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Abstract 

 

This paper develops a structural econometric model of agricultural land use and production based on 

the joint multi-output technology representation introduced by Chambers and Just (1989). Starting 

from a flexible specification of the farm profit function we derive land use allocation, input 

applications, crops yield and livestock number equations in a joint and theoretically consistent 

framework. We present an empirical application using fine-scale spatial data covering the entirety of 

England and Wales and including the main economic, policy and environmental drivers of land use 

change in the past 40 years. To account for the presence of censored observations in this micro-level 

data we estimate the model as a system of two-limits Tobit equations via Quasi-Maximum 

Likelihood. We finally compare the forecasting ability of our approach against an established 

benchmark: the land use share logit model. 

 

JEL classification: Q15, Q53, C34. 

 

Keywords: Land Use, Structural Econometric Modelling, Agro-Environmental Policy, System of 

Censored Equations, Multivariate Tobit, Quasi-Maximum Likelihood. 
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Quantifying the response of agricultural land use and production to changes in market conditions, 

policies and environmental factors has fundamental economic and policy relevance. Agricultural land 

use decisions, whilst private, have often significant public implications, generating both external 

costs, such as non-point pollution, changes to wildlife habitats, deforestation and wetland degradation, 

and external benefits, like the provision of recreational opportunities and biodiversity. The study of 

the causes of agricultural land use change and its effect on the environment have motivated a wide 

spectrum of applied economic analyses, encouraging the development of empirical land use models 

estimated on spatially explicit data (for recent reviews see Irwin and Geoghegan, 2001; Plantinga and 

Irwin, 2006). The framework proposed here diverges from previous econometric models of land use. 

Rather than developing a reduced form, empirical approach to investigate land use allocation choices, 

the present paper places agricultural land use decisions in a theoretically consistent, econometric 

structure including also crop and livestock production, input applications and profits. In doing so it 

builds upon the dual multi-product profit function approach introduced in Chambers and Just (1989). 

 

Previous econometric land use models 

 

According to the underpinning assumptions and the data required for estimation, econometric land use 

models can be classified into two broad categories: (a) parcel models and (b) share models.
1
 Parcel 

models (e.g. Chomitz and Gray, 1996; Wu et al., 2004; Lubowski et al., 2006; Langpap et al. 2008) 

require data on the contiguous spatial pattern of land use, typically sampled through geographic 

information system (GIS) techniques. Adopting the classic Von Thünen (1826) assumption that land 

will be put to the use that maximizes profits, the addition of an appropriate error structure allows 

empirical specification as a discrete choice model. This approach considers the decision-making in 

each parcel (land data point) as an independent optimization problem. For this reason parcel models 

are best suited to the appraisal of broad land use categories, distinguishing, for example, between 

agriculture, forestry and urban areas. However, they are less appropriate for analyzing more refined 

agricultural land use types, (e.g. modelling choices amongst diverse types of arable crops) where 

interdependencies between cultivation decisions in neighbouring fields cannot be ignored. Indeed, 

pressures concerning crop rotation, efficient allocation of machinery and labor and the presence of 

fixed but allocatable inputs imply that agricultural activities are typically joint in production 

(Shumway et al., 1984; Ball, 1988; Chambers and Just, 1989). 

 

Joint production decisions have been investigated via land use share models, introduced by 

Lichtenberg (1989) and Wu and Segerson (1995) and further developed by Plantinga (1996), 

                                                           
1
 Econometric modelling is only one of the strategies proposed in the literature to analyze land use change. For a 

comprehensive review, including also other methodological approaches, see Irwin and Geoghegan (2001). 
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Plantinga et al. (1999), Plantinga and Ahn (2002) and Chakir (2009) amongst others. These 

approaches analyze the proportions of different agricultural land uses using data aggregated over 

regions or counties. Assuming constant returns to scale allows the researcher to model production 

decisions by treating these large areas as unique, macro-farms. In the resulting specification, typically 

based on a logistic function, land use shares depend on the environmental and climatic characteristics 

of the region and on the prices of all possible outputs and inputs. 

 

These studies have identified the main drivers of agricultural land allocation decisions, capturing that 

spatial dimension which is critical to adequately assess the economic and environmental 

consequences of land use change (for a review see Plantinga and Irwin, 2006). However, as explicitly 

acknowledged in most of these contributions, both parcel and share models are essentially empirical 

frameworks, which cannot be related to farm profits or welfare. Furthermore, as they focus solely 

upon switches between land use types, they cannot encompass changes in land use intensity, such as 

alterations in crop output levels, input application rates (e.g. fertilizer use) and, in particular, changes 

in livestock numbers which, if included in the analysis, are considered in a completely separate model 

(e.g. Chomitz and Thomas, 2003; Seo and Medelsohn, 2008). However, as emphasized within the 

conceptual framework for modelling agro-environmental policies proposed by Just and Antle (1990), 

both extensive and intensive margin elasticities are of considerable policy and stakeholder interest 

(Arnade and Kelch, 2007) and critical to assess the impact of agricultural production on the 

environment. This paper addresses these issues developing a theoretically consistent structural 

framework and presenting an empirical application concerning policies to reduce diffuse agricultural 

pollution using fine-scale spatial data covering the entirety of England and Wales. 

 

Distinguishing features of this analysis 

 

Compared with the approaches outlined previously, which directly model the land allocation 

equations and leave the farm profit function un-specified, this study is distinguished by underpinning 

all the analysis on a flexible specification of the profit function itself. As shown in Section 2, this 

allow us to derive, in a coherent and structural framework, not only land use decisions, but also input 

and output intensities (including both crop yields and livestock numbers) and welfare measures. In 

doing so, we build upon farm modelling theory, and in particular on the dual joint (in-inputs) multi-

outputs profit function introduced by Chambers and Just (1989). Our approach is very flexible, and 

can be implemented on different types of data, including farm cross-section or panel data, regional 

aggregated data, or data sampled at fine-scale spatial resolutions. Approaches based on a flexible 

specification of the farm multi-output profit function have been already implemented to model 

agricultural production and land allocation decisions (Guyomart et al., 1996; Oude Lansink and 
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Peerlings, 1996; Ball et al., 1997; Sckokai and Moro, 2005; Arnade and Kelch, 2007). However, these 

prior contributions are based either on national or on farm level data and, therefore, cannot address the 

spatial nature of land use change or include those refined climatic and physical factors which are 

crucial in determining the observed pattern of land use and its impact on the environment. 

 

In contrast, our empirical analysis is highly spatially explicit, being implemented on a large panel of 

2km
2
 grid square data covering the entirety of England and Wales, which is discussed in detail in 

Section 3. This micro-level data is essential to capture the diversity of climatic and economic drivers 

influencing land use change and to adequately assess its environmental consequences (e.g. Just and 

Antle, 1990; Chomitz and Thomas, 2003; Wu et al. 2004; Chakir, 2009). The disadvantage of using 

such a detailed spatial resolution is that no information on profits is available at this fine-scale. For 

this reason, in the present empirical analysis we do not include welfare considerations, focusing 

instead upon those equations included in the structural model which deal with land use and livestock 

numbers. Since these are the two main determinants of farms’ environmental impact, our empirical 

illustration is both a policy relevant analysis and an effective yardstick to compare our strategy against 

established, empirically-driven land use modelling approaches.
2
 

 

Such a fine-scale spatial analysis requires an estimation technique which deals with the presence of 

censored observations: a distinguishing feature of micro-level data arising from corner solutions in the 

production decisions. Recent contributions have addressed this issue within the analysis of household 

demand systems (e.g. Yen et al., 2003; Dong et al., 2004; Meyerhoefer et al., 2005) but, to our 

knowledge, censored systems of equations have never been implemented to model land use decisions. 

Section 4 presents our empirical model, the estimation technique and the results, comparing the 

forecasting performance with that of the established land use share model. Section 5 concludes. 

 

                                                           
2
 As showed, for example, in Arnade and Kelch (2007), whilst an aggregated dataset allows the estimation of 

profit and yield equations, it would also reduce the empirical analysis to a mere illustration. Our chosen 

approach, therefore, conforms to the exhortations of Just (2000), who advocates using micro-level data in 

applied agricultural economic analyses, “rather than continue to demonstrate points and methodology with 

aggregate data simply because they are available”. 
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2. The economic framework 

 

The theoretical model 

 

This section illustrates the theoretical framework underpinning our structural land use modelling 

strategy, which builds upon the farm profit maximization problem in the presence of fixed allocatable 

inputs illustrated by Chambers and Just (1989). For simplicity we consider land to be the only fixed 

allocatable input. Furthermore, we indicate with y the vector of m outputs, with r the vector of n 

inputs, with p the vector of strictly positive output prices, with w the vector of strictly positive input 

prices, with l the vector of h land use allocations, with L the total land available and with z the vector 

of k other fixed factors (which may include physical and environmental characteristics, policy 

incentives and constraints, etc.). Since we are also considering livestock outputs, we generalize 

Chambers and Just (1989) framework allowing the number of possible land uses h to be different 

from the number of possible outputs m. The multi-output profit function, given a fixed land allocation 

can be written as: 

 

(1) )},...,,,(:max{),...,, 11 hh llYll,,( zryrw'yp'zwp ∈−=π  

 

where Y (r, z, l1, ..., lh) indicates the producible output set for a given land allocation
3
. This profit 

function is positively linearly homogenous and convex in input and output prices. In such a 

framework, one can derive the profit maximizing input demand and output supply given a fixed land 

allocation via the Hotelling’s lemma (Chambers and Just, 1989). Furthermore, the profit function 

associated with the optimal land allocation can be written as: 

 

(2) }:),...,,,,({max),,,(
11

,...,1

∑ =
==

h

i hh
ll

LlllL
h

zwpzwp ππ . 

 

The farm profit maximization problem can be expressed, without any loss of generality, in terms of 

profit maximization per unit of land. Indicating with s the h land use shares corresponding to the land 

use allocations l, and with πL
(.) the profits per unit of land, we can re-write the optimal land use 

allocation problem as: 

 

                                                           
3
 This framework assumes the farmers to be risk neutral. However, empirical analyses (e.g. Chavas and Holt, 

1990; Pope and Just, 1991) show that farmers decisions may present some degree of risk aversion. The approach 

outlined in this paper is, however, flexible enough to allow departures from risk neutrality. These could be 

encompassed following, for instance, Coyle (1999) or Skokai and Moro (2005). 
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This expression, whilst written in terms of land use share and profit per area, is equivalent to (2) and 

does not assume constant returns to scale. In fact, profit per area is a function of L and, therefore, the 

profit-maximizing shares depend on the total land available. Since the profit per area function is 

positively linearly homogenous and strictly convex in input and output prices, using the Hotelling’s 

lemma one can derive the output supply (y
L
) and input demand (r

L
) per area (hereafter we will refer to 

these quantities as input and output intensities) as: 
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where the superscript on s indicates the optimal shares, i.e. the shares that satisfy (3). The equations 

describing the optimal land allocations can be derived by recognizing that land is allocated to the 

different uses in order to equalize their marginal rent or shadow prices
4
. In terms of optimal land use 

shares this can be written as: 

 

(5) 0
),...,,,,,( 1 =

∂

∂

i

h

L

s

ssLzwpπ
, for i = 1,..., h. 

 

When these equations are linear in the optimal land allocations, including the constraint that the sum 

of the shares need to be equal to one leads to a linear system of h equations in h unknowns which can 

be solved to obtain the optimal land allocation as a function of p, w, z and L.
5
 For empirical 

estimation, these relations can be translated into a unifying framework encompassing land use share 

allocation, input and output intensities and profits per area by directly specifying the profit function 

per area as one of the flexible functional forms available in the literature (for some examples see 

Chambers, 1988). 

                                                           
4
 Even if corner solutions arise, this condition still holds for all land uses receiving a non-zero allocation (see 

Chambers and Just, 1989). 
5
 More precisely, these results are valid also if the equations are linear in a monotonic transformation of the 

optimal land use shares (e.g. the logarithm transformation). This is true if profit per area is specified as a 

quadratic function of this monotonic transformation, as in most established flexible functional form such as the 

translog and the normalized quadratic. However, prices and other fixed factors can enter the profit function and 

the derived land allocation equations in any desired functional form. 
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The empirical specification 

 

We specify the profits per area as a Normalized Quadratic (NQ) function. This functional form has 

been widely applied in agricultural economics for modelling joint (in input) multi-output production 

processes (Moore et al. 1994, Oude Lansink and Peerlings 1996, Guyomard et al. 1996, Sckokai and 

Moro 2005, Arnade and Kelch 2007). Some of the desirable properties of the NQ profit function are 

that it is locally flexible, self dual and its Hessian is a matrix of constants (i.e. convexity holds 

globally). Furthermore, it allows negative profits (losses) which cannot be included in other 

specifications, such as the translog. Defining with wn the numeraire good, indicating with x = (p/wn, 

w/wn) the vector of normalized input and output (netput) prices and with z
*
=(z, L) the vector of fixed 

factors including policy and environmental drivers and also the total land available L, the NQ profit 

function can be written as: 
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where 
Lπ = π /wn is the normalized profit per unit of land. This profit function is linearly 

homogeneous by construction, and symmetry can be ensured by imposing αij = αji, βij = βji and γij = 

γji. Only h–1 land use shares appear in the profit function since the last one can be computed by 

difference and it is therefore redundant. Input and output intensities can be derived as in (4.a) and 

(4.b). For instance, if xi is a normalized output price, the corresponding output intensity can be written 

as: 
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which contains the same structural parameters of the profit function. Furthermore, optimal land use 

shares can be derived by solving the following system of h–1 equations: 
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This system contains (h–1) (m + n + k + h/2 + 1) structural parameters that are also included in the 

profit function. Solving the system for the optimal land use shares leads to h reduced form equations: 

 

(9) ∑∑
+

=

−+

=
++=

1

1

*1

1

k

j jji

nm

j jjiii zxs ηθθ ,  for i = 1,...,h, 

 

with θθθθ and ηηηη being the vectors of the parameters to be estimated, which are non linear combinations 

of the structural parameters in (8). This reduced form system contains h (m + n + k + 1) parameters 

and m + n + k + 1 restrictions: 

 

1
1

=∑ =

h

i iθ  ;  

∑ =
=

h

i ji1
0θ , 1,...,1 −+= nmj ; 

∑ =
=

h

i ji1
0η , 1,...,1 += kj ; 

 

which need to be satisfied to ensure that the sum of the shares equals one. This leaves only (h–1) (m + 

n + k + 1) free reduced form parameters, which are not enough to recover all the structural parameters 

in (10). However, equations (9) represent a flexible specification embedded in the structural economic 

model, in which optimal land use shares depend upon all the netput prices and all the fixed factors 

quantities, including the physical and environmental characteristics of the farm. Depending on the 

available data and on the objective of the empirical analysis, one can estimate the complete model or 

focus solely on particular equations. If data on profits, input and output quantities and land use areas 

are available, the full model consisting of equations (6), (7) and (9) can be jointly estimated. Given 

the lack of high resolution profit data and our interest on the environmental and hence spatial aspects 

of land use, in the subsequent empirical analysis we focus on the land use and livestock number 

equations, while maintaining the model’s structural foundation and its clear underpinning assumptions 

 

 

3. Data, sources and descriptive statistics 

 

In order to correctly assess the financial, policy and environmental drivers of land use change, this 

analysis employs a unique database, which integrates multiple sources of information dating back to 

the late 1960s. The resulting data, collected on a 2km
2
 grid square (400ha) basis, cover the entirety of 

England and Wales and encompass, for the past 40 years: (a) land use shares and livestock number, 
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(b) environmental and climatic determinants, (c) input and output prices, (d) policy and other drivers. 

However, as already mentioned, we do not include yield and profits data, since the necessary 

information is simply not available at the disaggregated level required by this analysis. The different 

data sources are described in detail throughout the remainder of this section. 

 

Agricultural land use data. Data on agricultural land use hectares and livestock numbers, derived 

from the June Agricultural Census (JAC) on a 2km
2
 (400 ha) grid square resolution are available on-

line from EDINA (www.edina.ac.uk), which aggregates information collected by the Department of 

Environment, Food and Rural Affairs (DEFRA), and the Welsh Assembly. These data cover the 

entirety of England and Wales for seventeen, unevenly spaced, years between 1969 and 2006 (in years 

2005 and 2006 only Welsh data is available). This yields roughly 38,000 grid-square records each 

year. 

 

Regarding livestock numbers, we distinguish between dairy cows, beef cows and sheep. Dairy cows 

also include those heifers less than 2 years old which are not in milk production, but are classified as 

being part of the dairy herd in the JAC statistics, whereas with the term beef cows we refer to all cattle 

not classified as dairy. Concerning agricultural land use types, we explicitly model cereals (including 

wheat, barley, oats, etc.), oilseed rape, root crops (potatoes and sugar beet), temporary grassland 

(grass being sown every 3 to 5 years and typically part of an arable crop rotation), permanent 

grassland (grassland maintained perpetually without reseeding) and rough grazing. These six land use 

types together cover more than 88% of the total agricultural land within the country. We include the 

remaining 12% in an “other” land category encompassing horticulture, other arable crops, woodland 

on the farm, set-aside, bare, fallow and all other land (ponds, paths, etc.). As described on the EDINA 

web-site, grid square land use estimates are derived from parish summaries or DEFRA estimates, 

taking into account potential land use capability. These statistics can sometimes overestimate or 

underestimate the amount of agricultural land within an area since their collection is based on the 

location of the main farm house. For example, when a farm’s agricultural land belongs to more than 

one parish, all the land use is assigned to that parish in which the main farm is registered.
6
 For this 

reason the recorded areas of certain extensive land uses, in particular rough grazing and permanent 

grassland, can sometimes exceed the total amount of land within a grid square (400 ha). We correct 

this feature by rescaling the sum of the different agricultural land use areas assigned to each grid 

square to match with the total agricultural land derived from the Agricultural Land Classification 

                                                           
6
 For a more detailed description see http://edina.ac.uk/agcensus/agcen2.pdf (accessed on the 7

th
 April 2009). 
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(ALC) system published by DEFRA and the Welsh Assembly.
7
 This rescaling process, while ensuring 

consistency, has no direct influence on the model estimation, which is based on share data. 

 

[TABLE 1 about here] 

Descriptive statistics, land uses (ha) and livestock numbers (heads) per 2km
2
 grid square 

 

Descriptive statistics for the agricultural land use types and livestock numbers are reported in Table 1 

for three illustrative years and for the total dataset. These figures refer only to grid squares in which 

there is at least some land classified as agriculture according to the ALC. As shown in the Table, 

whereas the total land devoted to farming has only changed slightly over the last 40 years, its 

allocation between the different agricultural land uses has transformed considerably. In particular, the 

area of oilseed rape has increased substantially, driven by the soaring prices and the targeted support 

payments included in various reforms of the European Union (EU) Common Agricultural Policy 

(CAP). In contrast, root crop shares have been decreasing somewhat, as their relative prices have 

fallen. However, because of their relatively higher revenues, their cultivation continues to be 

primarily limited by soil and climatic factors. Cereals are consistently the main arable crops in the 

country, although changes in technology, prices and area payments have induced variability in their 

area allocations. Temporary grassland has been steadily decreasing, whereas the areas devoted to 

rough grazing and permanent grassland have remained fairly constant. Land included in the category 

“other” has significantly increased, particularly since the 1990s because of the introduction of set-

aside and various grants encouraging farm woodland.  In contrast, the last 15 years have seen a 

decline of the livestock sector with challenges such as the outbreak of the Bovine Spongiform 

Encephalopathy (BSE) disease and decreasing prices, leading to a considerable reduction in stocking 

rates. Finally, with concerns regarding the empirical specification in mind, it is important to note all 

variables are obviously censored from below at zero while the most extensive land uses (e.g. 

grassland) are also censored from above at the grid square size (400ha). 

 

Physical environment and climatic data. For each 2km
2
 grid square we consider a detailed 

specification of the environmental determinants influencing farmers’ decision making. These small 

size aggregation units allow us to fully represent the heterogeneity which characterizes the UK 

                                                           
7
 This data is described in detail at http://www.defra.gov.uk/farm/environment/land-use/pdf/alcleaflet.pdf 

(accessed on the 7
th

 April 2009). It is based on a series of surveys carried on from the late 1960s to the late 

1980s and distinguishes agricultural land from urban and other non-agricultural lands. To account for urban area 

increases since the last survey, we augment this data using Land Cover Map 2000 information (Centre of 

Ecology and Hydrology, http://www.ceh.ac.uk/sections/seo/lcm2000_home.html, 7
th

 April 2009). However, in 

the United Kingdom the growth of urban areas has been relatively modest, while the total amount of land 

devoted to agriculture has remained fairly constant over the last two decades (see DEFRA statistics at 

http://www.defra.gov.uk/environment/statistics/land/alltables.htm, 7
th

 April 2009). 
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farming system. For each grid square, we extract, from the National Soil Resources Institute LandIS 

database
8
: average annual rainfall (denoted aar), autumn machinery working days (mwd, a measure of 

the suitability of the soil for arable cultivation), mean potential evapotranspiration (pt, indicating the 

amount of water that, if available, can be evaporated and transpired), median duration of field 

capacity (fc, reflecting water abundance in the soil), total number of degree days in the growing 

season (dd, from April to September) and mean elevation (alt). We also include the share of 

agricultural land with slope higher than 6 degrees (smore6) derived via GIS analysis from the 

Ordnance Survey, Digital Terrain Model
9
. The descriptive statistics, reported in Table 2, highlight the 

significant spatial variability which characterizes these variables.  

 

 [TABLE 2 about here] 

Descriptive statistics, environmental and climatic determinants 

 

Agricultural inputs and outputs price data. The analysis requires detailed information regarding the 

main agricultural output and input prices during the past 40 years. There is not a unique source which 

supplies such a comprehensive database for the United Kingdom. Therefore, we produce our database 

by extracting time series data from a variety of different sources, linked by using data in the common 

years. Cereals price is based on the simple average of wheat, barley and oats prices, derived from 

DEFRA (2006), MAFF (1982) and Mitchell (1988). Root crops price is given by the average of 

potatoes and sugar beet prices, extracted from DEFRA (2006), MAFF (1982) and Office of National 

Statistics (ONS, 1974-85), the same sources being used for the oilseed rape price. Milk, dairy cows, 

beef meat (per cow) and lamb meat (per sheep) prices are based on DEFRA (2006) and ONS (1974-

85). Fertilizer price is derived from Defra (2006) and ONS (1974-85), oil price from the British 

Petroleum Statistical Review of Word Energy
10

 and milk quota (leased) prices from Ian Potters 

Associates (www.ipaquotas.com). Crop and livestock prices incorporate subsidies and levies, 

including arable area payments. Input prices are on a national level, whereas output prices are 

converted to a regional level using the agricultural output regional price statistics extracted from the 

UK Farm Business Survey for years 1982-2000.
11

 

 

                                                           
8
 For more details see http://www.landis.org.uk/gateway/ooi/intro.cfm (7

th
 April 2009). 

9
 For details see http://www.ordnancesurvey.co.uk/oswebsite/ (7

th
 April 2009). 

10
 See http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622 (7

th
 April 2009). 

11
 The Farm Business Survey (FBS) provides detailed information regarding the financial performance and 

physical and economic characteristics of UK farming enterprises. Its sampling covers more than 2000 farms per 

year and is designed to inform policy decisions on matters affecting farm businesses and enable analysis of 

policy impacts. The main publication from the FBS data analysis is the report on Agriculture in the United 

Kingdom (DEFRA, 2009). 
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Policy and other determinants. Policy changes, and in particular the several reforms which the CAP 

has undergone, have shaped the UK rural environment, influencing significant changes in farming 

practices, cultivation and livestock management. Apart from the subsidies directly linked to specific 

crop or livestock productions (e.g. arable area payments, intervention prices, beef premium) which are 

already included in the output prices, we also consider the compulsory rate of set-aside and more 

general and spatially heterogeneous policy measures. In particular, we calculate the share of each grid 

square designated as National Park, Nitrate Vulnerable Zone (NVZ) and Environmentally Sensitive 

Area (ESA).
12

 NVZs, established in 1996 and extended in 2003 and 2008, have been designed to 

reduce surface and groundwater nitrate contamination in compliance with the EU Nitrate Directive 

(European Council, 1991). The range of measures enforced in NVZs does not go beyond good 

agricultural practice and, therefore, while being mandatory and uncompensated, these are not 

expected to significantly change agricultural land use shares. ESAs, introduced in 1987 and 

undergone various extensions in subsequent years, were launched to safeguard and enhance areas of 

particularly high landscape, wildlife or historic value. Participation in ESA schemes is voluntary, and 

farmers receive monetary compensation for engaging in environmentally friendly farming practices, 

such as converting arable land to permanent grassland, establishing hedgerows, etc. Finally, we 

include in the model the distance to the closest sugar beet factory, to capture transportation costs, and 

the share of urban area within a square. 

 

 

4. The agricultural land use model for England and Wales 

 

Estimation 

 

The model presented in Section 2 is estimated using the England and Wales 2km
2
 grid square panel 

database introduced in the previous section. Effectively, we model each 2km
2
 grid square as a single 

farm. Since the average farmed land in each square is roughly 300ha and the average size of a full-

time cropping or mixed farm in the United Kingdom is about 150ha and increasing steadily over time, 

this assumption does not appear unreasonable. To address the possibility of spatial autocorrelation in 

the residuals we estimate the model using only a fraction of the data, defined by sampling one grid 

square every four along both the latitude and longitude axes, leaving a sub-sample comprising of 

roughly 6% of the original data. Recalling the discussions of Section 3, we further omit squares in 

which rescaling would be too substantial, defined as cases were (a) the difference between the sum of 

the agricultural land use areas from the JAC and the total agricultural area according to the ALC 

                                                           
12

 Digital boundaries at a field level for National Parks, NVZs and ESAs have been downloaded from MAGIC 

(www.magic.gov.uk). 
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system is higher than 400ha, and (b) the ratio of these two agricultural areas is higher than 4 or 

smaller than 1/4. This corresponds to roughly 7% of the remaining observations, leaving about 2,200 

grid cells in each year which correspond to approximately 30,000 observations in total. 

 

For the model estimation we consider the seven agricultural land use shares and three livestock types 

illustrated in Table 1. Regarding the x vector of exogenous netput prices, we include those for cereals, 

oilseed rape, root crops, milk, dairy cows, beef meat, lamb meat, fertilizer, milk quota and energy (oil) 

described in Section 2, with the latter as the numeraire. Since the land use decisions taken by farmers 

are based on their expectations on the output prices for the forthcoming year, for estimation we 

substitute the actual output prices with the prices predicted by an autoregressive model with trend.
13

 

The vector of fixed factors z includes a trend to represent technological change and variation in 

husbandry practice across years (we allow the trend to change after 1988, the year corresponding to 

the outbreak of the BSE), the rate of compulsory set-aside, the spatially targeted policy drivers (shares 

of each grid square included into National Parks, NVZs and ESAs) and the environmental and 

climatic determinants illustrated previously in Table 2, embedded in a full quadratic specification (i.e. 

squared terms and interactions) to model non-linear effects. In a preliminary analysis we also 

observed how permanent grassland is rapidly replaced by rough grazing in upland areas. To model 

this highly non-linear relation, within just these two land use equations we allow the effect of 

elevation to change after a threshold altitude of 200m. Finally, the distance to the closest sugar beet 

factory and the share of urban area within a grid square are also included in z. 

 

In absence of corner solutions (censoring), the livestock intensities and land use shares equations (7) 

and (9) can be specified with additive, normal disturbances. Under this assumption, the livestock 

equations can be estimated jointly via Generalized Least Squares (GLS) or Maximum Likelihood 

(ML), imposing the symmetry restrictions implied by the profit function (6). However, this approach 

cannot be implemented for the estimation of the h equations included in the land use share system. In 

fact, in each square, shares must sum to one and, therefore, error terms must sum to zero, implying 

that the residual covariance matrix is singular. The solution is simply to drop one equation and 

estimate the system with ML, obtaining estimates which are invariant to which equation is dropped 

(Barten, 1969). 

 

However, observed shares are also bounded between zero and one. If this feature can be safely 

ignored with data aggregated on a national or regional level, it creates a significant amount of 

                                                           
13

 Several approaches have been used to estimate farmers’ expected prices. Some examples are provided in Wu 

et al. (2004). Our strategy corresponds to the one implemented by Wu and Segerson (1995) and De Pinto and 

Nelson (2009). 
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censored observations on micro-level data (as shown previously in Table 1). In such a case, assuming 

normal disturbances and implementing ML leads to inconsistent estimates (Amemiya, 1973). This 

issue can be addressed specifying a Tobit model (Tobin, 1958), in which the latent shares si
*
 are 

defined as in (9) plus additive normal residuals, and observed shares are: si = 0 if si
*
 ≤ 0, si = 1 if si

*
 ≥ 

1 and si = si
*
 otherwise. This framework can be interpreted by recalling that agricultural land is 

allocated to different uses according to their associated shadow prices. Therefore, in each grid square, 

censoring from below (above) implies that the corresponding land use shadow price is lower (higher) 

than those of alternative uses. One concern arising from this specification is that, though the adding-

up restriction holds for the latent equations, it is not satisfied for the observed shares. We address this 

issue following Pudney (1989), who suggests treating one of the shares as a residual category, defined 

by the identity: 

 

(10) ∑
−

=
−=

1

1
1

h

j jh ss , 

 

and estimating the remaining h – 1 equations as a joint system. This approach has been implemented 

in applied demand analysis for the estimation of censored system of equations using household data 

(Yen and Huang, 2002; Yen et al., 2003). In our study, the share of land devoted to “other” 

agricultural uses arises naturally as the obvious choice for the residual category, this being a 

composite bundle of highly heterogeneous and marginal land uses.
14

 

 

When the number of equations is higher than three the ML estimation of a Tobit system requires the 

evaluation of multiple Gaussian integrals which is computationally extremely intensive. The recent 

literature on censored demand system estimation has proposed various approaches to address this 

issue: two-step estimation (Shonkwiler and Yen, 1999), minimum distance estimation (Perali and 

Chavas, 2000), simulated maximum likelihood (Yen and Huang, 2002; Yen et al., 2003), maximum 

entropy (Dong et al., 2004) and generalized method of moments (Meyerhoefer et al., 2005). In this 

paper we follow the practical and computationally feasible solution proposed by Yen et al. (2003), 

who suggest approximating the multivariate Tobit with a sequence of bivariate models, deriving a 

consistent Quasi Maximum Likelihood (QML) estimator. Considering two equations i and j, and 

observation t, indicating with qt = [xt ; z
*
t] the vector of explanatory variables, with δδδδi and δδδδj the 

vectors of parameters to be estimated, with σi,t and σj,t the residual standard errors of the latent 

                                                           
14

 The resulting parameter estimates are not invariant to which equation is dropped. This is not a significant 

problem for our analysis, since the exclusion of the category “other” is the logical choice according to the land 

use shares definition. When parameter invariance is a crucial issue, other estimation techniques can be 

implemented (e.g. Dong et al., 2004; Meyerhoefer et al., 2005). 
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variables, and defining ei,t = (si,t – δδδδi
’
qt) / σi,t and ej,t = (sj,t – δδδδj

’
qt) / σj,t, the likelihood of the bivariate 

Tobit model censored between 0 and 1 can be written as: 
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where φ(.) and Φ(.) indicate the density and the distribution function of the standard 

normal, ψ(. ; . ; .) and Ψ(. ; . ; ) the density and the distribution function of the standard bivariate 

normal and I(.) is an indicator function assuming value 1 when the argument condition is satisfied and 

0 otherwise. In Tobit specifications un-modelled heteroskedasticity is a serious problem, causing all 

parameter estimates to be biased. Therefore, we account for possible heteroskedasticity in the error 

term allowing the standard errors to vary across observations as a function of a vector of exogenous 

variables v (which include: total amount of agricultural land within the square, trend, elevation, 

machinery working days and dummies identifying the region in which the grid square is located) and 

a vector of parameters ζζζζ. Specifically, for observation t and equation i: 

 

(11) )'exp( ,, tiitj νζ=σ . 

 

Considering the land use share system which excludes the hth land use share, the likelihood 

maximized by the QML estimator can be written as: 
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with T = total number of observations within the sample. This QML estimator is consistent, allows the 

estimation of cross-equation correlations and the imposition of cross-equation restrictions. However, 

since the quasi-likelihood is different from the likelihood of the true model, the parameters covariance 

matrix needs to be estimated using the robust procedure introduced by White (1982). The same QML 

approach can be implemented to estimate the system of livestock equations (7), but clearly neither 

discarding one of the equations nor applying any censuring from above. 

 

Results and forecasting performance 

 



17 

 

We implement the QML approach (12) to estimate two censored Tobit systems: the 3 livestock 

intensity (dairy cows, beef cows, sheep) equation system (7) and the 6 land use shares (cereal, oilseed 

rape, root crops, temporary grassland, permanent grassland, rough grazing) system (9). Selecting as 

starting values the parameter estimates of univariate, heteroskedastic Tobit models, and using the 

Newton-Raphson method as the maximization algorithm, the QML approach converges in a 

convenient length of time for both systems.
15

 We discard from the model the non-significant 

normalized price parameters (but always retain the own price and fertilizer price) to improve the 

estimates of the remaining ones, since the agricultural price variables in our sample, as in most 

studies, are characterized by a high degree of correlation.  

 

[TABLE 3 about here] 

Land use share equations parameter estimates 

 

Table 3 reports the final parameter estimates of the land use share equations. The sign and magnitude 

of the coefficients are consistent with our expectations. In particular, focusing on the economic 

determinants, in the upper part of the table, the own output price effects are always positive and the 

cross-price effects negative. Considering potential policies to address diffuse pollution, an increase in 

fertilizer price decreases the optimal shares of nutrient-intensive crops, in particular oilseed rape and 

cereals, which are converted into more extensive land uses such as temporary grassland and rough 

grazing. On the other hand, there is no significant effect on root crops, which are profitable even with 

high fertilizer prices, their cultivation being restricted primarily by environmental determinants. 

Considering other policy drivers, as expected, significant conversion out of arable land follows an 

increase in the rate of set aside. Similarly, ESA payments encourage significant switching from arable 

land to extensive grassland types (permanent grassland and rough grazing), but are typically not high 

enough to foster conversion of root crops. In National Parks, the optimal shares devoted to arable land 

and to grassland receiving fertilizer applications are also reduced, being replaced by land in the 

“other” category (e.g. woodland) and rough grazing. Considering the environmental determinants of 

land use, reported in the lower part of the Table, favourable conditions for crop growth (e.g. more 

machinery working days, flatter land, etc.) increase the share of arable land, in particular of root 

crops. However, effects are highly non-linear, as highlighted in Figure 1, which represents the 

relationship between the land use shares predicted by our model and machinery working days, with all 

other variables held constant at their 2004 sample mean values. The non-linear effects are particularly 

noticeable for the cereals share, which peaks at around 120 mwd and then slowly declines, being 

                                                           
15

 We estimate the model using the function ml in Stata 10.1 and a 1.86 GHz Intel Core 2 Duo processor, with 

2GB RAM. The 6 equations land use shares system converges in about 372 minutes, whereas the 3 equations 

livestock system requires only 10 minutes. 
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replaced by more profitable crops, such as potatoes and sugar beet. Finally, the parameters of the 

variance equations (not reported in Table 3 to preserve space) are highly significant, suggesting a 

heteroskedastic residual component, which, if ignored, would have biased parameter estimates. 

 

[FIGURE 1 about here] 

Relationships among predicted land use shares and machinery working days 

 

The estimated coefficients of the livestock intensity equations are reported in Table 4.
16

 Again, own 

price effects are always positive and significant, whereas cross-price effects, in particular between 

beef and sheep, are negative. Interestingly, the coefficient of milk quota price is significantly higher 

(in absolute value) than the one of milk price in the dairy cow equation. This suggests the presence of 

significant transaction costs and uncertainties associated with the milk quota market (for a detailed 

analysis of the inefficiencies in the EU quota system sees, for example, Boots et al., 1997). 

Furthermore, different grassland types are associated with very diverse optimal numbers of livestock. 

Again model estimates confirms prior expectations: dairy cows are reared primarily on intensive 

grasslands, beef enterprises are located on all types of pasture and sheep are grazed mainly on less 

improved land, such as permanent grassland and rough grazing. In addition, an increase in the price of 

fertilizer, which is strongly related to grass growth and animal intake, reduces the intensity of all the 

livestock enterprises considered. Also the share of land under special designation (NVZs, ESAs, 

National Parks, etc.) influences to some extent the average stocking density, both directly and by 

changing the proportions of land uses. Finally, the strong impact of the BSE outbreak on the whole 

industry emerges in the estimates, with the trend in each livestock equation (particularly that for beef 

cows) decreasing significantly after 1988. 

  

[TABLE 4 about here] 

Livestock intensity equations parameter estimates 

 

We evaluate the fit and predictive ability of our structural model by comparing its forecasting 

performance against that of an established benchmark: the logit land use share model introduced by 

Lichtenberg (1989), Wu and Segerson (1995) and Plantinga (1996) and applied extensively thereafter. 

                                                           
16

 Note that in the livestock equations the land use shares are modelled as exogenous, assuming that farmers 

maximize profits in a two-step process and, therefore, treat land use allocations as fixed factors in the netput 

equations. This is the same approach employed by Arnade and Kelch (2007) and stems directly from the 

Chambers and Just (1989) profit function maximization. Using univariate Tobit models we empirically compare 

two estimation approaches: the standard ML which assumes that the land use shares are exogenous and a ML 

with instrumental variables to model land use shares as endogenous. The first strategy provides significantly 

superior out-of-sample performance for each of the three livestock equations. This suggests that, at least in our 

sample, land use allocation choices are planned on a longer run basis and can be considered as fixed when 

evaluating livestock intensity decisions. 
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Table 5 reports the Mean Absolute Error (MAE) statistics for the land use share and the livestock 

equations calculated as the mean absolute value of the difference between the predictions and the 

actual JAC data, for the whole England and Wales in 2004, this being this the most recent years for 

which we have JAC data covering the entire country.
17

 Despite the constraints placed upon our model 

due to its structural underpinnings, our approach still yields results which are superior for cereals, 

oilseed rape, root crops and temporary grassland shares. The logit model performs slightly better for 

permanent grassland and rough-grazing. However, JAC data is very noisy for these two land use 

categories, particularly in the recent years, because of the parish level data collection approach and the 

grid square assignation methodology. Therefore, the resultant forecasting comparisons have to be 

interpreted cautiously. The logit only clearly outperforms the structural model with respect to the 

“other” category. This is not surprising since in our approach this class is not directly modelled but 

estimated as a difference, as shown in equation (10). Overall, these results indicate how the predictive 

ability of the structural model is comparable or even moderately superior to the one of the benchmark. 

This is somewhat unexpected, as the logit share model is an empirical-driven approach, specifically 

designed to describe and predict land use shares. In contrast, our model is based on a flexible 

specification for the farm profit function, from which not only land use equations but also input and 

output intensities are derived in a coherent framework. This ensures a comprehensive and 

theoretically consistent representation which, as shown but these results, does not sacrifice empirical 

predictive accuracy. Furthermore, in this application the obvious drawback of the logit approach is 

that it cannot include livestock numbers and, therefore, cannot consider one of the most significant 

sources of agricultural pollution. 

 

[TABLE 5 about here] 

Forecasting performance (MAE): structural model and logit share model 

 

[FIGURE 2 about here] 

Cereals in 2004: JAC data and model predictions 

 

In order to analyze the spatial forecasting ability of our model, Figure 2 maps actual and predicted 

shares of cereals in 2004. The model performance is highly satisfactory with the two maps showing 

essentially the same spatial patterns of land use. However, some minor differences can be seen (e.g. in 

the South of England and in the West Midlands) and the actual data results in being somehow blockier 

than the predicted ones, with some grid squares with high cereal shares shown right next to grid 
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 Since only 6% of the 2004 data are used to estimate the model, this consists of mainly out-of-sample 

forecasting. Therefore it is an appropriate yardstick to compare models performances avoiding the risk of 

preferring an over-fitted specification. 
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squares with very low shares. This is not likely to be a shortcoming of the model, but is more 

probably a drawback of the raw JAC data, resulting from the parish level record allocation and 

collection procedure and the subsequent grid square conversion procedure. This feature is even more 

evident in extensive land use types, such as grasslands, as showed in Figure 3. Whilst the patter of 

land use is essentially the same in the predicted and actual data, the predicted temporary grassland is 

much smoother than the one in the JAC records. 

 

[FIGURE 3 about here] 

Temporary grassland in 2004: JAC data and model predictions 

 

 

5. Concluding remarks 

 

The approach proposed in this paper diverges from existing spatially explicit, econometric land use 

models since, instead of focusing only on reduced form, land use allocation equations, it develops a 

structural approach encompassing agricultural land use decisions, livestock numbers, crops yields, 

inputs applications and profits in a coherent and unifying framework. The underpinning theoretical 

model builds upon the joint multi-output profit function introduced by Chambers and Just (1989) and 

is translated into an empirically tractable system of equations by directly specifying the profit function 

as one of the flexible functional forms available in the literature. The resulting applied specification is 

very flexible, and can be implemented on different types of data, ranging from aggregated national or 

regional data to farm-level information. 

 

In our empirical application estimates the model using a 2km
2
 grid square panel dataset covering the 

entirety of England and Wales for the past 40 years, including all the major policy, market and 

environmental drivers of agricultural land use. The fine-scale nature of this data allows us to include a 

detailed specification of the physical environment determinants, which is critical to assess the 

economic and environmental consequences of land use change. Whilst this micro-level data are 

necessary to capture the relevant spatial heterogeneity, they are also characterized by the presence of 

censored observations, which considerably complicate the econometric estimation. In this paper we 

address this issue by extending to land use modelling the QML estimator recently developed by Yen 

et al. (2003) for systems of censored demand equations. 

 

The findings of this research could be extended in several directions. First, in the empirical 

application we did not estimate all the structural parameters of the model and, therefore, did not 

derive the welfare implications of land use change. Farm-level data on profits and yield could be used 
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to address this limitation and jointly estimate the entire system of equations (6), (7) and (9). The 

obvious drawback of this approach would be loss of the spatial dimension of the analysis, which could 

be at least partially maintained by knowing the location of the farms and linking it to the 

environmental characteristics. Secondly, our approach is general enough to be implemented in a 

variety of empirical contexts. Given the refined specification of the climatic variables, an obvious 

candidate is the prediction of the effects of global warming on agriculture. Finally, our framework is 

essentially static: an important extension would be to formulate a dynamic econometric specification 

to investigate the inter-temporal aspects of agricultural production decisions. 
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Appendix: Tables and Figures 
 

TABLE 1 

Descriptive statistics, land uses (ha) and livestock numbers (heads) per 2km
2
 grid square 

 1969 1988 2004  Total 

 x  x  x  
 

x  )(ˆ xs  Min max 

Cereals 87.8 94.6 76.4  83.0 77.4 0 347.2 

Oilseed Rape 0.1 8.5 13.3  6.9 12.3 0 124.7 

Root crops 10.1 9.5 7.5  9.1 18.7 0 186.8 

T. grassland 41.1 28.8 22.6  29.3 28.7 0 349.5 

P. grassland 116.7 115.6 112.7  113.0 97.0 0 400 

Rough grazing 47.1 39.6 40.5  44.0 100 0 400 

Other 22.8 26.6 45.7  37.8 45.6 0 400 

Tot. land 325.6 323.2 318.7  323.1 96.9 1.25 400 

         

Dairy 87.1 71.5 62.0  74.1 99.1 0 1128 

Beef 151.4 149.8 89.9  144.9 123.8 0 1221 

Sheep 472.2 784.1 323.8  693.6 899.0 0 11289 

Notes: only grid squares containing some agricultural land (according to the ALC) are considered, x indicates 

the sample mean, )(ˆ xs the sample standard deviation. 
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TABLE 2 

Descriptive statistics, environmental and climatic determinants 

 Units x  )(ˆ xs  min max 

aar mm 888.4 360.5 509 3980 

mwd days 53.0 37.2 0 143 

pt mm 507.8 52.3 240 608 

fc days 114.7 21.7 80 230 

dd 
o
C 2290 169.2 1410 2641 

alt m 120.4 113.7 0 860 

smore6 % 19.2 0.25 0 100 

Notes: x indicates the sample mean, )(ˆ xs the sample standard deviation. 
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TABLE 3 
Land use share equations parameter estimates 

 

 Cereals Oilseed rape Root crops Temp. Grassland Perm. Grassland Rough grazing 

Pcereals  0.134 *** -- -- -0.044 ** -- -- 

Prape --  0.148 **** -- -- -- -- 

Prootcrops -- --  0.027 * -- -- -- 

Pfertilizer -0.111 *** -0.283 **** -0.017 *  0.067 ***  -0.018  0.036 * 

       

Set aside rate -0.425 **** -0.114 ***  0.003 -0.009 -0.030 -0.025 * 

ESA share -0.033 **** -0.008 ***  0.000  0.000  0.031 ***  0.032 *** 

Park share -0.019 *** -0.006 -0.003 *** -0.018 *** -0.067 ***  0.041 *** 

Urban share -0.028 ** -0.003 -0.002  0.000  0.061 ***  0.010 * 
       

smore6 -0.087 *** -0.018 ***  0.000 -0.005  0.131 ***  0.052 **** 

coast -0.357 -0.505 * -0.156  1.316 *** -0.536  1.473 *** 

alt  14.170 ****  3.048 *** -2.693 **** -0.787 # # 

atl
2
  6.333 ***  1.337 ** -0.494 ** -0.834 * # # 

alt < 200m # # # # -0.057 ****  0.004 

alt > 200m # # # #  0.085 ** -0.156 *** 

I(alt > 200m) # # # # -25.55 ***  21.96 ** 

mwd  4.174 ****  0.079  1.619 ****  0.956 *** -8.455 **** -0.582 

mwd
2
 -1.283 *** -0.416 ***  0.681 ****  0.147 -1.346 ***  0.271 ** 

pt  6.727 ***  1.594 *  0.331 * -3.419 *** -23.95 ***  12.46 *** 

pt
2
 -2.773 ** -1.919 **  0.720 **  3.401 ***  3.969 * -7.191 *** 

fc -4.794 * -7.374 *** -1.856 ***  0.482  7.165 *  4.394 * 

fc
2
  16.670 *** -6.521 ***  2.896 *** -7.498 *** -22.22 ***  5.000 *** 

dd -4.228 ***  1.653 *** -4.801 ****  4.271 ***  35.45 **** -6.285 *** 

dd
2
  2.571 ** -0.233  1.592 **** -1.506 ** -3.071 * -1.179 * 

aar -3.726 -11.57 ****  6.056 ****  3.950 *** -5.000  9.738 *** 

aar
2
 -1.269 -7.177 ***  1.701 ****  3.935 *** -4.537 *  7.246 *** 

       

Trend  0.015  0.282 **** -0.015 *** -0.155 **** -0.101 ***  0.045 *** 

Const  38.04 **** -17.61 ****  6.677 ****  13.34 ****  36.18 **** -0.884 

Notes: to preserve space the residual correlations, the parameters corresponding to the variance equations, to the interactions of the environmental factors are not reported in 

the Table, but are available under request from the Authors. “--“ = parameters non significant and therefore removed, “#” = parameter not included in the equation, “*” = t-

stat > 2, “**” = t-stat > 3, “***” = t-stat > 4, “****” = t-stat > 10. All variables defined as in Table 1. 
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TABLE 4 
Livestock intensity equations parameter estimates 

 
 

 
Dairy cows Beef cows Sheep 

stemp.grassland  1.427 ****  1.234 ****  1.814 **** 

sperm.grassland  0.438 ****  0.763 ****  2.400 **** 

srough.grazing  0.041 **  0.296 ***  1.167 **** 

    

Pmilk  2.208 *** -- -- 

Pquota -3.034 *** -- -- 

Pdairy cows  0.003 -- -- 

Pbeef meat  --  0.084 *** -0.209 ** 

Psheep meat  -- -0.209 **  3.244 ** 

Pfertilizer -0.261 ** -0.297 ** -1.090 * 

    

ESA share -0.047 *** -0.169 *  0.091 * 

NVZ share -0.004  0.008 * -0.147 *** 

Park share -0.007 -0.011 -0.282 *** 

Urban share  0.077 ***  0.195 **** -0.383 *** 

L  0.013 ***  0.009 *  0.212 

    

smore6 -0.113 **** -0.067 ***  0.947 *** 

coast -1.480 *  1.460   11.52 ** 

alt -12.99 ***  0.023 -41.38 **** 

atl
2
 -9.720 ***  4.566 ** -13.16 

mwd -1.574 **  1.116 ** -5.129 * 

mwd
2
 -2.089 *** -2.735 *** -11.01 *** 

pt  9.334 *** -21.79 **** -73.98 *** 

pt
2
 -1.736  27.22 ****  14.42 

fc -5.250 -5.526 *  105.5 *** 

fc
2
 -6.054 -12.79 ***  32.97 * 

dd -5.263 *** -14.68 *** -15.59 * 

dd
2
 -1.155  2.709 *  0.445 

aar  5.615 * -6.729 ***  8.889 

aar
2
  3.534 *  0.930  68.08 *** 

    

Trend  0.336 **  0.385 **  2.463 *** 

TrendBSE -0.344 ** -0.895 *** -2.542 *** 

Const -25.07 ***  19.02 ***  32.55 **** 

DummyBSE  4.469 **  10.47 ***  60.89 **** 

    

ρρρρi,j    

Dairy cows  1   

Beef cows  0.238 ****  1  

Sheep -0.201 ****  0.186 **** 1 

Notes: to preserve space the parameters corresponding to the variance equations and to the interactions of the 

environmental factors are not reported in the Table, but are available under request from the Authors. “--“ = 

parameters non significant and therefore removed, “*” = t-stat > 2, “**” = t-stat > 3, “***” = t-stat > 4, “****” 

= t-stat > 10. All variables defined as in Table 1. 
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TABLE 5 

Forecasting performance (MAE): structural model and logit share model 

 

 
Structural 

model 
Logit 

Land use (ha)   

Cereals 24.5 25.7 

oilseed rape 8.5 9.7 

root crops 5.7 6.0 

temporary grassland 12.1 12.6 

permanent grassland 41.1 40.9 

rough grazing 19.0 18.1 

other 24.3 19.7 

   

Livestock (heads)   

dairy 47.0 -- 

beef 61.4 -- 

sheep 375.7 -- 

Notes: MAE for England and Wales in year 2004, total number of 

observations equal to 33283 (outliers excluded). Logit model specified 

including the same explanatory variables of the structural model and 

estimated following Zellner and Lee (1965). 
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FIGURE 1 

Relationships among predicted land use shares and machinery working days 

 
Notes: predicted shares and asymptotic 95% confidence intervals, all explanatory variables fixed at 

their average levels in year 2004. 
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FIGURE 2 

Cereals in 2004: JAC data and model predictions 
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FIGURE 3 

Temporary grassland in 2004: JAC data and model predictions 

 


