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ABSTRACT  
 

Extreme meteorological events have increased over the last decade and it is widely accepted that it is 

due to climate change. Some of these extremes like drought or frost episodes largely affect 

agricultural outputs that could face a serious decline. Therefore, additional efforts on technology and 

adaptation become crucial to reduce the effect of climate change on agricultural production. Protection 

against adverse weather extremes is a significant component of risk management and large protection 

decisions need dynamic treatment, such as the vineyards or citrus protection against frost (Murphy et 

al., 1985), the water management for cereals irrigation in drought shortage contexts, the “options and 

futures” exchange markets decisions for major crops in USA, and many other risk management 

problems. The goal of this paper is to obtain the analytical expressions for the optimal actions and 

minimal expected expenses associated with a dynamic cost-loss model with finite horizon. The optimal 

policy expressions for this type of situations can help in the management of climate risk in agriculture 

in a more general approach than numerical solutions.  

 

 

Key words: information value, cost-loss ratio, dynamic decision models  

Classification JEL : C6 and Q1. 
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1 Introduction  

Agriculture sector is the most vulnerable to the extreme meteorological events. The possible increase 

in water shortage and extreme weather events may cause lower harvestable yields and higher yield 

variability. Agriculture in European Union accounts for only 2% of the total GDP, but accounts for 5.6% 

of total employment. Even if the vulnerability of the overall economy to changes that affect agriculture 

is therefore low, locally effects may be large (Olesen and Bindi, 2002). 

 

Vulnerability has increased over the last decade as one of the climate change consequences. (IPCC, 

2007). There is now concern that global warming has the potential for affecting the climatic regimes of 

entire regions and increases the extreme meteorological events (IPCC, 2007). Many studies 

document the repercussions for agriculture, and show that although significant variations exits 

between different regions and different scales (IPCC, 2007; Olesen and Bindi, 2002; Parry et al., 

2004) the implications are substantial. As well, demographic changes are altering vulnerability to water 

shortages and agricultural production can face serious consequences at local and regional levels.  

 

However, the resulting effects depend on the direction of change and the availability of resources and 

infrastructure to cope with change. (Olesen and Bindi, 2002). Some of the climate risks, --e.g. drought 

or frost episodes that largely affect agricultural outputs (Iglesias and Quiroga, 2007)-- can be managed 

by farmers across protection systems or some kind of insurance instrument. Therefore, it is important 

to enhance climate management tools in agriculture. 

 

Major agricultural decisions involve more than a period, the decision making process being dynamic in 

nature. Management of weather-sensitive enterprises frequently requires that decisions be made in 

the face of uncertainty regarding future weather events and for main situations the opportunities for 

and constraints on future decisions depend on previous decisions and weather events. (Wilks, 1991). 

 

Therefore, dynamic treatment is essential to risk management problems. When farmers decide about 

protecting harvest from a meteorological risk, do not obtain immediate results, since the decision 

taken over every period influences total results. To take no protective action in a given period is 

enough to loss the overall harvest if the weather is “adverse” (that is, some meteorological event able 

to destroy the harvest if it has not been protected). For example, frost protection is just one phase of 

an orchard management process, but the decisions made relative to it have a direct and significant 

economic effect on orchard production since, if the crop is lost to frost, the decisions pertinent to 

orchard operation for the rest of the season may have limited or no effect on current year production. 

(Baquet et al. 1976). 
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Classic agricultural decision-making problems include the vineyards or citrus protection against froze 

(Katz and Murphy, 1997; Murphy et al., 1985; Katz et al., 1982; Baquet et al.,1976), the water 

management for cereals irrigation in drought shortages contexts, the “options and futures” exchange 

markets decisions for major crops in USA, and much more risk management decisions.  

 

Most of these problems are dynamic in nature (e.g., Katz 1993, Brown et al, 1986; Mjelde et al. 1988), 

because the action taken by a decision maker on the current occasion does have an effect on any 

actions to be taken on future occasions. Therefore, it is necessary to deal with all the periods as a 

whole and consider the decision as dynamic, so this creates a decision-making problem that is 

inherently more complex. As widely analyzed, in general, the optimal policy in a dynamic context 

cannot be reached across the sequence or the static optimal decisions in each period involved (Cerdá, 

2001). 

 

In this paper, the focus is on the analytical expressions for the optimal policy and minimal expected 

expenses associated for a dynamic cost-loss model with finite horizon in order to asses management 

of climate risk in agriculture. A dynamic cost-loss ratio decision-making problem version is formalized 

in section 2. Analytical results concerning the structure of the optimal policy and the corresponding 

minimal expected expenses for this model are presented in section 3, including technical derivations. 

Section 4 presents two case studies and some numerical examples. Finally, some conclusions are 

discussed. 
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2 The model 

The cost-loss ratio situation is a decision-making problem widely analyzed in the literature in 

assessing the economic value of weather forecast (e.g., Murphy 1977; Murphy et al, 1985, Murphy 

and Ehrendorfer, 1987; Katz, 1993; Palmer, 2002; Katz and Ehrendorfer, 2006). The model involves 

two possible actions, protect ( 1= )α , and not protect ( )0=α , and two possible events, adverse 

weather ( 1θ = ) and no adverse weather ( 0θ = ). The decision maker is assumed to incur a cost    

C>0 if protective action is taken, a loss L>0 if protective action is not taken and adverse weather 

occurs, and no cost or loss otherwise.  

 

The model is a representation of a sequence of related decisions that must be made in the face of 

uncertainty regarding future weather events, which will affect the consequence of the decisions. We 

consider the finite horizon dynamic version of this problem (Murphy et al, 1985) where the risk of 

losing the harvest remains in a set of N periods (the length of the decision sequence is arbitrary but 

finite), and the farmer has to manage this risk making a decision every period between protecting or 

not protecting the crop.  

 

When a protective action is taken, the cost incurred is iLγ , where 10 << γ  y  is the value of the 

harvest in the period i (that can be  if the harvest has suffered no damage until the period i, or 

 if has been destroyed before the period i). 

iL

LLi =

0=iL

 

The state of weather for every period can be “adverse weather”, with 1=iθ , or “non adverse 

weather”, with 0=iθ . In every period, the farmer incurs into the following additional cost: If there is 

“adverse weather”, the cost reaches the total value of the harvest in period i ( ) if he did not protect 

the crop for this period, or equals zero if the crop has been protected. This can be written as a 

cost

iL

ii L)1( α− , where 1=iα  if some protective action is taking in i, and 0=iα  in other case. 

Therefore, the accumulated expense to the farmer will be the cumulative sum of the costs, which can 

be calculated for the entire N periods as:
1

[
N

i i i i i i
i

]L L Lγα θ α
=

+ −∑ . The structure is “dynamic” in the 

sense that decisions and events at a particular point in the sequence will influence future decisions 

and their consequences (Wilks, 1991). 

 

Once the harvest is lost, there is no possibility to recover it, so if the weather is adverse in a period 

( 1=iθ ), the part of the harvest remaining for the following period i+1, (that is, the quantity which is 
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possible to loss in the case of not protection), will be ii Lα . That is because on one hand, if the farmer 

protects the harvest over the period i ( 1iα = ), no loss is incurred and the value in i+1 is the same , 

and on the other hand, if he does not protect the harvest over the period i (

iL

0iα = ), the harvest is 

totally damaged and the value remaining for the period i+1 is zero. 

However, if the weather is “non adverse” in the period i, 0iθ = , the harvest value for the period i+1 is 

the same that in the period i, that is: . iL

 

So, the state of the harvest value in the i+1 period (and the maximum loss for the farmer in this period) 

can be expressed as a function of the state of nature in the last period (i), being: 

1 (1 ) 1,...,i i i i iL L L i Nθ α+ = − − = . The goal of the analysis is to identify sequences of 

decisions that are optimal, in the sense that a measure of overall performance (such as total expected 

monetary expense or gain) is minimized or maximized over the full sequence of decisions considered.  

 

So, a farmer who minimizes the expected expense (that implies neutral risk aversion), should solve: 

{ }1 1

1

1

[ ]

. . (1 ) 1,...,

1,     with prob 
where  is a random variable that in the i-period takes the following values

0,  with prob 1- .
We assume tha

N
i

N

i i i i i i
i

i i i i i

i

MinE L L L

s a L L L i N
L L

P
P

α

θ

θ

γα θ α

θ α

θ

=

+

⎧ ⎫
+ −⎨ ⎬

⎩ ⎭
= − − =
=

⎧
⎨
⎩

∑

{ }
1t the random variables ,...,  are independent.

0,1 1,...,
N

i i N
θ θ

α ∈ =

(1) 

 

Figure 1 shows the time structure of the dynamic decision problem. The farmer begins a period i with 

a harvest value , so that is the maximum loose value if the weather is “adverse” and he takes no 

protective action for this period.  

iL
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L1=L L2 L3

α1 θ1
α2 θ2

α3 θ3
αN-1 θN-1

αN θN

LN-1 LN LN+1

Period
1

Period
2

Period
3

Period
N-1

Period
N

...

 
Figure 1 Decision problem temporal structure 

 

So farmers must decide between protect or not protect ( iα ), and of course the decision has to be 

taken before the value taken by the weather random variable ( iθ ) is known. However, climatological 

(or prior) information is available, consisting of probability of adverse weather, { }P Pr 1θ θ= =  based 

on statistical or historical information. 
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3 Results 

3.1 Analytical results  

Proposition 1: Optimal policy for the dynamic cost-loss problem with climatological 

information and finite horizon (N periods). The following optimal solution is obtained to problem (1), 

for K=1,2,...,N: 

 

A) If * PN K N
P

θ

θ

γ
γ
−

> = −  (that occurs if and only if Pθγ < ): The optimal policy would be not protect 

until period  and protect from this period to the end. The optimal control and the optimal value 

function are: 

*K

i) If * PK K N
P

θ

θ

γ
γ
−

> = − : the optimal control would be: 1Kα =  (to protect in K)  

In addition, the optimal value function: { } [ ]* 1
N

K K K
i K

J L N K L LKγ γ
=

= − + =∑  

ii) If * PK K N
P

θ

θ

γ
γ
−

< = − : the optimal control would be: 0Kα =  (not protect in the K 

period) and the optimal value function: 

{ } ( ) ( )

( ) ( ) ( )

**

*

* *

1
*

1 1

1*

1 1

1 1 1 1

KK i N

K K K K i j K K j
i K j K j Ki K

K K K K
K K K

J L E L L L

P L P L P N K P Lθ θ θ θ

θ θ θ γ θ

γ

⎡ ⎤⎡ ⎤ − ⎣ ⎦⎣ ⎦

= + = =⎡ ⎤= +⎣ ⎦

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= + − + −
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤= + − − − + − −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑∏ ∏

+

=
 

iii) If * PK K N
P

θ

θ

γ
γ
−

= = − , the agent is indifferent between protecting or not. 

B) If * PN K N
P

θ

θ

γ
γ
−

≤ = −  (if and only if Pθγ ≥ ): Optimal control would be: 0Kα =  , 

that is to protect in none of the periods, and the optimal value function would be: 

1,...,K N∀ =

{ } ( ) ( ) ( )
1

*

1
1 1 1 1

iN
N K

K K K K i j K K K
i K j K

J L E L L P L P L Pθ θ θθ θ θ
−

−

= + =

⎡ ⎤⎡ ⎤ ⎡ ⎤= + − = + − − −⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∏  

 

Proof: Using the Induction over K method, we start the analysis on the final period. 
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Final period: Being  determined, with no contribution to the objective function: 1NL + { }*
1 1 0N NJ L+ + =   

N period (with  determined): Bellman equation corresponding this period is: NL

{ }
{ }

{ }*
1 10,1

[ ]
N

N N N N N N N N N NJ L Min E L L L J L
α

γα θ α + +∈
⎡= + − +⎣

* ⎤⎦ , which calculating the expectation 

becomes: { }
{ }

*

0,1
[ ]

N
N N N N N N NJ L Min L P L Lθα

γα α
∈

= + − .  

The solution to this problem is: 

If Pθγ < , (in which case we have: * PN K N
P

θ

θ

γ
γ
−

> = − ), the optimal decision for the N period is to 

protect, so: 1Nα = . In this case, the accumulated expenses would be: { }*
N N NJ L Lγ= . 

If Pθγ > , (in which case we have: * PN K N
P

θ

θ

γ
γ
−

< = − ), the better decision for the N period is not 

to protect, then: 0Nα = , and the accumulated expenses are: { } [ ]*
N N N N NJ L E L P Lθθ= = . 

If Pθγ = , (so we have: * PN K N
P

θ

θ

γ
γ
−

= = − ), the agent is indifferent between the both possibilities. 

So for the N period the Proposition 1 is satisfied. 

 

Induction hypothesis: We consider the 1K +  period where 1KL +  has already been determined. We 

assume that Proposition 1 is certain for 1K +  (following the induction hypothesis) and prove that in 

that case the proposition is also true for the K period. 

 

A) If we consider * PN K N
P

θ

θ

γ
γ
−

> = −  (which it is true if and only if Pθγ < ): 

 

i) Assuming that *1 PK K N
P

θ

θ

γ
γ
−

+ > = − , then, in 1K + , the proposition 1 implies that the agent 

chooses to protect the harvest ( 1 1Kα + = ), being the optimal value function:  

{ } ( ) [ ] ( )*
1 1 1

1 1
1 1 1 1

N N

K K K K K K K K
i K i K

J L L L N K Lγ γ θ α γ θ α+ + +
= + = +

= = − − = − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑ K . 

Given this, in the K period (with KL  determined), Bellman equation corresponding the K period would 

be: { }
{ }

( ) { }* *
1 10,1

1
K

K K K K K K K K KJ L Min E L L J L
α

γα θ α + +∈
⎡ ⎤= + − + =⎣ ⎦  
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{ }
( ) [ ] ( )

0,1
1 1

K
K K K K K K K KMin E L L N K L

α
γα θ α γ θ α

∈
⎡ ⎤= + − + − − −1⎡ ⎤⎣ ⎦⎣ ⎦ . Calculating the expectation 

becomes: 

{ }
{ }

( ) [ ] ( )*

0,1
  1 1

K
K K K K K K K KJ L Min L P L N K L Pθ θα

γα α γ α
∈

⎡ ⎤= + − + − − −1⎡ ⎤⎣ ⎦⎣ ⎦ . So: 

If 0Kα = ⇒ expected expense from K to N period would be: [ ] ( )1K KP L N K L Pθ θγ+ − − . 

If 1Kα = ⇒ expected expense from K to N period would be: [ ]K KL N K Lγ γ+ − . 

Therefore, in this case, the optimal solution is: 

1Kα = ⇔ [ ] [ ] ( )1K K K KL N K L P L N K L Pθ θγ γ γ+ − < + − − ⇔

[ ] [ ]P P N K P N K Pθ θ θ θγ γ γ γ< − − ⇔ + − < ⇔ [ ] [ ]
1

1
PP N K P

P N K
θ

θ θ
θ

γ γ⎡ ⎤+ − < ⇔ <⎣ ⎦ + −
, 

And this is always satisfied since *PK N K
P
θ

θ

γ
γ
−

> − = . In addition, the optimal value function would 

be: 

{ } [ ] [ ]* 1
N

K K K K K
i K

J L L N K L N K L LKγ γ γ
=

= + − = − + =∑γ  as we wanted to prove. 

However, another possibility is that * 1K K K≤ < + . In that case, we have: 
[ ]1
P

P N K
θ

θ

γ >
+ −

, 

moreover, the optimal solution is 0Kα = , and the optimal value function equals: 

{ } [ ] ( )* 1 .K K K KJ L P L N K L Pθ θγ= + − −  

While , it implies , so Proposition 1 is satisfied. *1K + > K K*K⎡ ⎤ =⎣ ⎦
 

ii) If we assume *1 PK K N
P

θ

θ

γ
γ
−

+ ≤ = − , then, in the 1K +  period, as Proposition 1 is satisfied (in 

accordance with the induction hypothesis), the agent would chose not to protect the harvest 

( 1 0Kα + = ) (or would be indifferent if *1K K+ = ). Therefore, the optimal value function can be 

calculated as: 

{ } ( ) ( )
**

*

1
*

1 1 1 1 1 1
2 1 11

1 1
KK i N

K K K K i j K K j
i K j K j Ki K

J L E L L Lθ θ θ γ θ
⎡ ⎤⎡ ⎤ − ⎣ ⎦⎣ ⎦

+ + + + + +
= + = + = +⎡ ⎤= +⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= + − + −
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑∏ ∏ . 

We have to prove that Proposition 1 is sustained for the K period (with KL  determined). For this 

period, Bellman equation is: { }
{ }

( ) { }* *
1 10,1

1
K

K K K K K K K K KJ L Min E L L J L
α

γα θ α + +∈
⎡ ⎤= + − + =⎣ ⎦  
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{ }
( ) ( )

( )

*

*

1

1 1 10,1 2 1

*
1

1

1 1

1 .

K

K i

K K K K K K K i j K
i K j K

K

K i
i K

Min E L L L L

N K L

α
γα θ α θ θ θ

γ θ

⎡ ⎤ −⎣ ⎦

+ + +∈
= + = +

⎡ ⎤
⎣ ⎦

+
= +

⎡ ⎤
⎢ ⎥= + − + + −⎡⎣ ⎢ ⎥⎣ ⎦

⎤
⎡ ⎤ ⎥⎡ ⎤+ − −⎣ ⎦⎣ ⎦ ⎥⎦

∑ ∏

∏

+

 

This can be written as a function of KL  if we take into account the state equation: 

{ }
{ }

( ) ( )( )

( ) ( )( ) ( )( ) ( )
**

*
10,1

1
*

2 1 1

1 1 1

+ 1 1 1 1 1 1 .

K
K K K K K K K K K K K

KK i

i j K K K K K K
i K j K i K

J L Min E L L L

L N K L

α
γα θ α θ θ α

θ θ θ α γ θ α θ

+∈

⎡ ⎤⎡ ⎤ − ⎣ ⎦⎣ ⎦

= + = + = +

⎡= + − + − − +⎣

⎤⎡ ⎤
⎡ ⎤ i ⎥⎢ ⎥ ⎡ ⎤− − − + − − − −⎣ ⎦⎣ ⎦ ⎥⎢ ⎥⎣ ⎦ ⎦

∑ ∏ ∏
 

We calculate the expectation with respect { }iθ  distribution function assuming that { }iθ  are random 

variables independently distributed: 

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

*

*

1

1
2 1

*

1

1 1 1  1 1 1

1 1 1 1 1 1

K i

K K K K K K K K K i j K K K
i K j K

K

K K K i K K K K K K
i K

E L L L L

N K L L P L P P Lθ θ θ

γα θ α θ θ α θ θ θ α

γ θ α θ γα α α

⎡ ⎤ −⎣ ⎦

+
= + = +

⎡ ⎤
⎣ ⎦

= +

⎡ ⎤
⎢ ⎥⎡ + − + − − + − − −⎣ ⎢ ⎥⎣ ⎦

⎤
⎡ ⎤ ⎥⎡ ⎤+ − − − − = + − + − −⎣ ⎦⎣ ⎦ ⎥⎦

∑ ∏

∏

( ) ( )( ) ( )( ) ( )
**

1
*

2 1 1

1 1 1 1 1 1
KK i

i j K K K K K K i
i K j K i K

E L E N K L

+

+

θ θ θ α γ θ α θ
⎡ ⎤⎡ ⎤ − ⎣ ⎦⎣ ⎦

= + = + = +

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎡ ⎤+ − − − + − − − −⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
∑ ∏ ∏ , 

where: 

( ) ( )( ) ( ) ( )( )
*

1

2 1 3 2 1
2 1

1 1 1 1 1 1 ...
K i

i j K K K K K K K K
i K j K

E L Eθ θ θ α θ θ θ θ θ
⎡ ⎤ −⎣ ⎦

+ + + + +
= + = +

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡− − − = − + − − +⎡⎣⎣⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∏

( )( ) ( )

+

( ) ( )( )* * *1 2 2 1
1 1 ... 1 1 1 1K K K K KK K K

Lθ θ θ θ θ θ α+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎤⎤+ − − − − − − ⎥⎥⎦ ⎦
, 

as we are considering identically and independently distributed random variables { }iθ with 

[ ] { }      1,...,iE P i Nθθ = ∀ ∈ , we have: 

( ) ( )( ) ( ) ( ) ( ) ( )( )
*

*1
2 1

2 1

1 1 1 1 1 ... 1 1 1
K i

K K
i j K K K K K

i K j K

E L P P P Pθ θ θ θ θθ θ θ α α
⎡ ⎤ −⎣ ⎦ ⎡ ⎤− −⎣ ⎦

= + = +

⎡ ⎤⎡ ⎤
⎤⎡⎢ ⎥⎢ ⎥− − − = − + − + + − − −⎣ ⎥⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∏ P L =

( ) ( ) ( )( )
*

1 1
1 1

K K

K K

P P
P P L

P
θ θ

θ θ
θ

α
⎡ ⎤−⎣ ⎦− − −

= − − , and: 
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( )( ) ( ) ( )( ) ( )
*

*
* *

1

1 1 1 1 1 1
K

.K K
K K K i K K

i K

E N K L N K P L Pθ θγ θ α θ γ α
⎡ ⎤
⎣ ⎦ ⎡ ⎤−⎣ ⎦

= +

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤− − − − = − − − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∏
So, replacing both mathematical expectation expressions, Bellman equation for the K period can be 

written as: 

{ }
{ }

( ) ( ) ( )

( ) ( )( )

*

*

*

0,1

*

  1 1 1 1 1

               1 1 1 .

K

K K
K K K K K K K K

K K
K K

J L Min L P L P L P

N K P P L

θ θ θα

θ θ

γα α α

γ α

⎡ ⎤−⎣ ⎦

∈

⎡ ⎤−⎣ ⎦

⎡ ⎤= + − + − − − −⎡ ⎤⎣ ⎦ +⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤+ − − − −⎣ ⎦⎣ ⎦

 

Hence: 

If 0Kα = ⇒ expected cumulative expense from K to N would be: 

( ) ( ) ( ) ( )
* *

*1 1 1 1 1K K K K
K K KP L P L P N K P P Lθ θ θ θ θγ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤+ − − − + − − −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
. 

If 1Kα = ⇒ expected expense from K to N equals: 

( ) ( )
* *

*1 1 1K K K K
K K KL L P N K P Lθ θγ γ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤+ − − + − −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
. 

We want to prove that 0Kα = , which is optimal just in the case: 

( ) ( ) ( ) ( )
* *

*1 1 1 1 1K K K K
K K KP L P L P N K P P Lθ θ θ θ θγ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤+ − − − + − − − <⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
 

( ) ( )
* *

*1 1 1K K K K
K K KL L P N K P Lθ θγ γ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤< + − − + − −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
⇔

* −

⇔

 

⇔ ( ) ( ) ( ) ( )
* *

*1 1 1 1 1 1K K K K K KP P P P N K P Pθ θ θ θ θ θγ γ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤+ − − − − − − < + − − ⇔⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

⇔ ( ) ( )
* *

*1 1K K K KP P N K P Pθ θ θ θγ γ
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤⎡ ⎤− − − − <⎣ ⎦⎣ ⎦  

⇔ ( )
( )

*

*
*

1

1 1

K K

K K

P P

P N K P
θ θ

θ θ

γ
⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
>

⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

. 

However, as we have that * *1 PK K K K N
P

θ

θ

γ
γ
−

+ ≤ ⇒ < = − , this imply: 
[ ]1
P

P N K
θ

θ

γ >
+ −

, 

Therefore, a sufficient condition to satisfy 
( )

( )

*

*
*

1

1 1

K K

K K

P P

P N K P
θ θ

θ θ

γ
⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
>

⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

, would be: 

[ ]
( )

( )

*

*
*

1
 

1 1 1

K K

K K

P PP
P N K P N K P

θ θθ

θ θ θ

⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
≥

+ − ⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

, what it is satisfied *K K∀ <  as we prove 

behind: 
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We denote n  the number of periods that separate  fromK *K⎡ ⎤⎣ ⎦ , therefore: , and, 

. Taking into account this notation over the expression: 

*=n K K⎡ ⎤ −⎣ ⎦
* ,  donde 1 1K K n n K⎡ ⎤ ⎡ ⎤*≤ ≤ −⎣ ⎦ ⎣ ⎦= −

[ ]
( )

( )

*

*
*

1
  

1 1 1

K K

K K

P PP
P N K P N K P

θ θθ

θ θ θ

⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
≥ ⇔

+ − ⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

we have: 

( )
( ) ( )

( ) ( )

* *

* ** *

1
  

1 1 1

K K n

K K n

P PP
P N K n P N K P

θ θθ

θ θ θ

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

−
≥ ⇔

⎡ ⎤⎡ ⎤+ − − ⎡ ⎤⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

( ) ( )* *1 1 1 1   n nP N K P P N K n Pθ θ θ θ
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ − − ≥ + − + − ⇔⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ( ) (1 1 1  nP P nθ θ≥ − + )

)

. 

Denoting ( ) (( ) 1 1  uX u P Pθ θ= − + u , it is verified that for every value of , 

, because:  and we have that, 

* 1, 1u K⎡ ⎤⎡ ⎤∈ −⎣ ⎦⎣ ⎦

( ) 1X u ≤ 2(1) 1 1X Pθ= − ≤

( ) ( ) ( ) ( ) ( ) ( )( ) 1 ln 1 1  1 0 ln 1 1  0u udX u P P P u P P P P u P
du θ θ θ θ θ θ θ θ= − − + + − ≤ ⇔ − + + ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

( )( ) ( )( ) { } ( )( )

{ }

⇔

1  1  1  1ln 1 0 1 exp 1
exp

P u P u P uP P P P P
P

θ θ θ

θ θ θ θ θ
θ

+ + +⎡ ⎤⇔ − + ≤ ⇔ − ≤ − ⇔ − ≤⎣ ⎦ ,  

What is always satisfied, since the left hand side of the expression decreases with  and u

( )( )

{ }
1  11

exp
PP

P
θ

θ
θ

+− < [ ]0,1Pθ∀ ∈ , what can be easily observed if we represent both functions 

graphically. In addition, ( )X u  is a decreasing function in u  and it is always less or equal to 1. 

Particularly, , with ( ) (1 1 1  nP P nθ θ≥ − + ) *=n K K⎡ ⎤ −⎣ ⎦  and therefore, the following condition is 

satisfied: 
[ ]

( )
( )

*

*
*

*

1
   

1 1 1

K K

K K

P PP K K
P N K P N K P

θ θθ

θ θ θ

⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
≥ ∀

+ − ⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

<  as we wanted to prove.  

This is a sufficient condition to:
( )

( )

*

*
*

*

1
0   

1 1

K K

KK K

P P
K K

P N K P
θ θ

θ θ

γ α
⎡ ⎤−⎣ ⎦

⎡ ⎤−⎣ ⎦

−
> ⇒

⎡ ⎤⎡ ⎤+ − −⎣ ⎦⎣ ⎦

= ∀ < . 

And for this case,  

{ } ( ) ( ) ( )
* * 1* *1 1 1 1K K K K

K K K K KJ L P L P L P N K P Lθ θ θ θγ
⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤⎡ ⎤= + − − − + − −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

+
, as we wanted 

to prove. 
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B) If * PN K N
P

θ

θ

γ
γ
−

≤ = −  (what it possible if and only if Pθγ ≥ ). Then, in the  period, since 

we assume that Proposition 1 is satisfied, the agent will choose not to protect the harvest value 

(

1K +

1 0Kα + = ), and the optimal value function is: 

. { } ( )
1

*
1 1 1 1 1

2 1

1
iN

K K K K i j K
i K j K

J L E L Lθ θ θ
−

+ + + + +
= + = +

⎡ ⎤⎡ ⎤
= + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∏

We have to prove that Proposition 1 is also satisfied in the K period, with the following. Bellman 

equation (given KL ): { }
{ }

( ) { }* *
1 10,1

1
K

K K K K K K K K KJ L Min E L L J L
α

γα θ α + +∈
⎡ ⎤= + − + =⎣ ⎦  

{ }
( ) ( )

1

1 1 10,1 2 1

1 1
K

iN

K K K K K K K i j K
i K j K

Min E L L L L
α

γα θ α θ θ θ
−

+ + +∈
= + = +

⎡ ⎤⎡ ⎤
= + − + + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∏ . 

Calculating the mathematical expectation and including the state equation into the Bellman equation, 

we have: .  { }
{ }

( ) ( ) ( )*

0,1
  1 1 1 1 1

K

N K
K K K K K K K KJ L Min L P L P L Pθ θα

γα α α −

∈
⎡ ⎤= + − + − − − −⎡ ⎤⎣ ⎦ ⎣ ⎦θ

Consequently, 

If 0Kα = ⇒ expected cumulative expense from K period to N final period would be: 

. ( ) ( )1 1 1 N K
K KP L P L Pθ θ θ

−⎡ ⎤+ − − −⎣ ⎦

If 1Kα = ⇒ expected cumulative expense from K period to N would be: . ( )1 1 N K
K KL L Pθγ −⎡ ⎤+ − −⎣ ⎦

We want to prove that 0Kα = , what is satisfied if and only if: 

( ) ( ) ( )1 1 1 1 1N K N K
K K K KP L P L P L L Pθ θ θ θγ− −⎡ ⎤ ⎡ ⎤+ − − − ≤ + − − ⇔⎣ ⎦ ⎣ ⎦  

( ) ( )1 1 1N K N KP P P P Pθ θ θ θ θγ γ−⎡ ⎤ ⎡− − − ≤ ⇔ − ≤⎣ ⎦ ⎣
− ⎤
⎦ , what is always maintained since Pθγ ≥ . 

Therefore, 0Kα =  and the optimal value function is: { } [ ]KN
kkkk PLPLPLJ −−−−+= )1(1)1(*

θθθ , 

as we wanted to prove in this case. 

 

3.2 Optimal policy 

From Proposition 1 we have that the optimal policy structure (see Figure 2) can be articulated as 

follow: the absence of protective actions is an optimal decision until a given period * PK N
P

θ

θ

γ
γ
−

= − , 

where *K  depends on the total number of periods, the probability of suffering the loss and the 
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protection cost. From this *K  period to the end, the optimal decision is to protect, in order to make 

sure that protection cost makes sense avoiding the loss. 

 

 
 

Figure 2 Optimal policy structure (N periods) 
 

Of course, if , (what is possible if *K N> Pθ γ< ), the optimal threshold period K* to start the 

protection is above the final period, what indicates that the optimal decision in this case would be to 

take none protection. In the opposite situation, if * 1K < , (being 
( )1 1

P
N P

θ

θ

γ <
+ −

), the best would 

be to protect the harvest in every period. In Figure 3, we present a numerical example for the 

expected expense in the case of N=3, γ= 0.3, and L= 1. It is not surprising that the expected expense 

appears as an increasing function of  that is the probability of suffering the loss. θP
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Figure 3 Expected expense when N=3, γ= 0.3, and L= 1  

 

The optimal policy structure respond to the fact that in the case that a farmer could only afford to 

protect over part of the period, it is better to postpone protection as long as possible within the N-

occasion time period, and so avoid unnecessary protection in the case of a loss L being incurred 

(Murphy et al., 1985). 
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4 Case studies 

4.1 Frost protection in representative Spanish crops 

The cost-loss dynamic model was motivated by a real state decision-making model for the fruit-frost 

problem (Katz et al., 1982). To minimize the damage caused by freezing temperatures, farmers may 

employ protective devices. Here we apply the analytical expressions developed in this study to two 

selected case studies in Spain. Crop production in Spain is characterized by the Mediterranean 

climate and we have selected the wine production in Burgos and the citrus production in Valencia 

being representative Mediterranean crops. 

 

On one hand, Burgos is on the Northern Plateau, characterized by large seasonal differences in 

temperature and late spring frost. “Ribera del Duero” (RD) is a grapevine area with high quality wine 

production that it is mainly located in Burgos. (More than 75% of RD vineyards are planted over this 

district). Vines are susceptible to frost after budbreak and the critical frost danger period is over April. 

On Table 1 the number of days with temperature below 0ºC in April is presented for the 1980-2000 

period in Burgos, and the climatologic probability of frost damage has been calculated. 

 

On the other hand, Valencia is on the east coast of Spain, characterized by warm winters. However, 

occasional winter frost causes significant losses to orchadists. Crop production in Valencia is 

characterized for intensive irrigated horticulture and citrus fruits which production is among the most 

internationally recognized varieties. The major risk to this crop is the occurrence of winter freezes 

being January the cooler month on the region. On Table 1 the number of days with temperature below 

0ºC in January is presented for the 1980-2000 period in Valencia, and the climatologic probability of 

frost damage has been calculated. 

 

Some of the more common methods to avoid the losses of freezing temperatures are orchard heaters, 

wind machines, and overhead sprinkler irrigation. Considering the proposed case studies with the 

climatologic probability of freeze on Table 1, we can obtain the optimal protection policy from 

Proposition 1.  
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Table 1  Climatologic probability of freeze in the case studies (April in Burgos and January in 
Valencia) 

 

Number of days with temperature below 0ºC 
in a month 

Year Valencia 
(January) 

Burgos 
(April) 

1981 0.00 9.00 

1982 0.00 4.00 

1983 0.00 8.00 

1984 0.00 1.00 

1985 6.00 3.00 

1986 0.00 14.00 

1987 0.00 1.00 

1988 0.00 6.00 

1989 0.00 11.00 

1990 0.00 5.00 

1991 0.00 13.00 

1992 0.00 10.00 

1993 0.00 5.00 

1994 0.00 14.00 

1995 0.00 8.00 

1996 0.00 8.00 

1997 0.00 4.00 

1998 0.00 8.00 

1999 0.00 9.00 

2000 0.00 3.00 

Climatological 
probability (Pθ) 

0.0097 0.2400 

Source of data: INM (Spanish Institute of National Weather) 

 
Figure 4 shows the optimal policy: a black dot denotes “protect” and the absence of a symbol indicates 

that optimal policy is “do not protect”.  
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Figure 4 Optimal policy for the case studies (wine production in Burgos and citrus production 

in Valencia) 
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We can observe in the upper box in Figure 4 the optimal policy for the spring vineyard frost protection 

in Burgos. In April, the climatologic probability of freeze damage for the wine production in Burgos is 

about 0.24. Taking into account this information, we have that when cost-loss value is less than 0.035, 

the optimal policy would be protect from the beginning to the end of the period. For a cost-loss ratio 

between 0.035 and 0.315, the farmer should protect the harvest from a threshold period –that rises 

with the cost-- to the end of the month. Finally, for γ values over 0.315, no protection should be taken.  

 

We can observe in the lower box in Figure 4 the optimal policy for the winter citrus frost protection in 

Valencia. In January, the climatologic probability of freeze in Valencia is about 0.0097. Consequently, 

with this smaller probability, it can be observed that protection should be optimal just in the case of low 
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cost-loss ratios. For γ<0.0075, the farmer should protect everyday in the month. If 0.0076<γ<0.0097 a 

threshold exists from which he or she should begin the protection action, and finally, over 0.0098 no 

protection should be taken. However, it is important to notice that citrus fruit in Valencia is an intensive 

irrigated production with high productivity and harvest values, so potential losses can be significant 

and that imply minor cost-loss ratios.  

 

Figure 5 shows the accumulated expected expense for each case study with a loss L normalized to 1. 

 
Figure 5 Expected expense under the optimal policy in the case studies (wine production in 

Burgos and citrus production in Valencia) 
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4.2 Numerical results: sensitivity analysis over 
climatological probability 

 

Some numerical examples are presented where numerical values of the cost-loss ratioγ , and the time 

horizon are specified. The climatologic probability, , has been ranged for a sensitivity analysis. 

Figure 6 illustrate the strategy variation as a function of the climatologic probability. A black dot 

denotes “protect” and the absence of a symbol indicates that the optimal policy is “not protect”. Figure 

7 shows the accumulated expected expense for each example. 

θP
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Figure 6 Optimal policy for N=31 time horizon, L=1 and for different values of protection cost-

loss ratio:  γ= 0.3, γ= 0.1, γ= 0.05 and γ= 0.03 
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Figure 7 Accumulated expected expense for N=31 time horizon, L=1 and γ= 0.3, γ= 0.1, γ= 0.05 

and γ= 0.03  

 

Of course, if we compare the optimal policies on Figure 6, it is shown that protection is taken later in 

the cases with higher cost-loss ratio and also the accumulated expected expense in Figure 7 

increases with this cost. However, this effect is far from linear, since the expense increases less than 

proportionally with the cost.  
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5 Conclusions 

In this paper, we present an analytical solution to the Cost-Loss dynamic model in the case of 

climatological information. As we discussed in the paper, typical agricultural problems involved in a 

similar structure could include the vineyards or citrus protection against froze, the water management 

for cereals irrigation in drought shortages contexts, the “options and futures” exchange markets 

decisions for major crops in USA, and much more risk management. 

 

We develop analytical expressions for the optimal policy, which have the structure proposed on the 

literature. It is never an optimal decision to protect in a period and not to protect in the following. There 

exists a threshold, from which it is optimal to protect to the end of the period in order to avoid the loss. 

This threshold depends on the climatologic probability, the cost-loss ratio and the time horizon. 

 

The analytical solution can help to decision making in numerous cases suitable for this prototype 

model in a more accurate way than the numerical approaches in the literature. Two case studies have 

been developed as examples of application: the spring vineyard frost protection in Burgos and winter 

citrus frost protection in Valencia. The climatologic probability and the optimal policy have been 

calculated.  

 

Then, some sensitivity analysis has been proposed ranging the climatologic probability between 0 and 

1. It is shown that protection is taken later in the cases with higher cost-loss ratio but the accumulated 

expected expense increase less than proportionally with the cost. The model framework can also be 

used to expand the analytical solution to the case of probabilistic forecasts. 
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