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Abstract: 

Carbon sequestration in agricultural soils is considered as an option of greenhouse gas 

mitigation in many countries. But, the economic potential is limited by the dynamic 

process of saturation and the opportunity cost of land use change. In addition, this 

article shows that permanence cannot, in general, be achieved in the strict sense of 

maintaining the soil carbon stock on an increased equilibrium level. Rather, a cyclical 

pattern with periodical release of sequestered carbon can be economically optimal from 

both the farmers’ and societal point of view.  
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1 Introduction 

The use of biological sinks is regarded as an appealing option of greenhouse gas (GHG) 

mitigation in many countries. It is explicitly considered in the Kyoto protocol as an 

alternative measure besides the reduction of energy-intensive activities and investment 

in less carbon-intensive technologies. In order to make use of this climate policy option, 

countries can declare pieces of land as selected for carbon sequestration and balance the 

net amount of carbon that is fixed in the corresponding soils and forest biomass against 

their national GHG emissions. 

The scientific basis for the assessment of sequestration activities is compiled in a special 

report of the IPCC (Watson et al., 2000) which provides a comprehensive state-of-the-

art examination of the global carbon cycle and the scientific and technical implications 

of carbon sequestration.1 It shows that the amount of carbon stored globally in soils is 

much larger than the global carbon stock in vegetation,2 and that “changes in soil carbon 

stocks are at least as important for carbon budgets as changes in vegetation carbon 

stocks” (Watson et al., 2000: 26). Accordingly, attention must not only be given to 

afforestation, forest management and agro-forestry, but also to the various options of 

soil carbon sequestration. The latter can be used to partly reverse negative effects of 

cultivation and partly recover past losses of soil organic carbon (SOC) from agricultural 

land. Thus, soil carbon sequestration can enhance agricultural productivity in the long 

run and by this way particularly contribute to sustainable development in less developed 

countries (Robert, 2001; Lipper and Cavatassi, 2004).  

Various authors emphasise that farmers may benefit from providing sequestration 

services to private markets or government programs (Sandor and Skees, 1999; Marland 

et al., 2001a; McCarl and Schneider, 2001; Antle and Diagana, 2003; Young, 2003; 

Lehtonen et al., 2006). In addition, society might enjoy multiple side-benefits of soil 

carbon sequestration, such as improved water quality, biodiversity and landscape 

                                                 

1   To get a concise insight in the role of agriculture in the global carbon cycle, see also Lal (2004a, b). 

2   The ratio between the carbon stock in the soil and in vegetation ranges from 1:1 in tropical forests to 

5:1 in boreal forests, and it is much higher for grasslands, wetlands and croplands (Watson et al., 

2000: 4, 31). 
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amenities (McCarl and Schneider, 2001; Feng et al., 2004, 2007). Finally, different 

economic studies reveal that soil carbon sequestration through conservation tillage and 

land use change, respectively, can constitute a cost-effective option in a nation’s GHG 

mitigation portfolio with some considerable potential (e.g., Antle et al., 2001, 2003, 

2007; McCarl and Schneider, 2000, 2001; Pautsch et al., 2001). However, one 

important feature of soil carbon sequestration is largely neglected in existing studies. 

This is the non-linearity and saturation of the dynamic process of soil carbon 

accumulation and its impact on the net present value of a sequestration program. 

Related problems are the threat of future carbon releases and the question of 

permanence. 

The aim of this article is to investigate from an economic perspective the climate policy 

option of carbon sequestration in agricultural soils with special consideration of the 

dynamics and permanence issues. In particular, our focus is on the consequences for 

contract and policy design that follow from the non-linearity and saturation process. The 

remainder of the paper is organised as follows. Section 2 provides a brief overview of 

the prospects of soil carbon sequestration. Section 3 is devoted to an introduction of the 

economic allocation problem, incentive schemes and the cost of permanent 

sequestration. This is further developed in Section 4 with special consideration of the 

non-linearity in the sequestration process. Finally, Section 5 concludes with a general 

evaluation of soil carbon sequestration from an economic perspective. 

2 Prospects of soil carbon sequestration  

In contrast to carbon fixation by afforestation and improved forest management, the 

idea of carbon sequestration in agricultural soils only appeared in the economics 

literature in recent years. Following numerous scientific assessments,3 these studies 

have been motivated by the need to evaluate the feasibility and competitiveness of soil 

carbon sequestration from an economic perspective. They investigate the role which 

economic incentives could play in inducing farmers to adopt practices that would 

increase the amount of carbon in the soil. Such incentives could be given through direct 

government payments or private markets. In either case, contracts between buyers 
                                                 

3  See Watson et al. (2000) for an overview. 
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(emitters of GHGs) and sellers (farmers) of carbon sequestration services would specify 

the payment mechanisms and other terms for either a government program or carbon 

markets (Antle and McCarl, 2002).  

Candidate measures of soil carbon sequestration include conservation tillage, ley-arable 

farming, partial elimination of bare fallow, conversion of cropland to permanent 

grassland, and restoration of wetlands and organic soils (Watson et al., 2000, ch. 4; Lal, 

2004). Related flows and stocks of SOC are not uniform across geographical regions, 

but vary with soil types and climatic conditions. Correspondingly, the suitability of 

sequestration measures can be different from one location to another. For instance, 

conservation tillage is seen as the primary means for increasing soil carbon in Iowa 

(Pautsch et al., 2001), while conversion of cropland into permanent grass and 

elimination of bare fallow through continuous cropping are considered adequate for 

Montana (Antle et al., 2001). In the latter case, site-specific marginal sequestration costs 

range from 12 to 140 US$/t C for continuous cropping and from 50 to 500 US$/t C for 

conversion of cropland into permanent grassland.  

The difference in the cost of these two sequestration activities is primarily a 

consequence of differences in policy design, rather than due to an effective difference in 

marginal costs of sequestration. Under the continuous cropping scenario, farmers are 

assumed in the analysis of Antle et al. (2001) to receive payments on a per hectare basis 

only for fields switched to continuous cropping, whereas all cropland and pasture is 

assumed eligible for payments under the permanent grass scenario. In principle, this 

differentiation in eligibility has the same effect as the distinction between payments to 

all adopters of conservation tillage and payments to new adopters only that is made in 

the study of Pautsch et al. (2001). Their estimates of average sequestration costs in Iowa 

are much higher than those of Antle et al. for Montana. To a certain extent, this higher 

cost is a consequence of the initial adoption rate of conservation tillage, which was 

already above 60 percent in the reference year 1992. 

With a more comprehensive approach, using the integrated assessment model 

ASMGHG for the US agriculture and forestry sector, McCarl and Schneider (2001) 

show that the economic potential of carbon sequestration in agricultural soils largely 

exceeds the potential of abating methane and nitrous oxide emissions from US 
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agriculture. For carbon prices below 100 US$/t C, it also exceeds the potential of carbon 

sequestration through afforestation. Compared to cost estimates for non-agricultural 

compliance with a Kyoto-like target that averaged between 44 and 89 US$/t C, with a 

maximum estimate of 227 US$/t C (cf. McCarl and Schneider, 2001; Antle and McCarl, 

2002), these figures illustrate the competitiveness of agricultural soil C sequestration 

with other measures of GHG mitigation in the USA. Together with more recent studies 

of Antle et al. (2007) for the Upper Mississippi Basin and Feng et al. (2007) for the 

Central United States, these results indicate a large potential of soil carbon sequestration 

in the US that could be realised with rather moderate carbon prices. 

In contrast, Manley et al. (2005) conclude in a meta-analysis across 52 studies that “in 

most places creating carbon offsets by changing tillage practices is simply not cost-

effective.” Their results show a range of sequestration costs from a low of 1.94 US$/t C 

to well over 300 US$/t C, depending on region, crop grown and other factors. Thus, 

from an economic point of view, one cannot draw a general conclusion in favour or 

against soil carbon sequestration. Rather, situation factors must be taken into account. 

This is also supported by results from different European studies that reveal substantial 

differences in the cost-effectiveness of soil carbon sequestration in different countries.4 

Thus, the use of soil carbon sequestration as a GHG mitigation measure must be 

carefully evaluated from both scientific and economic perspectives. This particularly 

requires adequate consideration of the relevant geographical and political 

circumstances, and of the dynamic patterns of the sequestration processes. The latter 

restrict the sequestration potential of GHG mitigation for both biophysical and 

economic reasons. 

First, depending on the type of activity, the removal of atmospheric CO2 through 

sequestration may be offset by enhanced emissions of nitrous oxide (N2O) and methane 

(CH4). Increasing emissions of CH4 must particularly be expected following the 

restoration of cultivated peatlands, while the net GHG effect of conservation tillage 
                                                 

4   The various options and costs of GHG mitigation from agriculture have also been investigated in 

different European countries with the use of integrated assessment models, but with less emphasis on 

the examination of particular sequestration measures and without explicit assessment of marginal 

sequestration costs (e.g., De Cara and Jayet, 2000; Hartmann et al., 2008; Lehtonen et al., 2006). 



– 7 – 

might be reduced or even completely offset by additional N2O emissions due to higher 

residue returns and denitrification rates (Leifeld et al., 2003: 90; Li et al., 2005). In 

contrast, grassland extensification may be a promising option for reducing N2O 

emissions, while any extension of permanent grassland may induce CH4 emissions if the 

additional grass is fed to ruminants (Lehmann and Hediger, 2004). Thus, to 

comprehensively evaluate carbon sequestration potentials and agricultural GHG 

mitigation strategies it is important to take the various interdependencies of crop and 

livestock management into account (McCarl and Schneider, 2001; Hediger, 2006). 

Second, since carbon sequestration is a dynamic process of carbon accumulation in soils 

and biomass, special attention must be given to the issue of saturation and permanence. 

As emphasised in the IPCC special report, the rate of soil carbon sequestration 

following a particular change in land use or management practice cannot be sustained 

indefinitely. Rather, the temporal pattern of soil carbon accumulation can be represented 

as a non-linear process which describes the shift to a new equilibrium carbon stock 

above the initial level S0 that existed prior to adoption of a particular sequestration 

activity.  

S0

Ŝ

soil carbon stock

0 T̂ time

S  = S  + qt 0 t

t

average sequestration rate q

saturation point

 

Figure 1. The sequestration curve and average sequestration rate  
[Adapted from Watson et al. (2000: 201)] 
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In general, the rate of carbon gain following application of a given land use or 

management practice will decrease over time. Rates of change in the soil carbon stock 

observed during initial periods after adoption of sequestration activities are usually 

higher than the average rates that are generally reported by scientists (cf. Watson et al., 

2000), and decrease toward zero when saturation is achieved (West and Six, 2007). This 

process is illustrated in Figure 1 with the solid line representing the idealised 

accumulation curve, while the dashed line represents the simplified linear time path that 

implies the average rate of carbon sequestration q.  

Third, the issue of permanence is related to the fact that sequestered carbon in the soil 

constitutes a potential source and may be released again in the future if farmers would 

return to original land use and management practices (IPCC, 2000; Marland et al., 

2001a, b; Antle and McCarl, 2002; Feng et al., 2002; Vercammen, 2002; Antle and 

Diagana, 2003; Thomassin, 2003).5 For the design of an economically efficient policy, 

it is therefore essential to account for potential future releases of sequestered carbon and 

the opportunity cost of maintaining carbon in the soil. Correspondingly, the time 

horizon in economic analyses and contract design must be extended beyond the point of 

saturation. Moreover, the non-linearity of the carbon accumulation process must 

adequately be taken into account. This is investigated in the remainder of this paper, 

starting with a general representation of the allocation and incentive problem and a fist 

investigation into the cost of permanence using a simplified linear model. 

3 Economic incentives for soil carbon sequestration 

As mentioned above, the economic incentive problem can be formalised as a contract 

between buyers and sellers of carbon sequestration services. Such contracts are 

associated with two classes of costs: on-farm opportunity costs of sequestration and 

transaction costs (contracting and monitoring costs). The former depend on the 

opportunity cost of changing land use or management practices, divided by the rate of 

                                                 

5   See also Cacho et al. (2003) that provide a comprehensive analysis and comparison of carbon-

accounting methods in the context of carbon sequestration through reforestation. Further 

recommended reading on issues related to the accounting problem includes Murray et al. (2007) and 

Reilly and Asadoorian (2007). 
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soil carbon accumulation on a given piece of land. This cost is relevant for a farmer’s 

decision to adopt a particular land use or sequestration technique. The second class of 

costs consists of negotiation costs that are similar for different contract types, and 

monitoring costs that are presumably higher for per-ton contracts than per-hectare 

contracts.  

3.1 The farmers’ land allocation problem 

Following Antle et al. (2001, 2003) and Antle and McCarl (2002), a farmer’s decision 

problem can be formalised in terms of an economic allocation problem that maximises 

for each site the net present value of expected returns from a set of available production 

activities, using either a per-hectare or a per-ton payment scheme for carbon 

sequestration.  

3.1.1 Per-hectare payments 
For a contract with duration T years and constant annual per-hectare payment gis 

received for switching from management practice i to the sequestration activity s, a 

farmer’s decision problem is represented by 

 [ ] ]1[)1()1(max
11

xrxIgr
T

t

i
t

t
T

t

isiss
t

t

x
−++⎟

⎠

⎞
⎜
⎝

⎛ −++ ∑∑
=

−

=
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with r denoting his interest rate, and πi
t and πs

t the respective per-hectare profits of the 

two activities at time t. Moreover, x is the decision variable which takes the value x = 1 

for adoption of the sequestration activity or x = 0 for non-adoption. Iis represents the 

fixed cost per hectare of changing from system i to system s.  

To give a farmer an incentive to adopt the sequestration technique s, the annual per-

hectare payment must exceed the annuity value of the farmer’s overall period 

opportunity cost. In the special case with constant expected returns over time (πs
t ≡ πs 

and πi
t ≡ πi) and without fixed cost of changing practices, the condition for entering into 

a contract can be simplified to πs + gis > πi for all t. Rearranging, this inequality 

becomes 

 siisis cg ππ −=>  (2) 



– 10 – 

In this case, the farmer will benefit from the contract if his short-term opportunity cost 

of sequestration is less than the contract payment per period. This is a rule of thumb 

which only compares the variable cost of land use change per hectare and per year with 

the annual per-hectare compensation payment. It is used in similar form by Antle et al. 

(2001, 2003) and Pautsch et al. (2001) for the seek of tractability in empirical studies. 

Moreover, it can be taken as first step of an in-depth economic evaluation that uses less 

restrictive assumptions and takes a longer time horizon into account. 

3.1.2 Per-ton payments 
In case of a contract with payments per ton of carbon sequestered, the following 

equality holds for the carbon price p: 6 

 isis qgp =  (3) 

Here, qis denotes the average annual increment of soil carbon that can be realised with 

sequestration technique s until the level of saturation of soil carbon is achieved. 

Apparently, this implies that the contract duration cannot exceed saturation time, and 

therefore particularly involves the prospective problem of permanence. The condition 

for participation in the program is 

 ( ) isisissi qcqp =π−π>  (4) 

In other words, the farmer has an incentive to accept the contract when the price per ton 

of carbon is greater than the short-term farm opportunity cost per ton of carbon 

sequestered, given the above assumptions.  

3.2 The cost of permanent sequestration 

With the payment schemes considered so far, farmers would have no incentive to 

maintaining the sequestered carbon in the soil beyond the end of the contract. Rather, 

permanent sequestration would require a contract offered to farmers which would 

establish continuous responsibility for sequestered carbon and provide adequate 

incentives. In principle, this could be realised through a rental contract with credits 

assigned when carbon is sequestered and debits accruing when carbon is emitted 
                                                 

6   We still assume constant expected returns, and the absence of fixed costs for switching from system i 

to system s. 
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(Marland et al., 2001b), or through an extension of the above per-hectare contract with 

compensation for the variable incremental cost granted as long as the sequestration 

practice is applied. 

To formally analyse the latter case, we extend the above analysis from a fixed to infinite 

time horizon. We assume again constant expected returns, but restrict our analysis to 

one single sequestration technology (land use or management practice). 

Correspondingly, we can omit the time index and the indices for different practices. 

Using a simplified notation from equation (2), the farmer’s short-term per-hectare 

opportunity cost of carbon sequestration is defined c = πi – πs
. This is the difference 

between the expected returns per hectare between the two practices. The fixed cost for 

changing practice is again denoted by I, and r represents the farmer’s interest rate. 

Assuming a constant annual per-hectare payment g∝ provided for application of a given 

sequestration practice, the net present value of a contract for permanent sequestration is 

 [ ] I
r

cgIrcgNPV
t

t
PS −

−
=−+−= ∞

∞

=

−
∞∞ ∑

1
)( )1(  (5)  

The contract would be acceptable to a farmer if this value is positive. This formally 

requires a payment stream that compensates at any time the incremental cost of 

cultivation plus the annualised capital cost:  g∝ ≥ c + rI.  

The same outcome could theoretically be achieved with a payment for each additional 

ton of carbon sequestered. This would be directly compatible with a carbon tax or a 

system of tradable carbon permits. In this case, the contract would commit the farmer to 

permanent sequestration, but only provide payments until saturation of soil carbon is 

achieved at time T̂ . Assuming a constant payment p per ton of carbon, a constant rate 

of sequestration q > 0 for the sequestration period, and no further addition to the stock 

of soil carbon afterwards, the net present value of this contract is 
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r
cTrpqDIrcrpqNPV

t

t
T

t

t
PST −−=−+−+= ∑∑

∞

=

−

=

− )ˆ,()1()1(
1

ˆ

1
)(  (6)  

with 

 
r

rrTrD
TT

t

t
ˆˆ

1

)1(1)1()ˆ,(
−

=

− +−
=+= ∑  (7)  



– 12 – 

To compensate the farmer for the total cost of sequestration, (c/r) + I, the annual 

payment pq granted for any addition to the soil carbon stock must be higher than the 

minimum annual per-hectare payment required in a contract with limited duration: 

 rIc
r

rIc
TrrD

rIcpq
T

+>
+−

+
=

+
≥

− ˆ)1(1)ˆ,(
 (8)  

Thus, in the short term, the seller of the contract faces higher cost in case of per-ton 

payments than in the case with per-hectare payments. However, the net present value of 

total payments is in principle the same for both payment schemes: 

 ∑∑
∞

−− +=≡
+
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ˆ

0
)1()ˆ,()1( t

T
t rg

r
g

r
rIcTrpqDrpq  (9)  

with gmin denoting the minimum rate of payment required under the per-hectare scheme: 

gmin ≡ arg min {g∝} = c + rI.  

Hence, permanent sequestration can be achieved with either a contract that pays a 

farmer on a per-hectare or per-ton basis. It would, however, require higher annual 

payments and imply higher costs to the sellers of contracts than in the restricted static 

case presented in Subsection 3.1, where the challenge of permanence is not formally 

addressed. Moreover, our analysis has been restricted so far to the linear case that only 

considers the average rate of sequestration. Yet, to effectively assess the economic 

potential of carbon sequestration in agricultural soils and investigate the economic 

efficiency of alternative policies or contracts for soil carbon sequestration, one should 

further take into account the non-linearity and saturation of the sequestration process.  

4 Economic efficiency and the dynamics of sequestration 

Investigating the role of spatial heterogeneity, Antle et al. (2003) show that, for some 

agro-ecozones, the marginal cost of soil carbon sequestered under contracts with per-

hectare payments can be as much as five times higher than the marginal cost in case of 

contracts that provide payments per ton of carbon sequestered. On this basis, they 

conclude that contracting parties could afford to bear a significant cost (monitoring cost) 

to implement the per-ton contract in more spatially heterogeneous regions and still 

achieve a lower total cost per ton of soil carbon sequestered than would be possible with 

a per-hectare contract. This confirms the relative inefficiency of per-hectare payments 



– 13 – 

for carbon sequestration in the presence of spatial heterogeneity, and provides an 

efficiency-based argument for the use of per-ton contracts. The latter would be directly 

compatible with tradable carbon permits and other efficiency-oriented government 

programs to mitigating greenhouse gas emissions. Therefore, we only consider per-ton 

payments in our further analysis of economic efficiency and dynamics of soil carbon 

sequestration. In principle, this requires a comparison of different GHG mitigation 

options with respect to their marginal cost per ton of carbon equivalent. Moreover, the 

analysis must be based on consideration of effective rates of sequestration, rather than 

average rates. Using the latter would not in general lead to an economically efficient 

outcome.  

Since soil carbon accumulation is a non-linear process of transition between two 

equilibria, effective rates of soil carbon sequestration are not constant over time. As 

drawn in Figure 1, sequestration rates are usually higher at initial stages of the 

sequestration process and decline with soil carbon accumulation over time. Formally, 

this process can be represented for a given site as follows: 
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 (10)  

where St denotes the current soil carbon stock at time t, S0 the initial equilibrium stock at 

time t = 0, Ŝ  the level of saturation that would be achieved at saturation time T̂ , and 

φ(St) the effective sequestration rate at time t. 

The decline of the sequestration rate with the stock of soil carbon is also crucial from an 

economic efficiency point of view. The instantaneous payment which a farmer should 

receive for sequestering carbon under this regard is state and time dependent:7 

 )( ttt Spg φ=  (11)  

                                                 

7   This corresponds to the equality in equation (3), but assumes a state-dependent sequestration rate 

φ(St) rather than the constant rate q. 
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Hence, the incentive to sustain the sequestration process and permanently maintain 

carbon in the soil may diminish with the accumulation process. To further examine this 

issue, we first analyse the concave problem without a penalty for future carbon releases. 

Then, we introduce a charge for carbon releases and furthermore examine the effect of 

an increasing carbon price.  

4.1 Optimal sequestration without penalty for releasing carbon 

To investigate the impact of declining rates of soil carbon accumulation upon a farmer’s 

optimal choice, we first consider a contract with flexible terminal time, which grants 

him a fixed and constant price p per ton of effectively sequestered carbon but not 

charges him for the subsequent release. In analogy to Section 3, we furthermore assume 

constant expected returns over time and constant marginal cost of sequestration per 

hectare c. But, as an extension of the above model, we consider the non-linear 

sequestration function of equation (10). Consequently, the net present value of the 

contract to an individual farmer is: 

 [ ] IdtcSpeV
xT

t
rtx −−= ∫ −

0
0 )(φ  (12)  

In this case, the farmer’s decision is not only about the adoption of a particular 

sequestration practice, but also about the optimal time horizon Tx. Formally, the latter is 

determined by 

 [ ] 0)(0 =−= − cSpe
dT
dV x

T
rT

x

x
x

φ  (13)  

with ).( xx
T TSS =  

Hence, at the optimal terminal time, the rate of sequestration (the slope of the 

sequestration curve in Figure 1) must be strictly positive: 

 0)( >=
p
cS x

Tφ  (14)  

Thus, it would be optimal from a farmer’s perspective to terminate the contract at time 

TT x ˆ< , this is before saturation of the soil carbon stock is achieved ( SS x
T

ˆ< ). In other 
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words, farmers might be given an incentive to stop sequestration before the saturation 

point is reached. 

This conclusion does not fundamentally change, if the carbon price is not constant. 

Rather, if it increases over time at a rate α > 0, such that the instantaneous price is 

pt = peαt, the net present value of the contract to an individual farmer is: 
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with xT~  and x
TS~  denoting the optimal terminal time and terminal stock in this modified 

case. 

From equation (16) we get x
T

x
T SS >~  and xx TT >~  for α > 0, and vice versa for α < 0. 

Thus, the optimal terminal point to the farmer is postponed to higher levels of soil 

carbon for increasing carbon prices (α > 0), while the economic sequestration period 

would be curtailed and the maximum stock of soil carbon be lowered in the case with 

declining carbon prices (α < 0) but without a charge for released amounts of carbon. 

In short, our analysis of the case without for the release of sequestered carbon shows 

that it would be optimal from a farmer’s perspective to terminate the contract before the 

saturation point is achieved and return to the original land use and management practice. 

However, this is not efficient from a social point of view, since economic efficiency 

also requires charging farmers for the release of carbon, rather than solely paying 

(subsidising) them for the absorption of carbon dioxide from the atmosphere and 

sequestering carbon in their soils.  

4.2 Optimal sequestration if future carbon release is charged 

If farmers would be charged a penalty for the release of sequestered carbon, then the 

above result changes. To investigate this effect, we first assume a contract paying a 

farmer a fixed price p per ton of carbon sequestered through conservation tillage, for 

instance, and charging him the same price per ton C for any future release of soil carbon 
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that results from ploughing after a sequestration period of duration TT ˆ
0 ≤ . In this case, 

the net present value of the contract for the first “sequestration-tillage rotation” is 

 [ ] To
Tr

T

t
rt pXeIdtcSpeV )1(

0

*
0

0

0

)( +−− −−−= ∫ φ  (17)  

with XTo denoting the amount of carbon released from the soil due one-time tillage at 

the end of the sequestration period. 

Through the tillage of the soil and release of carbon, the farmer brings himself in the 

position to enter a new sequestration contract at time T0+1 for which the same logic 

applies as above. Accordingly, a rational farmer would be advised to maximise not only 

the net present value V0
* of the first sequestration-tillage sequence, but also to take into 

account the net present value of future sequestration-tillage sequences n = 1,…, ∝: 
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t
rt

n pXedtcSpeV n
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)1(

0

* )( +−− −−= ∫ φ  (18)  

with Tn denoting the optimal duration of the nth sequestration contract and XTn the 

amount of carbon that would be released in case of tillage at the end of the nth 

sequence. 

Crucial for determining the optimal duration of a sequestration contract are the values of 

p, c, I and r but also the sequestration function φ(S) and the carbon-release rate XTn. If 

the latter would be zero, we could simply apply the case presented in the previous 

subsection. However, the occasional tillage of agricultural soils may result in a partial 

loss of the previously sequestered carbon. Quincke et al. (2007), for instance, report on 

different results found in the literature ranging from complete loss of the sequestered 

carbon due to a one-time inversion tillage operation (e.g. Stockfish et al., 1999) to the 

observation that tillage did not cause significant losses of total or labile soil organic 

carbon. 
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4.2.1 Complete loss of the sequestered carbon 
For analytical purposes and mathematical tractability, we start with the simplifying 

assumption that the sequestered carbon will be completely released due to one-time 

tillage at the end of each sequestration contract:8  

 0
*

0
*

*

)( SSdtSX T

T

tT −== ∫φ        with   )( ** TSST =  (19)  

In this stylised case, each new contract has the same length T* and the same value 

V* = Vn
* = V0

* – I at the beginning of each contract period. Thus, the net present value of 

the infinite sequence with sequestration-tillage rotation, assuming a constant carbon 

price p, is: 
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Following simple transformation, this results in  
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Accordingly, the farmer could accept the contract if the NPV > 0, which is the case only 

if the value of a single rotation V* exceeds the fixed cost I by the factor (1 – e–r(T*+1)). 

Yet, the value V* is not exogenous. Rather, it is the result of the economic optimisation 

process which is to determine the optimal length of the sequestration contract and the 

optimal tillage time T*. The corresponding first-order optimality condition is:  
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which results in 
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Using 

                                                 

8  This assumption will be relaxed in the next subsection. 
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it furthermore follows for the simplified case represented in equation (19): 

 [ ]
)1(

*

0
**

*

1
)()1(

+−

−
−−

−
=−+−−

Tr

r

T
r

T
r

e
VreSSprecSpe φ   (25) 

and consequently 
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Optimal tillage time is given if the farmer’s capitalised instantaneous opportunity cost 

of tillage equalizes the total value of the contract, net of the initial investment cost. At 

this instance in time, the farmer would not only have to pay the charge ][ 0
* SSp T −  for 

releasing carbon, but should also take into account the total value of foregone net 

revenue from sequestration due to postponing this event by one more period.9  

Furthermore, the optimal rate of sequestration at terminal time T* is  
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Taking into consideration that the rate of sequestration is declining with the stock of soil 

carbon S,10 it would be optimal for a farmer to sequester carbon in the soil as long as 

long as the current rate of sequestration φ(St) exceeds the optimal rate φ(ST
*), that is, as 

long as φ(St) > φ(ST
*). In contrast, it would be optimal to interrupt sequestration if 

equation (27) is satisfied and if the net present value, e–rV*/(1–e–r(T*+1)), of all the 

subsequent sequestration-tillage sequences exceeds the penalty for releasing carbon,  

e–rp[ST
* – S0]. In this case, it is optimal for the farmer to till the soil and, one period later, 

to restart the cyclical process with sequestration and tillage, as illustrated in Figure 2.  

                                                 

9  The latter is represented by the first term on the LHS in equation (26). 

10  Cf. equation (10). 
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Figure 2. Cyclical pattern of a sequestration-tillage rotation – illustration assuming a 

constant carbon price and complete release of sequestered carbon 

Compared to the situation without penalty for releasing carbon, the optimal tillage time 

T* is earlier than in the case without penalty for releasing carbon (Section 4.1); i.e. 

T* < Tx. This is due to the fact that because of pcpec r /])1/[( >− −  and 

[ ] 0)1/( 0
*)1(* *

>−−− +− SSpeV T
Tr  we have pcSS x

TT /)()( * => φφ  and thus x
TT SS <* .11 

4.2.2 Partial loss of the sequestered carbon 
Qualitatively, the above result remains the same if we relax the simplifying assumption 

of the complete loss of the sequestered carbon due to one-time tillage. Instead, we 

assume that only a fraction 0 < β < 1 is effectively lost to the atmosphere. As a 

consequence, the penalty for releasing carbon is lower than in the previous case, such 

that equation (17) changes to 
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11  Cf. equation (14). 
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with **
0T  denoting the optimal terminal time of the first rotation in the case with β < 1. 

Moreover, equation (20) is replaced by  
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The latter denotes the net present value of the infinite sequestration-tillage rotation at 

time 1**
0 +T , and **

nT  and **
nV  the optimal length and value of the nth rotation. The 

value of this rotation (contract), with XTn denoting the amount of carbon released in case 

of one-time tillage, is  
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Hence, the optimal duration of the first rotation is determined by the first-order 

condition 
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while according to equation (31), 0/ **
01 =dTdNPV .  

Thus, equation (32) can be replaced by 
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Figure 3. Optimal sequestration-tillage rotation when only a fraction of the sequestered 

carbon is released due to one-time tillage at the end of each rotation 

Accordingly, the optimal rate of soil carbon sequestration at the terminal time of the 

first rotation period is given by 
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Depending on the different price and parameter values, this rate can be larger or smaller 

than the optimal rate )( *
TSφ  in the previous case, where we assumed complete release of 

the sequestered carbon after tillage; i.e. β = 1. In other words, it is an empirical question 

whether the sequestration period is made longer or shorter and whether the maximum 

stock of soil carbon is larger or small for lower values of β. Moreover, the optimal 

rotation period can no longer be assumed constant if β < 1, such as illustrated in Figure 

3 for the case with a constant carbon price p. 

Since β < 1 signifies that only some of the previously sequestered carbon would be 

released under the plough, for every rotation, the initial stock of soil carbon for re-

contracting must be higher than it was at the beginning of the preceding sequestration 
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contract. Hence, the optimal sequestration time must become shorter from one rotation 

to the next. According to equation (35), it is indirectly determined for the nth rotation by 

the optimal sequestration rate at the end of this rotation in the general form 
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Given the fact that the optimal values for the nth rotation depend on the NPV of all the 

subsequent rotations, we get an infinite sequence of recursive dynamic equations. Thus, 

to numerically solve this problem suitable algorithms and adequate empirical date about 

the sequestration process and release rate will be required. 

Since it would only be rational for a farmer to follow a sequestration-tillage rotation if 

the net present value of all the future rotations exceeds the instantaneous penalty for 

releasing carbon in case of tilling the soil, we have  

 )()( ** x
TTn S

p
cS φφ =>  (37)  

Thus, the optimal rate of carbon sequestration at terminal time is larger under a contract 

that charges the farmer for releasing carbon than under a contract that does not involve 

any penalty. Accordingly, charging farmers for the release of carbon results in a lower 

stock of soil carbon before tillage and a shorter duration of an optimal contract. 

4.2.3 The effect of charging farmers for the release of sequestered carbon 

Altogether, we can remark that, even if a farmer would be charged for the release of 

sequestered soil carbon, it can be optimal to accept a contract that pays him for the 

additional amounts of soil carbon accumulated in course of time. However, the optimal 

duration of a sequestration interval – that is the time period until the first interruption of 

the sequestration process by tilling the soil, for instance – is shorter than in the case that 

only paid farmers for sequestration but would not charge them for the carbon releases. 

This follows from the fact that the expression on the RHS in equations (27) and (36) are 

both larger than the relative sequestration price c/p, which determined the optimal 

sequestration level in the previous case without penalty for releasing carbon.  
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Consequently, the optimal stock of soil carbon at the end of the sequestration phase is 

smaller if farmers are charged for the release of carbon than under a contract that only 

subsidises farmers for sequestration. Moreover, a contract that compensates farmers for 

carbon sequestration and charges them for subsequent release provides an incentive to 

restart sequestration at the end of each cycle, such a visualised in Figures 2 and 3. Thus, 

an optimal sequestration contract can be designed with a flexible terminal time that is 

implicitly determined by optimal tillage time. Subsequently a new contract can start. 

Paying and charging farmers according to the absorption or emission of carbon, 

respectively, such a contract is in principle compatible with carbon trading schemes that 

determine market prices or carbon tax schemes that use intertemporal efficiency prices. 

4.3 Optimal sequestration with an increasing carbon price  

Since carbon accumulation and mitigation are a dynamic processes that imply gradual 

changes of relative scarcities over time, the carbon price will hardly remain constant 

(Falk and Mendelsohn, 1993; Sohngen and Mendelsohn, 2003; Veld and Plantinga, 

2005). Rather, to ensure intertemporal efficiency, the carbon price must increase over 

time at a rate that can be referred to as “carbon discount rate”, an extension of the social 

utility discount rate which also accounts for the rates of technical progress and 

disappearance of atmospheric GHGs (Nordhaus, 1982).  

To cope with this issue, we extend our analysis and let the carbon price exponentially 

increase over time. For simplicity, we assume that the rate of increase is equal to the 

discount rate r, and set pt = pert. The fraction of sequestered carbon that would be 

instantaneously released through one-time tillage is again denoted by β, with 0 < β ≤ 1. 

Accordingly, the net present value of the first “sequestration-tillage cycle” changes to 
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 (38)  

This value does not remain the same for each rotation. Rather, due to the rising carbon 

price, it increases over time. Assuming here for simplicity that the rotation lengths 
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remain unchanged (i.e., ** ~~
nTT =  for all n), which is the case for β = 1, the value of the 

n+1st sequestration cycle starting at )1~( * +Tn  writes as follows: 
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With a rising carbon price and constant sequestration cost, it becomes increasingly 

beneficial to a farmer if he accepts the contract, even if he is charged for the release of 

carbon at the end of the rotation. However, this does not imply that a farmer must 

initially accept the sequestration contract. Rather, he may reasonably wait until the net 

present value of the first effective rotation exceeds the initial cost. In other words, he 

might reject any contract until the net payoff in the first sequestration phase covers the 

initial cost.12  

For convenience, we define the point in time where the first accepted contract starts by 

t = 0, and the corresponding price by p0 = p. Thus, the entry condition in the first period 

is 0~)]1~(exp[~~
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Moreover, the optimal length of the first sequestration phase is determined by  
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Rearranging this equation, we get the optimal rate of sequestration at terminal time *~T  

of the first rotation:  
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12  Notice that the farmer would not accept the contract if the carbon price increases at a rate above his 

discount rate: α > r. As shown in the Appendix A, this would strictly result in a negative net present 

value of the contract. 
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Given equation (39) and thus  
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The optimal rate at the end of the n+1st rotation is smaller than in the first rotation:13 
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Accordingly, under the above assumptions, the optimal terminal stock *~
TnS  increases 

from rotation to rotation, such that a continuous increase of the carbon price over time 

may bring about a gradual approach of the saturation level. However, given the non-

linearity of the sequestration curve, the saturation level Ŝ  will never be achieved nor 

will the sequestered carbon be permanently kept in the soil as the optimal solution. 

Rather, a cyclical pattern with an extended sequestration period and one-time tillage at 

the end of the contract proves to be optimal, once the value of the contract in the initial 

phase exceeds the initial cost. Afterwards, it will be optimal for a farmer to repeatedly 

accept a new contract that pays him for sequestration and implies a charge for carbon 

release at the end of each rotation.  

Altogether, a continuous increase of the carbon price, such as suggested from economic 

theory (cf. Nordhaus, 1982), does not result in permanent sequestration of carbon in the 

soil, if incentive payments are required to initiate land use or practice change. But, it 

makes soil carbon sequestration increasingly attractive to farmers and gradually extends 

the length of the sequestration period and the maximum stock of soil carbon. However, 

it does not eliminate the incentive for periodical tillage and release of some fraction of 

the sequestered carbon.  

5 Conclusion 
The use of biological sinks for GHG mitigation is limited by natural and economic 

forces. These include the non-linearity and saturation of the dynamic process of carbon 

                                                 

13  The results in Appendix B show that this result ist he most likely to hold also fort he more general 

case with β < 1. 
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accumulation in the soil, which implies changes in relative costs and benefits of carbon 

offsets and embraces the problem of permanence, that is, the maintenance of the 

sequestered carbon in the soil. Like the sequestration process, permanence cannot in 

general be achieved without adequate incentives, such as payments that induce farmers 

to alter their land use and management decisions in order to increase the carbon content 

in their soils. Thus, the problem of saturation and permanence is not only relevant from 

a scientific and political point of view but especially from an economic perspective. 

First, carbon sequestration is a problem of cost sharing and efficiency. An incentive 

scheme with permanent payment to maintain saturated carbon sinks over time would be 

extremely costly to society. Furthermore, economic efficiency requires that subsidies or 

compensation payments granted for sequestering additional amounts of carbon must be 

stopped at the latest when the level of saturation is reached. This would give farmers an 

instantaneous inducement to change behaviour and reverse the sequestration effect 

again, as soon as the payments are stopped. As a consequence, a major part of the 

sequestered carbon would be released into the atmosphere. In other words, permanence 

can hardly be achieved in the strict sense that the stock of carbon in the soil is 

permanently maintained at an increased equilibrium level. Rather, the theoretical 

analysis in this article proves that a cyclical behaviour with an infinite rotation of 

sequestration and periodical tillage might be economically efficient, both from a 

farmer’s and societal point of view.14 

Second, carbon sequestration is a non-linear process with declining rates of soil carbon 

accumulation. An incentive scheme that aims at achieving economic efficiency 

therefore should grant payments according to these effective rates. As a consequence, a 

farmer’s decision is not only about the adoption of a particular sequestration practice, 

but also about the optimal terminal time of the individual sequestration program 

(contract). With positive marginal cost of sequestration, optimal timing always implies a 

positive rate of sequestration and a termination of the sequestration before the saturation 

level is reached, irrespective on whether farmers are charged for the release of 
                                                 

14  Notice that there are also scientific reasons for cyclical behaviour. It may, for instance, be necessary 

to periodically plough no-till soils to redistribute surface accumulations of phosphorus throughout the 

root zone (Sharpley et al., 1994). 
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sequestered carbon or not. But, when farmers are charged for the release of carbon, it 

would be optimal for them to till the soil at the optimal terminal time, pay the charge for 

the released amount of carbon, and then enter a new sequestration phase where they can 

receive sequestration payments again.  

Third, to ensure intertemporal efficiency, the carbon price must increase over time at a 

rate which is equal to the “social carbon discount rate”. In this case, it could be optimal 

for a farmer to postpone the acceptance of a sequestration contract until the moment 

where the net present value of the first sequestration period exceeds the initial cost. 

Afterwards, a cyclical pattern with sequestration and tillage will be optimal for him, 

even if he is charged for the release of carbon. Moreover, the increasing carbon price 

induces an extension of the duration of the sequestration period from one rotation to the 

next. However, for efficiency reasons, the maximum stock of carbon in the soil remains 

always below the saturation level. This must be taken into consideration when assessing 

sequestration potentials in agricultural soils and designing policies to provide adequate 

incentives to farmers in order to alter their land use and management practices with the 

intention to foster GHG mitigation through soil carbon sequestration.  

Altogether, it must be emphasised that, in general, permanence of soil carbon 

sequestration can only be achieved in a weaker sense that soil carbon is accumulated to 

an economically optimal level and, following perturbations (periodical release of 

sequestered carbon), achieved again at the end of each cycle of rotation, but not 

maintained intact over time. The optimal level that is periodically attained with a 

particular sequestration practice is below the maximum level of saturation, but 

increasing over time if the carbon price increases at a rate which is not above the 

farmers’ discount rate. Thus, the economic sequestration potential is restricted by the 

competing uses of agricultural land and due to the non-linearity and saturation of the 

carbon accumulation process in the soil. This must, in particular, be taken into 

consideration when designing policy schemes that aim at inducing an economically 

optimal portfolio of GHG mitigation measures.  
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Appendix A 
If we shall assume that the carbon price increases over time at a rate α > r then the 

equivalent of equation (38) is 
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Since α > r, it is 0][ )1~)(()( *
0 <− +−− Trtr ee αα for all ]~,0[ *

0Tt ∈ . Consequently, we get 

0~*
0 <V , saying that the net present value of the sequestration program in equation (A1) 

is negative.  

In contrast, if we assume α < r,  
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can either be positive or negative, depending on the relative prices and parameter 
values. 
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Appendix B 
If we relax the assumption of a fixed duration of the different sequestration periods, 

equation (39) changes to 
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As a consequence, 0~/~ *
01 >VdVPdN , such that the first-order condition for the first 

rotation is  
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Accordingly, we get 
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Accordingly, we get 
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Assuming that the costs and benefits of postponing tillage by one time unit remains the 

same from one rotation to the next, the optimal rate of carbon sequestration at the 

terminal time of each rotation increases over time and the maximum stock of soil carbon 

gradually approaches the level of saturation. However, there is always an incentive for 

periodical tillage, such that permanence in the strict sense cannot be achieved. 


