tax Rate: The tax rate should include all state, federal and local income taxes.  
The model already takes into account wage and property taxes. 
 

• Inflation Rate: The inflation rate adjusts the debt and tax payment in finance 
based net present value analysis.  All other revenues and costs are assumed to be 
in real terms.  The default value is 2 percent.  
 

3.5.3 Grain Based 
 

The grain based portion of the BCM serves as the base to compare the cellulosic 
production methods.  The key technical and cost components are discussed in this 
section. 

 
• Capital Costs:  The plant size for grain based ethanol production is set at 100 

million denatured gallons per year.  This is primarily due to the fact that these 
plants are by far the most popular size in terms of new plant construction.  Tyner 
and Taheripour suggest that capital costs are $1.80 per nameplate denatured 
gallon; which includes all costs associated with bringing a plant online (Tyner 
and Taheripour. Appendix A, 2007).   
 

• Natural Gas:  Natural Gas is a major driver of costs for a dry mill ethanol plant.  
The BCM utilizes Tiffany’s Dry-mill spreadsheet estimate of using natural gas 
for 98% of the heat energy (Tiffany, 2003).   
 

• Variable Operating Costs: The variable operating costs are based off of the 
USDA 2002 ethanol production costs survey (Shapouri and Gallagher, 2005).  
The costs were updated to reflect 2007 dollars by using the GDP deflator found 
in the assumptions page of the model. 
 

• Labor, Supplies and Overhead:  Labor, supplies and overhead expense estimates 
are based on the National Renewable Energy Laboratory (NREL) estimates and 
are updated to reflect current dollars (MaAloon et al, 2000).  The wage portion 
of the costs was updated from the 1999 estimates using the National Wage 
Averages for Petroleum and Coal Products wage index located in the 
assumptions page of the model.  All other variables in this section were updated 
using the GDP deflator.   
 

3.5.4 Biochemical 
 

One issue with cellulosic economic literature is that the literature reports 
costs/technologies for the nth year for cellulosic platforms.  For this reason there is 



 

18 
 

disconnect between what the current’ technology is and what the literature suggests the 
technology can be.  To help clarify this issue, we contacted Andy MaAloon, researcher 
at USDA-ARS-ERRC, who provided estimates for a plant built today (2009) and a plant 
built in 2015.  The user has the option on the (1) Instructions page to choose either a 
2009 or a 2015 plant startup. The following are the key technical components: 

 
• Capital Costs: MaAloon et al provided estimates for the min, mode and the max 

for both enzyme and capital costs for a plant starting in either 2009 or 2015.  A 
single estimation for each year was then determined using  equation (7): 
 Cost estimation = (min + mode + max)/3 (7) 
 
Table 3.1 shows the capital cost estimations for both 2009 and 2015 (MaAloon, 
2008): 
 

Table 3.1: Biochemical Capital Cost Estimation for 50 MGY Plant 

Year Min Mode        Max Average 

 $ / denatured gallon of ethanol 

2009 $3.56 $5.58 $11.14 $6.76 

2015 $2.67 $4.19 $8.36 $5.07 

Source: MaAloon (2008). 

 
 The average cost is then set to be the base capital cost for a 50 million 

denatured gallon per year ethanol plant.  Economies of scale were then estimated using 
published literature by Aden et al (Aden et al, 2002).  Aden et al estimated the 
economies of scale based on plant capacity in terms of metric tons per day.  Thus the 
conversion from metric tons to gallons of denatured ethanol does lead to possible 
differences in conversion rates and assumptions.  None-the-less, Aden’s estimates 
provide a good benchmark for what economies of scale could be.  The BCM assumes 
that a 2,000 metric ton per day plant produces approximately 50 million denatured 
gallons per year.  Thus a 100 million gallon per year plant, approximately 4,000 metric 
tons per day, would have an estimated nameplate capital cost of $6.68 per denatured 
gallon, or a savings of 8 cents compared to the base plant.  Table 3.2 contains the 
economies of scale that are embedded in the BCM. 

 
• Energy Usage:  The BCM estimates that the waste produced from biochemical 

ethanol production, lignin, will be able produce the electricity and steam power 
to run the plant.  This assumption may differ as new research is accomplished on 
the actual energy properties of lignin for different feedstuffs. Currently, the 
estimate is that there will be 2.26 excess KwH of electricity that will be 
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produced per denatured gallon of ethanol (Aden et al, 2002).  The only energy 
purchased for production purposes will be small amounts of liquid propane.  

Table 3.2: Cellulose Plant Economies of Scale 

Plant Size Change 

(metric tonnes) 

Savings: $/denatured gal 

ethanol. 

2000 mt to 4000 mt $0.08 

4000 mt to 6000 mt $0.14 

6000 mt to 8000 mt $0.16 

Source: Aden et al. (2002). 

• Variable Operating Costs:  The variable costs for the model were estimated by 
NREL (MaAloon et al, 2000).  The costs were updated using the GDP deflator 
from the original estimates in 1999.  
 

• Enzymes:  The enzyme cost is one of the major variable costs associated with 
biochemical production.  As with the capital costs, MaAloon estimated both the 
2009 and 2015 costs.  Table 3.3 shows the estimations for a 50 million gallon 
per year plant on a per denatured gallon basis (MaAloon, 2008): 

 

Table 3.3: Estimated Cellulose Enzyme Costs for the Biochemical Process 
Year Min Mode Max Average Cost 

 $/denatured gallon of ethanol 

2009 $.17 $.33 $.99 $.50 

2015 $.14 $.30 $.89 $.44 

*estimates were adjusted to reflect a 98/2 denatured blend  

Source: MaAloon (2008). 

• Labor, Supplies and Overhead:   For consistency, NREL estimates were used for 
the labor, supplies and overhead estimates (MaAloon et al, 2000).  The labor 
costs were updated using the National Wage Averages for Petroleum and Coal 
Products wage index. 
 

3.5.5 Thermochemical 
 
 Many different types of thermochemical biomass conversion are analyzed in the 
published literature.  The BCM assumes efficiency and cost data for the oxygen-blown 
gasifier of the Institute of Gas Technology (IGT) which also employs hydrocracking as 
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the base plant for the model (Tijmensen et al, 2002). Following are the key technical 
components of the thermochemical process contained in the model: 
 

• Capital Costs:   The 2009 capital costs are based off of Tijmensen’s 2002 
estimate of a $341 million capital investment for a 35 million gallon/year plant 
(Tijmensen et al, 2002).  These costs were adjusted to 2007 dollars by using the 
Marshall and Swift Equipment Capital Cost Index found in figure 2 in the 
assumptions page.  The 2015 capital costs were estimated by assuming the same 
technical progress will be made in the thermochemical platform as in the 
biochemical platform.  According to McAloon’s estimates, capital costs could 
decrease by 25% in the next 6 years.  The capital costs for the thermochemical 
process are drastically higher than the grain based or biochemical platforms with 
an estimated cost of $10.96 per gallon of nameplate capacity.  Assuming the 
~25% reduction in capital costs does occur, 2015 capital costs for the 
thermochemical platform will be $8.23 per nameplate gallon. 
 

• Variable, labor, supplies, capital and overhead:   The majority of the costs for 
the thermochemical platform were estimated from Tijmensen et al. and verified 
by referencing Wright and Brown.  It should be noted that most of Tijmensen’s 
work is based on costs associated with the nth plant.  Thus the costs reported in 
the BCM are most likely understating the true current costs.  

 
3.6 Model Analysis: Base Case 
 
 The BCM is designed to show the profitability for the different production types 
given the underlying market conditions and assumptions.  For the base case illustrated 
here, the following key assumptions were made: 
 

• Production or blending subsidies are not included for any of the production 
methods 
 

• All prices of inputs and outputs are based on the average monthly price for each 
commodity from January 2006 to December 31st 2008.     
 

• All inputs and outputs are un-hedged 
 

• Plant sizes are set at what the industry considers likely sizes: Grain based 
production 100 million denatured gal/year, biochemical production 50 million 
denatured gallons/year, and thermochemical production ~ 50 million 
gallons/year 
 

• Profitability and costs are compared on a gallon produced basis: per denatured 
gallon of ethanol for grain and biochemical production and on per gallon of 
gasoline produced for thermochemical production 
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• CO₂ credits are not given for any production method 
 

• Development is set to begin in 2009 
 

3.6.1 Revenues 
 

Using the BCM, gross revenues were calculated for each of the production 
methods.  In the base case, grain ethanol production has the highest level of gross 
revenues, which results from a higher byproduct credit.  Comparing thermochemical 
bio-gasoline and biochemical ethanol, the BCM shows that the thermochemical 
platform generates higher levels of gross revenues because of the higher value of 
gasoline compared to ethanol.  The value of ethanol was calculated based on the 
average 3 year ethanol price minus the 51 cent blending subsidy.  The credit for grain 
based ethanol consist of the sale of distillers dried grains with solubles (DDGS), while 
the credit for biochemical production consists of the sale of excess electricity.  Table 3.4 
shows the gross revenues for the base case. 

Table 3.4: Gross Revenues for the Three Production Methods ($/gal.) 

Conversion Process 

Biofuel Credit Subsidy Total Revenue

$ per saleable gallon 

Grain Based $1.75 $0.40 $0.00 $2.15

Biochemical $1.75 $0.23 $0.00 $1.98

Thermochemical $2.15 $0.00 $0.00 $2.15

Source: Author’s Calculations (2009). 

3.6.2 Expenses 
 

A key driver of overall profitability is the cost to make a gallon of denatured 
ethanol (FT gasoline in the case of thermochemical).  The BCM suggests that ignoring 
financing, currently the thermochemical platform is the most cost effective form of 
biofuels production.  The following are key drivers that currently make advanced 
biofuels less costly to produce compared to traditional grain based ethanol: 

 
• Feedstuff costs are 67 cents per gallon of biochemical ethanol produced.  This is 

very similar to the 79 cents per gallon for FT-gasoline but 2.15 times lower than 
the $1.45 per denatured gallon costs for grain based ethanol. 
 

• Grain based ethanol requires large amounts of natural gas, 2008 price increases 
for this commodity increased the total energy costs for grain based ethanol to 
$.54 per denatured gallon.  2009 natural gas costs are lower.  Biochemical and 
thermochemical production both have less exposure to energy costs as they 
utilize the lignin waste product for energy generation.  
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 The thermochemical production method is currently the least expensive form of 
biofuel production because it is not as exposed to the high energy prices as the grain 
based platform and the high cost of enzymes for the biochemical platform.  Thus, 
thermochemical fuels are 27 cents per gallon less expensive to produce in the base case 
compared to biochemical ethanol and 58 cents less compared to grain based ethanol 
(Figure 3.1 and Table 3.5).  

 

Table 3.5: Expenses for Each Production Technology 

Conversion 

Process 

Feedstuff Energy Enzymes 

Variable 

Costs 

Total 

Costs 

$ per saleable gallon 

Grain  $1.45 $0.54 $0.04 $0.25 $2.28 

Biochemical  $0.67 $0.10 $0.50 $0.71 $1.97 

Thermochemical $0.79 $0.05 $0.00 $0.86 $1.70 

*Equity, capital costs and interest are not considered in this comparison 
Source: Author’s Calculations (2009). 

 

 

Source: Author’s Calculations (2009). 
Figure 3.1: Expenses for Each Production Technology 

One of the issues pertaining to advanced biofuels made from the biochemical 
and thermochemical platforms is the high capital costs.  These high costs and 
uncertainty in market conditions may discourage investment.  Table 3.6 shows the 
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estimated capital costs per nameplate gallon and capital costs per gallon of denatured 
ethanol or FT-gasoline produced.  

 
Table 3.6: Capital Costs per Gallon Produced and Per Gallon of Capacity (1000’s) 

Production Type 

Plant Size 

(denat. gal.) Total Cost 

$/nameplate 

gal. 

Cost per gal. 

produced.** Base Year  Source 

Grain 100,000 

          

$180,000  

             

$1.80  

             

$0.29  2007 Tyner      

Biochemical  50,000 

        

$338,000 

             

$6.76  

             

$1.10  2008 MaAloon 

Thermochemical 45,173 

          

$487,666 

             

$10.80  

             

$1.78  2002 Tijmensen* 

*costs are were updated from Tijmensens estimates using the Marshall and Swift Installed 
Equipment Index  
**Required return to equity + debt interest + depreciation 
 

3.6.3 Incremental Success/Failure to Meet Required Return 

The BCM follows a similar framework as the Tiffany model to determine if 
each production type is able to meet the required return.  The calculations in Table 3.7 
determine whether the revenues for each production method can cover all variable 
costs, fixed costs and required investor return.  This simplistic calculation shows that all 
three production methods currently have negative pre-tax returns in the absence of 
subsidies.   

 
Table 3.7: Profit or Loss Using Base Case Assumptions 

Production Type 
Profits/losses in excess of required return to equity 

($ per saleable gal.) 

Grain  $        (0.43) 

Biochemical  $        (1.10) 

Thermochemical $        (1.33) 

Source: Author’s Calculations (2009). 

 
3.6.4 Asset Based Economic Analysis 

 
 To more accurately estimate the profitability of the production alternatives over 
the life of the plant, an asset based economic analysis was completed on BCM tab 7 
with the results also present in the (6) Comparison tab.  Note that this economic analysis 
will update automatically as assumptions are changed throughout the model.  It is 
important to note that costs/revenues are assumed to remain fixed in real terms over the 
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life of the plant; thus, inflation is not a factor.   This analysis looks only at the pre-tax 
profitability of each production method; thus ignoring tax advantages and depreciation.  
The annual net cash flows for each year were then discounted back to present dollars 
using the weighted average cost of capital method (WACC) in equation (8):  
 
   10.3% = (We * Ke) + (Wd * Kd)  (8) 
 
where We is long-term proportion of equity, Ke is the cost of equity, Wd is the long-
term proportion of debt, Kd is the cost of debt  (note all proportions and costs should 
represent firm level, not project level finances).  It should be noted that the pre-tax Ke 
was determined based on an estimation of the effective tax rate, 12.5%, which 
establishes a pre-tax Ke of 13.7% verses the post-tax base of 12%. 
 

The results (Table 3.8) indicate that biochemical based ethanol production and 
thermochemical production are quite similar on a profitability basis.  Grain based 
ethanol is currently the most profitable in terms of the best NPV.  The negative NPV’s 
for all three production types indicate that these plants are generating discounted 
revenues that are less than required by the WACC.  Thus from a pure profitability 
standpoint, none of the analyzed plants appear to be a good investment without 
subsidies over the life of the plant.   

 

Table 3.8: Technology Profitability Using Weighted Cost of Capital (pre-tax) 

Production Method 

NPV 

($/gallon of capacity) 

Corn  ($2.89) 

Biochemical  ($6.17) 

Thermochemical ($6.67) 

Source: Author’s Calculations (2009). 

 
3.6.5 Finance Based Economic Analysis 

 
 The BCM also conducts a finance based analysis on tab (8) to determine after 
tax and financing annual net cash flows.  As with the economic analysis, the financial 
based analysis assumes that revenues and expenses will remain constant over the life of 
the plant; thus, they remain in real terms.  However, the financed based analysis does 
deflate the loan payment by using the inflation percentage that is entered on the 
assumptions page.  The after tax and financing annual net cash flows were then 
discounted back to determine the NPV for each production method using the 12% base 
cost of equity as the discount rate.  The finance based analysis more accurately 
considers all input decisions compared to the “incremental success/failure to meet 
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required return” calculation conducted in tab (6). The following are assumptions 
surrounding the finance based analysis: 

• Revenues will be non-existent during the construction period 
 

• Working capital will be required during the last year of construction 
 

• Debt payments required during the construction period are amortized for 
repayment once production begins 
 

• Negative tax burdens will be used elsewhere in the firm 
 

 Table 3.9 shows the post tax and financing net present value and internal rate of 
return for each production method. Again, the results show that each of the production 
methods fail to meet the required rate of return; resulting in negative NPV for each 
method.  The results also indicate that corn based ethanol is the more profitable 
compared to the advanced cellulosic methods.  IRR values are not reported in these 
cases because the sum of the cash flows is negative and therefore IRR values are 
negative and do not have a meaningful interpretation.   The finance based NPVs are 
higher than the asset based analysis because the negative cash flows resulted in negative 
taxes (assumed to offset positive taxes elsewhere in the company) for each of the 
production types.     
 

Table 3.9: Technology Profitability Using Financed Based Analysis 

Production Method 

NPV 

($/gal. of capacity) 

Corn  ($1.91) 

Biochemical  ($4.00) 

Thermochemical ($4.29) 

Source: Author’s Calculations (2009). 

 
3.7 Sensitivity Analysis 

 
3.7.1 Sensitivity of Input Prices 

 
 Any number of sensitivity analyses could be performed on the inputs and 
technical components found in the BCM.  For simplicity, we will examine the after tax 
and financing NPV effects of a 20% increase in the following key costs: feedstuff, 
energy, enzyme, and capital costs.     
 



 

26 
 

 Table 3.10 shows how a price increase in each of the key costs affects the 
profitability of both grain and cellulosic production methods.  The BCM suggests that 
grain based ethanol is more economically sensitive to increases in feedstuff and energy 
prices compared to the cellulosic platforms.  In fact, a 20% increase in corn price will 
inversely affect the 20 year NPV by 41% compared to affecting the biochemical 
platform by 12% and the thermochemical process by 13%.  Grain based ethanol 
production is very sensitive to the corn price because the cost of corn currently 
represents 58% of the total cost of production compared to less than 27% for both 
cellulosic methods (utilizing corn stover).   Similarly, a 20% change in energy costs will 
inversely affect the grain based NPV by 21%, while only altering the cellulosic NPVs’ 
by less than 1%.  The grain based method has much more exposure to energy prices 
because of its reliance on natural gas which in 2008 was high by historic comparisons.  
At the same time, both cellulosic production methods have less exposure to the energy 
markets because the production processes use lower amounts of natural gas, and the 
lignin by-product is used to generate most of the electrical and heat energy needed for 
internal purposes.   The increase in corn prices and energy costs are two underlying 
reasons why cellulosic biofuels have closed the gap in terms of economic feasibility 
over the last 3 years compared to grain based ethanol. 

Table 3.10: Sensitivity Analysis to Cost Increases 

  

% Change in the After-Tax and Financing 

NPV after 20% Shock 

Key Costs: Grain Biochemical Thermo. 

Feedstuff -41% -12% -13% 

Energy -21% 3% -1% 

Enzymes -2% -10% 0% 

Capital 

Costs* -12% -19% -29% 

 *Interest expense + depreciation + required return to equity 
Source: Author’s Calculations (2009). 
 
   The sensitivity analysis also shows that the cellulosic biochemical process has 
very high exposure to enzyme costs.  According to recent estimates by Andy McAloon, 
USDA-ARS-ERRC biofuels expert, enzyme costs could range from $.16 to $.96 per 
denatured gallon in 2009 compared to an estimate of $.04 for the grain based platform 
(MaAloon, 2008).  Thus, a 20% shock in enzyme prices will change the NPV for 
biochemical ethanol by 10% compared to a 2% adjustment in the grain based NPV.  
 
   Currently, capital costs for the grain and biochemical ethanol methods are $.29 
and $1.10 per denatured gallon compared to the $1.78 per gallon estimate for the 



 

27 
 

thermochemical platform.    After simulating a 20% increase in capital costs, the 
thermochemical process shows the most sensitivity by inversely affecting the NPV by 
29% compared to a 19% reduction in the biochemical NPV.  Thus, to drastically 
improve the economics of cellulosic ethanol, capital cost reduction will need to occur.  
 

3.7.2 Sensitivity of Oil and Ethanol Price 
 
 The overall profitability of each of the biofuel production types is extremely 
sensitive to the value of the biofuel outputs: ethanol and ft-gasoline.  In the base case 
where subsidies were ignored, 80% of the total revenue for the grain based process was 
generated by the sale of ethanol compared with 20% of the revenue coming from the 
DDGS sales.   The cellulosic methods rely more heavily on the sale of the biofuel 
products because they only produce electricity as a by-product; most of which is used 
internally.  Thus, 88% of the total revenue in the biochemical process derives from the 
sale of ethanol while 100% of the revenue from the thermochemical process comes 
from the sale of ft-gasoline.  
 
     In order to simulate what affect oil price has on the profitability of each of the 
production methods, the relationship between oil, gasoline and ethanol must be 
established.  For this portion of the sensitivity analysis, it is assumed that both the price 
of gasoline and ethanol are both determined entirely by the price of oil using historical 
price relationship regressions (Tyner & Taheripour, 2007).  This differs from the BCM 
base case where the price of ethanol and gasoline were based on three year average 
monthly price levels3.    We will do this comparison both on a volumetric and energy 
equivalence basis.  The first ethanol price relationship uses the volumetric approach.  
Equation 9 establishes the relationship between the price of oil and gasoline: 
 
   G = 0.026 * O + 0.296 (9) 
 
where G is the price of gasoline and O is the price of oil.  After determining the price of 
gasoline, the price of ethanol is predicted on a volumetric basis using equation 10: 
 
   DE= G + S * F (10) 
 
where DE is the base denatured ethanol price, G is the gasoline price predicted in 
equation 1, S is the blending subsidy in the form of a tax credit, and F is the percentage 
of the blending tax credit that is being passed to ethanol producers.  The BCM assumes 
that there is no subsidy in the base case, and F is 100% in the base case, thus 
establishing the base ethanol price by equation 11: 
 
   DE = G   (11)  
 
                                                           
3 The gasoline price in the base case was $2.15/gal. and was established based on the average monthly 
NY nearby gasoline futures price from 2006 to 2008.   This analysis utilizes the predicted gasoline price, 
which was $2.36/gal. for the base case.  
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 Using the price relationships between oil, gasoline and ethanol as established 
above, we explored the after-tax profitability on an NPV basis for each production 
method under various oil prices.  It is assumed that changes in oil price will only affect 
the revenue for each of the production methods.  In reality, changes in oil prices will 
likely alter most expenses, especially the price of natural gas and feedstuffs.  Figure 3.2 
shows that the oil price must be approximately $72 per barrel for the grain based 
platform to have a $0 NPV without subsidies.  The biochemical would need an oil price 
of $91 per barrel and thermochemical production would require an oil price of $108 per 
barrel to generate $0 NPVs – all assuming biofuel priced on a volumetric equivalence to 
gasoline.  
 

The second method to calculate the break-even oil price is to calculate the 
ethanol price based on energy equivalents.  This method awards the thermochemical 
process for producing a higher energy value product, ft-gasoline compared to ethanol.  
The energy equivalent price of ethanol is determined by using equation 12:  

 
 DE = 0.98 * G * 0.67 + 0.02 * G (12)  
 

where DE is the base denatured ethanol price, G is the predicted gasoline price, and 
0.67 is the ethanol energy fraction of gasoline.  This equation reduces to: 
 

DE = 0.6766 * G (13)  
 

 
Source: Author’s Calculations (2009). 

Figure 3.2: Profitability at Various Oil Prices using Volumetric Ethanol Price 
 
 Figure 3.3 indicates that the breakeven oil prices for each of the biofuel 
production methods when calculating the ethanol price on an energy equivalent basis. 
The results indicate that crude would need to be approximately $108 per barrel for the 
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thermochemical process, $114 per barrel for the grain based process, and $141 per 
barrel for the biochemical process when subsidies are ignored.  This analysis shows that 
if biofuels are priced based solely on energy content, the thermochemical process is 
comparable to the grain based process in terms of profitability when oil prices are 
greater than $108 per barrel. 
 
3.8 Policy Analysis 

 
3.8.1 Sensitivity of Subsidy Levels 

 
 A major driver of profitability for ethanol over the past 30 years has been 
subsidies in the form of tax credits given to blenders.  Currently, blenders receive a 45 
cent tax credit per denatured gallon of ethanol purchased from ethanol producers.  The 
current subsidy program differentiates between how the ethanol is produced, thus 
cellulosic ethanol receives a 56 cent per gallon additional subsidy compared to grain 
based ethanol for a total of $1.01/gal (Tyner, 2007).  Biofuels produced through the 
thermochemical process receive a $1.01/gal. production subsidy, at least through 2012 
(U.S. Congress, 2008).   
 

 

Source: Author’s Calculations (2009). 
Figure 3.3:  Profitability at Various Oil Prices using Energy Equivalent Ethanol Price 

 
 Table 3.11 shows the after tax and financing NPV for both grain and cellulosic 
production methods under the following two subsidy scenarios: no subsidy and the new 
2008 Farm Bill subsidy levels.  It is important to note that we are assuming that 100% 
of the subsidies paid to the blenders are passed on to the producers, although the actual 
subsidy pass-through varies with market conditions and can be adjusted in the BCM.   
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 The projected profitability under each subsidy level shows that all production 
types fail to meet all required returns without a subsidy in place.  However, when the 
BCM model is adjusted to represent the 2008 Farm Bill subsidy levels, both cellulosic 
production methods become more profitable compared to grain based ethanol.  In fact, 
the $.51 per gallon NPV for biochemical production method means that under current 
assumptions, a 50 million gallon per year cellulosic biochemical plant would generate 
$20.5 million more (20 year plant life) than required by the investors.  In addition, the 
analysis indicates that the thermochemical platform has a $.10 higher NPV per gallon 
compared to the grain based platform under the current subsidy program.  This is the 
case even though the farm bill subsidy is on a volumetric basis ($/gal.), which penalizes 
the thermochemical approach because it produces a gasoline or diesel biofuel directly, 
and these products contain 50% more energy than ethanol. 
 

Table 3.11: After-Tax and Financing NPV Under Different Subsidy Levels 
  Grain Biochemical Thermochemical 

Zero Subsidy ($/gal capacity)  ($1.91) ($4.00) ($4.29) 

2008 Farm Bill Subsidy  

($/gal capacity) $0.10 $.51 $.20 

Breakeven Subsidy ($/saleable gal.) $0.43 $0.90 $0.96 

 Source: Author’s Calculations (2009). 

 
Although the BCM suggests that the cellulosic methods will be more profitable 

than grain based ethanol if the current Farm Bill subsidies are upheld throughout the life 
of the plant, the cellulosic platfoms require a higher subsidy per gallon.  The break-even 
subsidy shown in Table 3.11 is the subsidy amount that generates a $0 NPV or simply, 
the subsidy amount per gallon required in addition to revenues to cover all cash, capital 
and equity expenses.  It is important to note that the break-even subsidy does not 
represent comparing the three production types on an energy equivalence basis; it is 
simply the subsidy required to create equal profitability based on the average market 
prices over the last three years.  Using the base case assumptions, the grain based 
subsidy would need to be approximately 43 cents per denatured gallon to create a $0 
NPV.  The biochemical cellulosic method would require a subsidy of approximately 90 
cents per denatured gallon while the thermochemical process would require a subsidy of 
96 cents per gallon.  Thus, under current assumptions, the cellulosic biochemical 
production method needs to be subsidized 47 cents/gal. more than grain based ethanol 
while thermochemical production is projected to need subsidy of 53 cents/gal. more to 
be economically equivalent to grain based ethanol on an NPV basis.   

 
3.8.2 Production Contract Policy Analysis 

 
 Establishing a production contract for biofuels could be one alternative to the 
current blending and production subsidies in the 2008 Farm Bill.  In this analysis it is 
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assumed that the government would be willing to guarantee the purchase of biofuels at a 
set price for the next 20 years.  Biofuel companies would place bids for production 
contracts and the lowest bids would earn the right to produce and sell at the guaranteed 
price level.  We assume here that companies would place a bid that would generate a 
post-tax $0 NPV.   In other words, companies would compete for the right to have 
guaranteed prices to the point of eliminating excess profits.   However, in reality, the 
production contract only eliminates fuel price risk, and input costs and technical 
conversion risks remain.  Thus, firms would not actually bid to the point of eliminating 
all expected profits as we assume here.  They would bid something lower, but we have 
no way of estimating the compensation companies would require for the additional risk.  
What we produce in table 3.12 is an indication of the relative order of profitability from 
the three technologies. 
 

Table 3.12: Guaranteed Price Levels for Production Contracts 

  

Grain 

Based Biochemical Thermochemical

Guaranteed Price ($/saleable gal.)* $2.18 $2.65 $3.11 

Effective Cost/gal. ($/saleable gal.)  $0.43 $0.90 $0.96 

*Ethanol for grain and biochemical processes and gasoline for the thermochemical 
process 
Source: Author’s Calculations (2009). 

 
 Table 3.12 shows that the guaranteed price for grain based ethanol would need 
to be $2.18/gal or 43 cents/gal higher than the assumed $1.75 to achieve a $0 NPV.  
Again, the advanced biofuel production methods appear to be quite economically 
similar, with the biochemical process requiring a 90 cent/gal government price 
guarantee subsidy compared to the 96 cents/gal for the thermochemical process.   
 
 A guaranteed price level production contract policy may reduce the cost to the 
United States government compared to the 2008 Farm Bill subsidies.  The difference 
between the effective cost/gallon and the proposed blending and production subsidies 
would be the current savings to the government as shown in Table 3.13.  The BCM 
suggests that the government could save 5 cents/gal. of ft-gasoline produced by the 
thermochemical process and 11 cents/gal. of ethanol produced by the biochemical 
process given the assumptions.  The aggregate savings to the government for using this 
policy is unclear because the proportion of production types utilized and the potential 
amounts produced have yet to be determined. 
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Table 3.13: Government Costs for Policy Options 

  Grain Based Biochemical Thermochemical 

$ per saleable gallon 

2008 Farm Bill Subsidy  $0.45 $1.01 $1.01 

Price Guarantee  $0.43 $0.90 $0.96 

Gov.  Savings  $0.02 $0.11 $0.05 

 Source: Author’s Calculations (2009). 

 
 In concept, a production contract is similar to a variable subsidy with the 
subsidy depending on the oil price.  The government cost is low (or even profit) if oil 
prices are high, but the subsidy cost increases as oil price falls.   
  
3.9 Current Economics 
 

The commodity markets have been extremely volatile over the last three years, 
thus greatly affecting the profitability of the cellulosic and grain based biofuel 
platforms.  The economic analysis conducted thus far assumed that all input and output 
prices were based on a three year average from January 2006 to December 2008.  As of 
June 19th 2009, energy and grain prices are much lower than the three year average 
(Appendix B).  This section of the chapter will examine the current economics of the 
three production methods based on June 19th, 2009 commodity prices. 

 
Table 3.14 shows that all three of the production types are expected to generate 

negative profits without the 2008 Farm Bill subsidies given today’s market conditions.  
The shift to more severe negative profits for the cellulosic platforms is the result of 
lower output prices for both ethanol and gasoline.  The lower ethanol price for grain 
based ethanol production is offset by the lower corn and energy costs (mainly natural 
gas), thus making the current NPV for grain ethanol more appealing than the base case.  
When the 2008 Farm Bill subsidies are added to the BCM, the grain based platform is 
projected create a positive NPV while the cellulosic platforms are still slightly negative.   
This analysis underscores that biofuel economic comparisons are highly reliant on both 
relative input and output prices.  Thus, investors and policy makers should look at a 
variety of price levels in order to judge overall profitability for the three production 
types.  
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Table 3.14: June 2009 After-Tax and Financing NPV Profitability 
  Grain Biochemical Thermochemical

  $/gallon capacity 

 Zero Subsidy ($1.51) ($5.66) ($5.21) 
2008 Farm Bill 
Subsidy $.50 ($1.15) ($.70) 

Source: Author’s Calculations (2009). 

3.10 Conclusion 
 
 The BCM base case and the subsequent sensitivity analysis conducted in this 
paper show that grain based ethanol, biochemical cellulosic ethanol, and 
thermochemical cellulosic gasoline are all economically infeasible without subsidies or 
other government policies.  However, grain based production has a higher level of 
profitability (lower loss) compared to the cellulosic production methods under the cost 
and technical assumptions assumed.  When the current subsidies are included in the 
revenue stream, the cellulosic production methods appear to be more profitable 
compared to the grain based platform.  A big underlying assumption in this case is that 
the cellulosic biorefineries will be able to convert biomass to biofuel under the yield 
assumed (69.7 gal/ton for biochemical and 61.4 gal/ton for thermochemical) and at the 
assumed capital costs.  The range of reported yields varies from 55 gallons per ton to 
110 gallons per ton, thus the actual profits will adjust significantly when a commercial 
plant actually proves the feasible yield rate.  
 

  In addition, this analysis shows that grain based ethanol profitability is much 
more affected by higher energy and feedstuff costs, whereas cellulosic biofuel 
production types are more sensitive to capital and enzyme costs.  Technical 
breakthroughs could lower biochemical enzyme and capital costs such that cellulosic 
biochemical ethanol and thermochemical gasoline could close the gap in terms of 
profitability.  

  
 A quicker solution to spur cellulosic biofuel production would be for the 
“Energy Independence and Security Act of 2007” mandates and the 2008 Farm Bill 
subsidies to be upheld or government price guarantee policy used for the life of the 
plant investments.  With the proposed subsidy levels, both cellulosic ethanol and 
thermochemical gasoline plants are projected to be more profitable than grain based 
ethanol facilities.  However, the government price guarantee policy analyzed could 
allow the biofuels plants to be profitable, while reducing the costs for the U.S. 
government.  In order for investment to actually occur, investors must believe these 
subsidies, mandates or other policies will not be drastically altered or eliminated during 
the life of the plant.   
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4.  CO CLUSIO  
 

Based on the average input and input and output prices from 2006 to 2008, and 
the technical assumptions given in the base case, all forms of ethanol and biofuel 
production are currently unprofitable without government subsidies.  The case indicates 
that grain based ethanol is the most profitable (least loss) biofuel production type 
compared to biochemical cellulosic ethanol and thermochemical biofuels.  The results 
show that the after tax and financing NPV for a grain based production facility is $-1.91 
per gallon of capacity without subsidies.  This is compared to $-4.00 for biochemical 
cellulosic production and $-4.29 for thermochemical biofuels.  The NPV is reported on 
a per saleable gallon basis with plants being approximately 100 million gallons of 
ethanol per year for grain based production and 50 million gallons per year for 
cellulosic production. 

 
  Although thermochemical cellulosic production appears to be the most 

unprofitable on a per saleable gallon basis, the thermochemical process is currently the 
cheapest form of biofuel energy production compared to the other process’ on an energy 
equivalents basis.  Table 4.1 shows the breakeven biofuel price for each of the 
production types without considering subsidies.  The breakeven price is simply the 
required biofuel price needed to generate an after-tax and financing NPV of zero.  
Because the thermochemical process can produce products similar in energy value to 
gasoline, the energy content per salable gallon is roughly 50 percent higher compared to 
ethanol.  Thus, on a crude equivalent basis, thermochemical cellulosic production 
appears to be as economical as grain based ethanol with an estimated breakeven crude 
price of $108.27 per barrel compared to $113.64 crude oil for grain based ethanol. 
 

Table 4.1: Energy Equivalents for Production Types for Base Case 

Grain Based Biochemical Thermochemical
Gasoline Equivalent ($/gal) $3.25 $3.97 $3.11 
Crude Equivalent ($/barrel)* $113.64 $141.44 $108.27 
*Based on historical gas/oil price relationship (Tyner and Taheripour, 2007) 
Source: Author’s Calculations (2009). 
 

  The cellulosic biofuel industry would most likely develop faster if investors 
believed the current production and blending subsidies that resulted from the 2008 Farm 
Bill would be sustained over the 20 year life of the plant investment.  The combination 
of the blending subsidy for grain based ethanol dropping to 45 cents per gallon and the 
effective subsidy of cellulosic biofuels increasing to $1.01 per gallon, is projected to 
make cellulosic biofuels more profitable than grain based ethanol given the base case 
assumptions.  This analysis estimates that biochemical cellulosic ethanol would have an 
after-tax and financing NPV of 51 cents, compared to 20 cents for the thermochemical 
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process and 10 cents for the grain based ethanol process when considering current 
subsidies.  Thus, if investors believe the subsidies will be sustained and that the case 
assumptions are valid, cellulosic plants may be considered a viable investment.  If the 
subsidy were changed to an energy equivalent basis, thermochemical would become 
more attractive.  

 
This study also indicates that the cellulosic biofuels industry can become more 

economically feasible compared to the grain based ethanol industry if any of the 
following occur:  

 
• Energy prices increase: Advanced biofuels are much less exposed to 

energy prices compared to grain based ethanol.  Grain based ethanol 
relies heavily on natural gas to convert corn to ethanol whereas the 
cellulosic production types utilize internal heat for most of the power 
generation.  This study suggest that a 20% increase in energy prices will 
decrease the NPV for grain ethanol by 21 percent compared to less than 
3 percent for both of the cellulosic platforms. 
 

• Biomass Yield: The commercial biomass to biofuel yield is highly 
unknown in the industry.  This case analysis was conservative in 
estimating the biochemical process would yield 69.7 gallons per ton 
while the thermochemical process would yield 61.4 gallons per ton.  If 
the actual yields are greater, then the profitability for cellulosic 
production types will increase drastically, as both the feedstuff cost per 
gallon and the capital cost per gallon produced would likely decrease. 
 

• Capital Costs: A major concern in the advanced biofuel industry is that 
the capital costs are too high relative to the grain based ethanol industry.  
Biochemical cellulosic plants are estimated to cost 276 percent more to 
build per name-plate gallon of capacity compared to grain based ethanol, 
and the thermochemical process is estimated to cost 509 percent more 
per name-plate gallon.  If these initial cash outlays were less for the 
cellulosic platforms, NPV profitability would increase and the large cash 
barrier of entry would decrease.  Andy MaAloon estimates that capital 
costs for a cellulosic plant starting in 2015 will be approximately 25 
percent less, thus if technological progress continues, cellulosic biofuels 
will become more profitable relative to grain based ethanol (MaAloon, 
2008). 

 
To reiterate, comparing profitability between the production types is largely 

dependent on both current prices and future price projections.  The BCM is organized 
so prices, assumptions and technical parameters can be updated easily.  The impact of 
variations of input prices can be seen when comparing the base case results to the 
current input and output prices and the subsequent NPV projections.  Currently (June 
19th, 2009 prices), all production types are projected to be unprofitable even with the 
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assistance of subsidies.  Thus, unless ethanol and oil prices rise, the biofuels industry is 
likely to remain unprofitable without increased government intervention.  

 
4.1 Future Research 
 

As more information surrounding the future cellulosic industry is available, 
assumptions in this study can be altered and the infrastructure impacts can be predicted 
more accurately.   

 
The BCM introduced in this thesis serves as a solid framework for future 

economic comparisons.  The model is set-up in a way that will allow future users to 
adjust technical, financial, and cost assumptions.  The BCM and the subsequent 
economic analysis has flaws as with any other model.  The current BCM assumes that 
input and output prices will remain fixed in real terms  over the life of the plants.  
Future research could include risk and price variation into the BCM.  By allowing input 
and output prices to fluctuate year to year based on historical data, investors would have 
a better idea of the profits and relative risk of the advanced cellulosic platforms 
compared to the grain based industry.  In addition, adding variation in unknown 
technical components such as enzyme, biomass to biofuel conversion yield, and capital 
costs would give investors a range of possible NPV’s, thus allowing investors to choose 
risk parameters such as likelihood of negative profits.  Lastly, risk could be added to 
represent the uncertainty of future subsidy levels.  The 2008 Farm Bill subsidies are set 
to expire in 2012.  A range of possible subsidies past that date could be added to the 
model. 
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Appendix A: Base Case Input Assumptions 
 

Decisions Variables: 
CHOOSE 
VALUES HERE: 

Energy Prices: Price Used in Model 
Adjusted 

Price  

Oil Price: Adjusted Price  $79.39 $79.39 

LP (Propane) Price: Adjusted Price  $1.21 $1.210 

Electric Costs/Credit kwh: Adjusted Price  $0.10 $0.098 

Diesel: Adjusted Price  $2.33 $2.33 

Corn Price: Adjusted Price  $3.91 $3.91 

Energy and DDGS Prices: Price Used in Model 
Adjusted 

Price  

Natural Gas: Adjusted Price  $11.85 $11.85 

Denaturant Price per Gal. (gasoline): Adjusted Price  $2.15 $2.15 

Current Base Ethanol Price: Adjusted Price  Insert Values Below   

Current Grain Ethanol Price: 
Adj. Grain Ethnal 

Price $1.75 $1.75 

Current Biochemical Ethanol Price 
Adj. Bio Ethnal 

Price $1.75 $1.75 

DDGS $/ton: Adjusted Price  $119.60 $119.60 

Cellulosic Production choices: Price Used in Model 
Adjusted 

Price 

Feedstuff chosen for model: Corn Stover N/A N/A 

Feedstuff base cost: 
Estimated Indiana 

Price $41.12   

Cellulosic Extraction Rates (gallons fuel/dry ton): Value Used in Model 
Adjusted 

Value 

Biochemical extraction rate (anhydrous gal/ton): Literature Estimate 69.7   

Thermochemical extraction rate: Literature Estimate 61.4   

Dry Mill Corn Extraction Rates: Value Used in Model 
Adjusted 

Value 

ethanol extracted (anhydrous gal. per bu.) Literature Estimate 2.65   

DDGS per Bushel (lb. per bu.) Literature Estimate 18   

CO2 extracted per Bushel   (lb. per Bu.) Literature Estimate 18   
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Appendix B: Current Input Assumptions 
 

Decisions Variables: 
CHOOSE VALUES 

HERE: 

Energy Prices: Price Used in Model 
Adjusted 

Price  

Oil Price: Current Market Price $69.60   

LP (Propane) Price: Current Market Price $0.93   

Electric Costs/Credit kwh: Current Market Price $0.02   

Diesel: Current Market Price $1.82   

Corn Price: Current Market Price $3.99   

Energy and DDGS Prices: Price Used in Model 
Adjusted 

Price  

Natural Gas: Current Market Price  $5.18   

Denaturant Price per Gal. (gasoline): Current Market Price  $1.93   

Current Base Ethanol Price: Adjusted Price   

Current Grain Ethanol Price: Adj. Grain Ethnal Price $1.53   

Current Biochemical Ethanol Price Adj. Bio Ethnal Price $1.53   

DDGS $/ton: Current Market Price  $119.60   

Cellulosic Production choices: Price Used in Model 
Adjusted 

Price 

Feedstuff chosen for model: Corn Stover N/A N/A 

Feedstuff base cost: Estimated Indiana Price $41.12   

Cellulosic Extraction Rates (gallons fuel/dry 
ton): Value Used in Model 

Adjusted 
Value 

Biochemical extraction rate (anhydrous 
gal/ton): Literature Estimate 69.7   

Thermochemical extraction rate: Literature Estimate 61.4   

Dry Mill Corn Extraction Rates: Value Used in Model 
Adjusted 

Value 

ethanol extracted (anhydrous gal. per bu.) Literature Estimate 2.65   

DDGS per Bushel (lb. per bu.) Literature Estimate 18   

CO2 extracted per Bushel   (lb. per Bu.) Literature Estimate 18   

 


