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Abstract

For applications in agricultural economics, complex ecological systems are often oversim-
plified to the extent that ecologists rarely consider model results valid. Recursive opti-
mization of complex systems represents an alternative, but requires strong assumptions
regarding time preference and uncertainty.
In this paper we explore the implications of merely approximating “true” optima of com-
plex dynamic optimization problems using a technique called simulation-optimization.
We develop a standard discrete renewable resource use problem and solve it numerically
using both simulation-optimization and non-linear mathematical programming. We subse-
quently introduce non-linearity and uncertainty and graphically compare the performance
of simulation-optimization vis-à-vis non-linear programming in predicting optimal control
and state variable paths. On the basis of this comparison we discuss potential non-formal
test procedures that could be used to assess simulation-optimization solutions of more
complex problems that do not allow for such comparisons.
We find that simulation-optimization can be a useful exploratory optimization technique
when standard numerical optimization approaches fail to find near optimal solutions.
That said, modelers should be careful in designing management functions of simulation-
optimization problems and test their functional forms for severe misspecifications.

1 Introduction

Finding optimal solutions to complex bio-economic systems is a key challenge for the quantita-

tive analysis of natural resource policy and management problems in interdisciplinary agricul-

tural research. Despite increasing interdisciplinarity in research design, applied numerical mod-

elling approaches generally remain within disciplinary domains (Russell 1995, Vandermeulen

and Van Huylenbroeck in press). This holds especially for the analysis of land use and vegeta-

tion change dynamics, such as the dynamic interaction of trees, grasses, and grazing animals in

rangeland production systems. Resource economists favor economic optimization approaches

that overly simplify bio-physical relationships - usually unacceptable to ecologists - whereas ecol-

ogists develop complex dynamic process simulation models that pose considerable challenges

to standard optimization procedures or require assumptions that violate important aspects of

economic theory (see Börner et al. (2007) for a discussion). This contributes to researchers fa-

voring disciplinary modelling over integrating economic and ecological modelling systems. This

paper illustrates a modelling approach that links optimization with simulation and discusses

its potential to integrate across disciplines.

Optimization of dynamic systems usually requires solving systems of differential equations.

Depending on the complexity of the system under study, an analytical optimal solution to the

underlying system of differential equations may not exist. Analytical solutions to relatively
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simple and general problems provide important insights into biological and economic system

dynamics. In the quest for analytical solutions to dynamic optimization problems, however,

most analysts end up using numerical optimization techniques to approximate optimal solutions

to real world problems that involve multiple state and control variables (Woodward 2000). For

this purpose, dynamic problems are often reformulated as a constrained linear or non-linear

optimization problem and optimized over the control variable(s) (Standiford and Howitt 1992).

Despite the rapid evolution in computing capacity and numerical optimization techniques,

this procedure is and probably will long be limited by the ’curse of dimensionality’ (Bellman

1961). As models become larger, computing time increases exponentially with the size of

the planning horizon. Another important drawback of standard numerical optimization, if

compared to the underlying analytical solution, is that it merely provides us with the optimal

paths of state and control variables. This is useful information if the objective is to see whether

theses paths are in accordance with specific policy targets or to test how alternative policies

might influence these paths. Yet, it does not provide resource managers with rules of action,

as the analytical solution would do (if it existed), by expressing the control variable in terms

of time (i.e. optimal control), state variables (i.e. feedback control), or both (i.e. closed-loop

control).

Moreover, in the face of complex and stochastic dynamics, optimal paths of state and

control variables loose some of their informational value as they can only be calculated for a

given sequence of exogenous driving factors, e.g. prices and/or environmental factors. Under

these circumstances it is indeed desirable to describe optimal behavior by a set of functional

relationships that tell us how control variables should be optimally adjusted according to the

stochastic dynamics of the system.

Our specific interest lies in understanding the interactions of economic activities, such as

livestock grazing, with vegetation dynamics in semi-arid savanna systems. These systems are

highly non-linear, subject to stochastic environmental factors, such as rainfall and fires, and

exhibit multiple-stable attractors (Higgins et al. 2000, 2007). Models that adequately describe

such systems are inherently complex and usually not solvable by analytical procedures (Scheiter

and Higgins 2007). To adequately analyze the evolution of dynamic equilibria and limit cycle

behavior, savanna models have to be run for extended time horizons, which makes its numerical
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optimization using constrained non-linear programming technically infeasible.

Previous savanna modelling studies and also applications in water reservoir management

have developed a workaround to overcome some of the obstacles described above (Janssen

et al. 2004, Koutsoyiannis and Economou 2003). The approach has been termed simulation-

optimization in the operations research literature. Quite generally, simulation-optimization

refers to the application of optimization algorithms to find parameter combinations that opti-

mize a performance measure of a simulation model (Fu 2001). The performance measure can

potentially be any measure of interest, such as fitness indices in ecological applications, utility

in economic applications, or a measure of how well the model reflects reality, if the objective is

to calibrate model parameters to a given set of observations.

In this paper we analyze a very simple problem of renewable resource extraction that re-

sembles the characteristics of livestock production in savannas. The objective of the analysis

is:

1. to assess the degree of achievable approximation to the underlying optimal control path,

2. to provide guidance for the optimal specification of dynamic simulation-optimization mod-

els in natural resource applications,

3. and to propose procedures to validate simulation-optimization solutions in the absence of

real world observations.

In addressing these objectives, we hope to gain insights with regard to the usefulness of

simulation-optimization as tool to analyze natural resource management issues that cannot

be addressed using standard economic optimization approaches.

Section 2 of the paper presents the renewable resource extraction problem in an optimal

control form and compares it with a potential simulation-optimization specification. Section

3 evaluates the goodness of fit of the simulation-optimization approximation to the optimal

numerical solution of the problem using alternative specifications of the simulation-optimization

model under deterministic and stochastic conditions. Section 4 suggests simple procedures to

validate simulation-optimization solutions to the model in the absence of information about the

true optimum. Finally, we discuss our findings in section 5 and provide concluding remarks in

section 6.
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2 Optimal Control and Simulation-Optimization

We start out from a continuous optimal control problem with the objective to:

max
zt

T∫
0

((p − wzt

xt

)zt)e
ρt + F (xT )eρT dt (1)

subject to

ẋ = xt(1 + r) − zt (2)

xt > 0

zt ≥ 0

x0 = x(0)

F (xT ) = given

where zt is the control variable (say animal stock), t is time with T being the the final

time period of the interval [0, T ] with a given length n, p is the price for a fixed fraction of zt

sold in every time step, wzt

xt
denotes stock dependent unit costs of keeping animals, xt is the

resource (grass biomass), ρ is the discount rate, and F (xT ) is the terminal value of the resource.

Equation (2) is the equation of motion with r being the rate of resource growth.

An analytical, yet non-trivial, solution to the problem can be obtained by formulating the

current value Hamiltonian (equation (3)) and the necessary conditions for a maximum:

H(zt, xt, λt, t) = ((p − wzt

xt

)zt) + F (xT ) + λt(xt(1 + r) − zt) (3)

∂H

∂zt

= p − 2wzt

xt

− λt = 0 (4)

λ̇ = ρλt −
∂H

∂xt

= λt(ρ − r − 1) − wz2
t

x2
t

(5)

and equation (2). From (4) we get:

λt = p − 2wzt

xt

(6)
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Setting the derivative of (6) with respect to time equal to (5) yields two equivalent expres-

sions for λ̇. Substituting for λt in (5) and solving for ż results in:

ż =
wzt(2xt(ρ − r − 1) + 2ẋ + wxt) + x2

t p(1 + r − ρ)

2xtw
(7)

With (2) and (7) we have a system of differential equations that describes the optimal

trajectories of state and control variables given the initial and terminal conditions. As a result

we would obtain z∗t = z(xt, t), a definition of what the optimal animal stock would be at each

time step and at given levels of grass biomass.

Alternatively the problem can be converted into a constrained non-linear programming

problem (cf. Standiford and Howitt (1992)) and solved for the optimal trajectories of zt and xt

using a numerical optimization algorithm. This would make sense if p and r become random

parameters or if we include more than one state and control variables, turning an analytical

solution into a more tedious or even impossible exercise. It also makes sense in in this paper,

because we aim at comparing two approaches of finding optimal numerical solutions to control

problems.

We arrive at a simulation-optimization formulation of the same problem through substitu-

tion of zt in equations (1 and 2) by a function of t and xt such that:

z∗1t = a + bxt − ct (8)

where a is a constant and b and c are slope parameters to be determined by numerical

optimization. We call equation (8) a management function. The management function is

much simpler and more intuitive than the function z(xt, t) we would obtain going through an

analytical procedure. But, we restrict zt to be linearly increasing in xt and t, which makes

the optimal numerical solution of the simulation-optimization problem inferior to the numeri-

cal solution of the equivalent constrained non-linear programming solution. The management

function, however, has an additional advantage: In order to maximize equation (1) numerically

using constrained non-linear programming we need to define a vector z of length n + 1, i.e.

the number of parameters over which to optimize. For most numerical optimization algorithms

this implies that computation time may increase exponentially with n. Substituting zt by the
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right-hand-side of equation (8) reduces the optimization problem to the parameters a, b, and c

and makes it rather independent of n.

In short, converting an optimal control problem into a simulation-optimization problem

means postulating ex ante the functional relationship between control and state variables and/or

time and optimizing over the parameters of this function. In principle any functional form can

be used as long as its domain includes feasible trajectories of the control variable. However,

model outcomes will depend on how well the chosen management function specification can

approximate the true optimal control path.

3 How good is Simulation-Optimization

Here we evaluate the performance of the simulation-optimization specification of the dynamic

optimization model presented in the previous section vis-a-vis the standard non-linear program-

ming version of the model. Three issues appear to be relevant in this regard: First, the choice of

functional form for the management function. Second, solutions in which the control trajectory

lies on its boundaries. And third, the number of system drivers that exhibit variability and,

hence, influence the optimal trajectory of the control variable. The parameter values used in

the simulations are summarized in Appendix A.

3.1 Alternative Functional Forms

To assess the performance of simulation-optimization and the implications of using different

functional forms for the management functions, we perform three optimization runs and com-

pare them side by side. We first run the model using the non-linear programming formulation,

which serves as the benchmark for comparison. We then specify two different functional forms

for the management functions, namely equation (8) and:

z∗2 = a +
xb

αb + xb
+ ct (9)

where a, α, b, and c are the parameters over which optimization takes place.

Figure 1 shows the optimal trajectories of profits, state and control variables and compares

the two management function specifications with the benchmark. Both specifications of the
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simulation-optimization model achieve very close approximations to the non-linear program-

ming solutions (see also Table 1). Comparing control and profit trajectories reveals that the

management functions introduce a small bias at the beginning and towards the end of the plan-

ning horizon. The simulation-optimization specification using management function (9) fits the

problem slightly better as it allows for the control variable to react more flexibly to changes in

resource availability.

3.2 Control at boundaries

Solutions in which the optimal control switches between different potential states, say zmin, zmax,

and z∗t are called bang-bang solutions (Sonneborn and Vleck 1965). Our optimal control model

does not exhibit bang-bang solutions, because the unit costs of extraction are not constant.

It is, however, possible to arrive at solutions in which zt = 0 for several time steps along the

optimal control trajectory. Such solutions represent the same type of challenge as bang-bang

solutions for simulation-optimization models that involve economic decision-making.

Neither of the two management functions (8) and (9) can adequately deal with such a tra-

jectory. The reason is that these functions map the control variable as a function of resource

availability, which, under certain parameter combinations, violates the first condition of max-

imum principle (equation 4). Namely, marginal benefits of resource use in t must be equal to

the opportunity costs of resource use.

Figure 2 shows that zt = 0 is optimal during initial time periods if the planning horizon

increases from 50 to 150 time intervals. I.e., opportunity costs of resource use in initial time

periods are higher than the marginal benefits of using the resource. Management function (8)

poorly approximates this solution. Yet, a much better fit can be achieved through inclusion of

the marginal benefit per unit of resource use in the management function, e.g. by adding an

additional term to (8) such that:

z∗3t = (a + bxt − ct)(1 − MBβ

(αβ + MBβ)
) (10)

where

MB = p − 2w

xt

∗ δt (11)
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with δt being the discount factor of the discrete version of the model for numerical opti-

mization. The non-linear term in (10) now serves as an approximation of a step function that

multiplies the linear term by one if MB reaches a threshold value and by zero otherwise. The

right panel in Figure 2 shows that this management function specification achieves a much bet-

ter approximation of the true resource and control trajectories than the original form. Note that

for reasons of comparability we only use an approximated switching function to allow for both

model specifications to be solved by the same derivative based optimization algorithm. Usually

this involves the definition of feasible starting values to make sure that the algorithm does not

get stuck in local optima. More complex applications, such as in Higgins et al. 2007, require

the use of evolutionary types of algorithms, which are less demanding in terms of functional

properties and starting values.

In this example with a longer planning horizon the approximation of the constrained non-

linear programming solution is, however, not as close as in section (3.1) even if parameters are

chosen such that optimal resource use is always positive (see Table 2 for a comparison). This

suggests that the performance of simulation-optimization models will generally decrease ceteris

paribus if the planning horizon increases.

3.3 Multiple Sources of Variance

Until now we have only looked at cases in which both resource growth and prices were constant

over time. In more realistic settings, prices vary due to market forces and resource growth

varies according to environmental conditions.

We now change our model described by equations (1 and 2) such that p → pt and r → rt.

For our purposes it is irrelevant whether price and resource growth trajectories are known

or stochastic, because we are merely interested in finding out to what extent variability in

parameters affects the degree of approximation to the non-linear programming solution by

simulation-optimization. In order to keep the comparison as simple as possible we assume

known price and resource growth trajectories.

If both prices and resource growth exhibit variability we need to modify management func-

tion (8), because it would not allow to adjust the control variable trajectory to price changes.
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The most simple way to introduce the price in (8) is to include an additional term such that:

z∗4t = a + bxt + cpt − kt (12)

As Figure (3) demonstrates, this management function specification does not achieve a

particularly satisfying result. One option to improve the result is to introduce a non-linear

interaction term to allow for the price-resource relationship to influence the control trajectory

(see Figure 3 in the center), such that:

z∗5t = a + bxt + cpt + qxtpt − kt (13)

An even better and more elegant way is to make use of the insights in section (3.2) and

specify the management function as

z∗6t = a + bMB + qxtpt − kt (14)

which allows for a quite satisfying degree of approximation in the present case (see Figure

3 right panel).

4 Management function validation

The previous section has demonstrated that simulation-optimization can find satisfying ap-

proximations to standard optimal control problems of renewable resources without knowing

the true analytical solution of the problem. Yet, the actual purpose of this exercise was to

introduce simulation-optimization as an instrument to analyze problems that are difficult or

impossible to solve using analytical procedures or constrained non-linear programming. Since

it is not possible to improve a complex simulation-optimization model based on a comparison

with its non-linear programming solution, it is necessary to develop validation procedures to

make sure that an adequate management function has been found. As the true optimal tra-

jectory is not known, such tests will always involve subjective judgments with regard to the

plausibility of results. The procedures described below, however, can be useful in detecting

severe misspecifications.
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4.1 Objective values and the variables of the management function

A simple heuristic procedure is to compare the optimized objective function values of alterna-

tive management function specifications. If alternative functional forms provoke large positive

changes in the optimal objective function value, the chosen form is clearly sub-optimal.

Often highly dynamic bio-physical relationships are represented in a simulation model that

is coupled with an optimization module (cf. Higgins et al. 2006, Jannssen et al. 2002). In such

models it can be tempting to manipulate optimized control paths by replacing highly variable

state or stochastic exogenous variables in the management function by more slowly reacting

variables, the dynamics of which are linked to the original more volatile variable. As result

optimized control paths become smoother, which may appear intuitive, but is merely the result

of imposing additional restrictions on the control path. Restricting control paths in this way is

likely to introduce serious biases into the model that are similar to, for example, omitting cpt

in equation (12) if the underlying model includes stochastic prices.

In short, the management function specification should allow for maximum flexibility of the

control trajectory with respect to all sources of variance in model parameters and the related

optimal state variable trajectory. If the resulting control path reflects unexpected behavioral

outcomes it is the objective function that needs to be reexamined. For example, opportunistic

grazing strategies in rangeland models (Westoby et al. 1989) may only appear optimal, because

price and weather risk or heard size adjustment costs are not properly taken into account

(Börner et al. 2007).

4.2 Random testing of control trajectory sections

A more systematic way of validating the management function is to test whether the optimized

control trajectory of a simulation-optimization model exhibits a clear bias in defined sections.

This can be done by converting the simulation-optimization model to a non-linear programming

model in which the control path is bound by the simulation-optimization solution. Randomly

selected points of the control path can now be freely determined by an optimization algorithm

(Figure 4). If optimization leads to the points being shifted away from the original solution, the

management function is likely misspecified. Using the management function (8) we demonstrate

such a random test for the example in section (3.2).
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Note, however, that the direction of the shift at a given point can be misleading if the

management function is severely misspecified. For example, a shift at a given point on the

control path may simply compensate for suboptimal controls in later time steps irregardless of

where the true optimal control at this point is located.

A related method is sensitivity analysis. Selected or random points on the control path that

was determined through simulation-optimization can be subjected to sensitivity analyses ob-

serving changes in the objective function value (3). Large changes suggest poor approximation

to the true optimum. Moreover, several points on the control path can be simultaneously ma-

nipulated through stochastic simulation, which allows to establish correlations between control

variable values and the objective value. Such correlations can provide useful insights as shown

in Figure 5. A sensitivity analysis was run on all control variable instances of the simulation-

optimization model using management function 12using Monte Carlo sampling from normal

distributions with µ = z∗2t and σ = 0.5. Figure 5 depicts the resulting correlations with the

model objective function value and the pattern suggests that the control path is suboptimal.

I.e. lower levels of z∗2t would yield higher objective function values in the first quarter of the

planning horizon, whereas higher resource extraction values would do so in the second and third

quarter.

4.3 Challenges to validation

Complex ecological-economic systems may exhibit fundamental changes in system states once

state variables reach critical thresholds (see Higgins et al. 2006). Such highly dynamic sys-

tems represent challenges to numeric optimization. Simulation-optimization solutions to such

problems require testing for the robustness of model solutions, because sub-optimality means

that critical thresholds may be missed or passed due to management function misspecifications.

Again, sensitivity analysis can be a useful tool to detect instances of control variables that

are extraordinarily strongly correlated with changes in the objective function value or critical

system state variables. If changes in such control variable instances produce large changes

in system state variables and positive changes in the objective function value, management

function misspecifications are a likely root cause.
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5 Discussion

A major caveat of using simulation-optimization to address natural resource management prob-

lems that cannot be solved by standard numerical optimization techniques is the inevitable lack

of means to prove model validity. Ideally, models should be validated using real world observa-

tions. In some cases, field observations may be used as a benchmark to evaluate whether the

model adequately reproduces field observations. Often, however, no data exists or available in-

formation merely allows validation of ecological or economic sub-models (cf. Börner et al. 2007).

Nevertheless, by contrasting simulation-optimization solutions of a standard renewable resource

management problem with its numeric optimum, we demonstrate that simulation-optimization

can considerably well approximate the latter, even if optimal control paths exhibit high volatil-

ity. This is a particular purposeful feature if modelling is applied as an exploratory tool to

understand the behavior of complex ecological-economic systems.

That said, how well simulation-optimization approximates true optimality depends critically

on the specification of the management function used in the simulation-optimization framework.

By restricting the control variable to a predefined functional relationship, modelers only allow

for solutions that lie in the domain of this function. This introduces a bias, which is com-

parable to the bias introduced by specifying inadequate functional forms in other modelling

applications (McKitrick 1998). Specifying appropriate management functions is therefore an

inherently interdisciplinary task as it requires consistency with the theoretical underpinnings of

ecological-economic system behavior. For example, if management functions omit price or time

as arguments, control paths will not respond optimally to price fluctuations and discount rate

induced changes in resource use intensity. Similarly, management functions need to be speci-

fied such as to respond to critical drivers of ecological dynamics, such as rainfall in terrestrial

ecosystems.

Apart from validating model solutions through comparison with real world observations,

simple procedures can be used to identify severe management function misspecifications in

simulation-optimization models (Section 4). Well specified and optimized management func-

tions come with a particular advantage over standard numerical optimization solutions as they

can be used to derive simple management rules linking resource use to system state or critical

thresholds of external system driving factors, such as prices and rainfall.
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Simulation-optimization clearly requires concessions from both economic and ecological dis-

ciplines. Large ecological simulation models may be too computation intensive to be optimized

irregardless of the approach chosen and even if optimization is possible the use of prespecified

management functions means that control paths violate optimality conditions from an economic

theory point of view. Our analysis, however, suggest that simulation-optimization is more than

a trade-off between ecological authenticity and economic optimality. Even if error margins in

more complex applications than the one presented here are inevitable, simulation-optimization

opens up new avenues for economists and ecologists to work in an integrated manner.

Simulation-optimization allows economists to assess whether policy recommendations de-

rived from standard constrained non-linear optimization models are valid under stochastic cir-

cumstances and related dynamic ecological feedback relationships. By the same token, ecologists

may improve model-based recommendations for natural resource management by eliminating

management strategies that are clearly economically suboptimal. Hence, through simulation-

optimization we may be able to learn more about human-environment interaction in cases,

where conventional approaches fail.

6 Conclusion

In this paper we analyze a simple renewable resource management problem under constant

and variable price and resource growth and demonstrate that simulation-optimization can yield

satisfactory approximations to standard numerical optimization. We illustrate the implications

of management function misspecifications in simulation-optimization models and suggest simple

procedures to identify severe misspecification.

Reformulating constrained numerical optimization problems as simulation-optimization sys-

tems allows solving more complex systems of differential equations including highly non-linear

functional forms and non-continuous functions. Derivative-based optimization algorithms usu-

ally fail under such circumstances, such that a combination of simulation-optimization with

evolutionary algorithms remains the only option to identify close-to-optimal management strate-

gies.

As such, simulation-optimization bears potential to integrate across disciplines as it allows

more balanced trade-offs between aspects of ecological and economic theory that appear rel-
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evant in improving the contribution of ecological-economic modeling to sustainable resource

management.
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7 Tables and Figures

Table 1: Optimal solutions of optimizations in section 3.1
Measure Non-linear

programming
Simulation-
optimization

(linear)

Simulation-
optimization
(non-linear)

Objective
function value

638.7397 638.7071 638.7171

Optimized
variables

50 3 4

Parameter a n.a. -4.3064 3.098
Parameter b n.a. 0.0604 0.7459
Parameter c n.a. 0.077 -0.0496
Parameter α n.a. n.a. 1415.83

Table 2: Optimal solutions of optimizations in section 3.2
Measure Non-linear

programming
Simulation-
optimization

(linear)

Simulation-
optimization
(non-linear)

Objective
function value

1169.3848 1156.0910 1168.2578

Optimized
variables

150 3 5

Parameter a n.a. 0.1942 -0.9837
Parameter b n.a. -0.0022 0.0096
Parameter c n.a. 0.0209 0.0227
Parameter α n.a. n.a. 6.5331
Parameter β n.a. n.a. 17.8039

A Parameter Values used in Simulations

Simulations in section 3.1
Parameter Description Value

p price 10
w cost parameter 100
δ discount rate 0.995

F (xT ) = xtft terminal value of x 0.5
T terminal time 50
r resource growth rate 0.01

x(0) initial resource level 100
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Figure 1: Optimal trajectories of state variable (upper panel), control variable (middle),
and Profits (lower panel) for standard non-linear programming (black lines) and simulation-
optimization (dashed grey lines). In the left panel a linear management function was used in
for simulation-optimization, whereas a non-linear function was used in the right panel. The
areas in light grey represent the squares of differences between the non-linear programming and
the simulation-optimization solutions.
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Figure 2: Optimal trajectories of state variable (upper panel), control variable (middle),
and Profits (lower panel) for standard non-linear programming (black lines) and simulation-
optimization (dashed grey lines) with an extended planning horizon. In the left panel a linear
management function was used for simulation-optimization, which was multiplied with an ap-
proximated non-linear switching function in the right panel. The areas in light grey represent
the squares of differences between the non-linear programming and the simulation-optimization
solutions.
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Figure 3: Optimal trajectories of state variable (upper panel), control variable (middle),
and Profits (lower panel) for standard non-linear programming (black lines) and simulation-
optimization (dashed grey lines) with an extended planning horizon. In the left panel, man-
agement function (8) was used for simulation-optimization. In the center panel a non-linear
interaction term was used (equation 13). The right panel equation (13) was changed to equa-
tion (14). The areas in light grey represent the squares of differences between the non-linear
programming and the simulation-optimization solutions.
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Figure 4: Optimal trajectories of state variable (upper panel), control variable (middle), and
Profits (lower panel) for simulation-optimization (black lines). Dotted lines represent the same
variable paths allowing for randomly selected points along the simulation-optimization solution
to be determined freely in the optimization process. The areas in light grey represent the
squares of differences between the the simulation-optimization solution and the dotted line.
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Figure 5: Sensitivity analysis: Correlations of control variable instances with objective value.
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