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Nonlinearities in the World Vegetable Oil Price System:

El Niño Effects

David Ubilava† Matthew T. Holt‡

Abstract

In this research we estimate the effect of El Niño Southern Oscillation (ENSO) over

time on market dynamics for eight major vegetable oil prices. We estimate a system

for vegetable oil prices by using a smooth transition vector error correction model

(STVECM) to analyze impacts of ENSO events on production, and, more interest-

ingly, their asymmetric nature. The results of estimated Exponential STVECM and

Quadratic STAR models, respectively for the system of oil price equations and the

ENSO variable regressions, suggest a smooth transition between ENSO regimes, and

provide a better overall fit to the data than do linear models. Effects of the ENSO

shock are analyzed using generalized impulse-response functions (GIRFs). The non-

linear nature of these shocks is apparent, as the GIRFs are observed to be asymmetric

depending on whether ENSO shocks are positive or negative. For most vegetable oil

prices an ENSO shock has a permanent effect, meaning that prices advance to a new

equilibrium level. Generally, a positive ENSO shock results in increased prices, and

the opposite is true for the negative ENSO shock. The magnitude of the price change

is largest for the coconut oil and palm kernel oil, and is the smallest for the ground nut

oil. Also, it takes approximately two years for prices to stabilize at a new equilibrium

level after the shock.
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1 Introduction

The role of weather conditions (climate anomalies) in agricultural commodity production

and prices has long been of interest. Indeed, it is highly likely that for as long as mankind

has engaged in the cultivation of crops for food and fiber consumption that there has been

a keen recognition of the role of weather in food prices, production, and availability. For

example, Lamb (1995) provides evidence of extreme price spikes for cereal grains in Northern

and Western Europe during the worst years of the Little Ice Age, a period that was often

associated with extremely poor growing conditions and encompassed effectively all of the

16th and 17th centuries. Likewise, Temin (2002) has linked prices for various commodities in

ancient Babylon including, for example, barley and mustard, to seasonal growing conditions.

And of course more recently various authors have examined the role of weather events and

climate change on crop yields, land prices, and profitability. See, for example, Schlenker

and Roberts (2006) for some comprehensive empirical work on the effects of weather on corn

yields as well as a a recent literature review.

Aside from the obvious connections between rainfall and temperature on crop yields

and prices, there is budding interest in the role of role of major climate anomalies on the

performance of various economic variables. In part this interest stems from the growing

recognition that even local growing conditions may be affected by large–scale climate events.

To this end several studies have found statistically significant correlations between climatic

events and economic behavior. See, for example, Handler and Handler (1983), Debelle and

Stevens (1995), Solow et al. (1998), and Hansen et al. (1998). In recent years there has

been specific attention paid to the relationship between the El Niño Southern Oscillation

(ENSO) phenomena and commodity price movements as in, for example, Keppenne (1995),

Letson and McCullough (2001), and Brunner (2002). In this research we estimate the effect of

ENSO over time on market dynamics for eight major vegetable oil prices: soybean, sunflower

seed, groundnut, coconut, palm kernel, palm, cottonseed, and rapeseed. While these oils are

by no means perfect substitutes in consumption, they share many similar qualities, such

as their use in food preperation, soap production, manufacturing of paints and medicines,

and, more recently, in bio-fuel production. As a result there is a reasonably high degree of

substitutability among these oils, the result being that vegetable oil prices are likely to be

highly interlinked, at least, in the long run if not in the short run In and Inder (1997).

El Niño events are linked to oscillations of the ocean–atmosphere system in the tropical

Pacific ocean, which in turn are identified with significant consequences for global weather

conditions. In normal conditions the trade winds blow west across the tropical Pacific.
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During El Niño events the trade winds weaken in the central and western Pacific leading to

a depression of the thermocline in the eastern Pacific, and an elevation of the thermocline in

the west, which results in anomalously warm sea surface temperatures interacting with the

air above it in the eastern and central Pacific Ocean. Apparent consequences of ENSO events

are increased rainfall across the southern tier of the U.S. and in Peru, and drought in the

Western Pacific region. The counterpart of El Niño is La Niña, which, on the other hand, is

associated with very intense trade winds, and colder–than–normal sea surface temperatures

in the region. The whole El Niño – La Niña – El Niño cycle generally takes approximately

four years, and may range between two and seven years. Taken together, this systematic

fluctuation between El Niño – La Niña events defines the El Niño Southern Oscillation, or

ENSO. These effects were first identified in the early 1920s by Sir Gilbert Thomas Walker

(Walker, 1923), who eventually coined the phrase “Southern Oscillation.”

There is substantial evidence that ENSO events have significant impacts on the produc-

tion and prices for vegetable oils, and most notably for those produced in the Philippines

and elsewhere in South Asia (e.g., palm oil and palm kernel oil). For example, a strong El

Niño event typically results in drought in the Western Pacific region, which in turn curtails

production of palm and palm kernel oil. In turn these price shocks will eventually impact

the demands for close substitutes including soy oil, sunflower oil, and so forth. Therefore,

there is reason to believe that ENSO events will have a an influence and perhaps a marked

influence on market prices for vegetable oils, at least in the short run and perhaps even in the

intermediate term. This later observation suggests that linear models, for example, standard

Vector Autoregressions (VAR) or Vector Error Correction Models (VECM) may not be the

first tools of choice to examine relationships between ENSO and vegetable oils prices; these

models imply symmetric adjustments, that is, a positive shock (El Niño) is the mirror image

of a negative shock (La Niña). The implication is that models which allow for the possibility

of asymmetric adjustments may be preferred.

It is also reasonable to conjecture that responses to ENSO shocks are asymmetric–a

strong El Niño event may result in price dynamics for vegetable oils that are very different

than, say, those associated with a strong La Niña event. This later observation suggests

that linear models, for example, standard Vector Autoregressions (VAR) or Vector Error

Correction Models (VECM) may not be the first tools of choice to examine relationships

between ENSO and vegetable oils prices; these models imply symmetric adjustments, that

is, a positive shock (El Niño) is the mirror image of a negative shock (La Niña). The

implication is that models which allow for the possibility of asymmetric adjustments may be
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preferred. We propose to examine these relationships in considerable detail here.

We estimate the system of vegetable oil price time series using the smooth transition

autoregressive version of the vector error correction model. Results of specification tests

support an exponential STVECM and a quadratic STAR model for the system of oil price

equations and the ENSO regressions, respectively. Moreover, the model estimates for the

STVECM do indeed suggest a smooth transition between regimes. As well, the non–linear

models provide a better overall fit to the data than do linear models. Effects of the ENSO

shock are analyzed using generalized impulse-response functions (GIRFs). The non–linear

nature of these shocks is apparent, as the GIRFs are observed to be asymmetric depending on

whether ENSO shocks are positive or negative. For most vegetable oil prices an ENSO shock

has a permanent effect, meaning that prices advance to a new equilibrium level. Generally,

a positive ENSO shock results in increased prices while the opposite is true for a negative

shock. The magnitude of the price change is largest for coconut and palm kernel oil, and is

smallest for ground nut oil. Also, it takes approximately two years for prices to stabilize at

a new equilibrium level after the shock.

2 Econometric Framework

In this section we outline the econometric approach used here to investigate the potential

relationship between ENSO events and commodity prices, as well as the possible asymmetry

that exists between the sign/magnitude of these shocks and their resulting price impacts.

We begin by focusing on linear modeling techniques for systems of equations, most notably,

VARs and VECMs. We then turn our attention to the family of smooth transition models

including smooth transition vector error correction models (STVECMs).

2.1 Vector Error Correction Model

The n-equation vector autoregressive (VAR) model of order p and can be expressed as:

Xt =

p∑
i=1

ΠiXt−i + µ+ ΦZt + εt, t = 1, . . . , T (1)

where Xt−i (i = 0, . . . , p) are n × 1 vectors of dependent variables; Zt is a m × 1 vector of

exogenous variables and/or seasonal dummies, and εt is a n×1 vector of white noise process

with positive definite covariance matrix Σ. Πi are n×n matrices, µ is a n×1 vector, and Φ is
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a n×m matrix of parameters to be estimated. This also can be rewritten in a first-difference

form as:

∆Xt =

p−1∑
i

Γi∆Xt−i + ΠXt−1 + µ+ ΦZt + εt (2)

where

Γi = − (Πi+1 + . . .+ Πp) , i = 1, . . . , p− 1

Π = − (I − Π1 − ...− Πp)

Here Π is a matrix of coefficients that potentially contains the information about the rela-

tionships between the variables in the system. Depending on a rank of Π matrix there may

be three possible outcomes: 1) Rank (Π) = n, indicating that Π is a full-rank matrix, and

the vector process xt is stationary; 2) Rank (Π) = 0, indicating that Π is a null matrix,

and Equation 2 is a traditional differenced VAR model; and 3) Rank (Π) = r, 0 < r < n,

indicating that there are n × r matrices α and β, such that αβ′ = Π, where β is a matrix

of cointegrating vectors, such that β′Xt is a stationary process, even though Xt itself is not;

and α is a matrix of speed-of-adjustment parameters. Johansen’s test (see Johansen, 1988;

Johansen and Juselius, 1990) is used to find the rank of Π matrix.

Johansen’s test is performed on a system of VAR(p) equations. The rank, r, of the Π

matrix is revealed using λmax and λtrace statistics, which are calculated as follows:

λmax(r, r + 1) = −T ln
(

1− λ̂r+1

)
(3)

λtrace(r) = −T
m∑

i=r+1

ln
(

1− λ̂i
)

(4)

where T is the number of usable observations; r is the rank of the Π matrix; n is the number

of equations; and λ̂i are the eigenvalues of the estimated Π. Further, the hypothesis of an

intercept in the cointegrating vector(s) may be tested using the following statistic:

ξn−r = −T
m∑

i=r+1

ln

(
1− λ̂∗i
1− λ̂i

)
(5)

where λ̂∗i and λ̂i are the eigenvalues of the estimated restricted and unrestricted Π matrices,

respectively, where the restriction implies the presence of the intercept in the cointegrating
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vectors. Test statistic, ξ, is chi-square distributed with (n− r) degrees of freedom.

Assuming that the rank of the Π matrix is r, and an intercept is included in the cointe-

grating vector(s), the VAR model can be rewritten in a vector error correction (VEC) form

as follows:

∆Xt =

p−1∑
i

Γi∆Xt−i + υ′êt−1 + ΦZt + εt (6)

where et−1 = β̃′X̃t−1 is a vector of estimated error-correction terms, where β̃ is a (n +

1)× r matrix of normalized cointegrating vectors including the intercept, obtained from the

Johansen’s procedure, and X̃t−1 =
(
X ′t−1, 1

)′
; and υ is a r × 1 vector of parameters to be

estimated.

2.2 Smooth Transition Models

Class of smooth transition autoregressive (STAR) models is widely used in the studies at-

tempting to model the asymmetric cyclical variations and turbulent periods (e.g. Terasvirta

and Anderson, 1992; Terasvirta, 1995; Hall et al., 2001). STAR model of order p can be

specified as:

∆yt = φ′1xt (1−G (st; γ, c)) + φ′2xtG (st; γ, c) + εt (7)

or, alternatively:

∆yt = φ′1xt + (φ2 − φ1)′ xtG (st; γ, c) + εt (8)

where yt is a dependent variable; xt = (1,∆yt−1, . . . ,∆yt−p, yt−1, Zt)
′, is a matrix of inde-

pendent variables, where Zt = (Z1,t, . . . , Zm,t) is a vector of exogenous or seasonal dummy

variables; ∆ is the first difference operator; φ1 = (φ1,0, . . . , φ1,k), and φ2 = (φ2,0, . . . , φ2,k) are

parameter vectors; and εt ∼ N (0, σ2
ε ).

This is a two-regime model (which may be extended to any k-regime model in a triv-

ial manner), where G (st; γ, c) is a transition function, by construction bounded between

zero and one, and where st is a transition variable, and γ and c are, respectively, smooth-

ness and location parameters to be estimated. Often the lagged difference ∆yt−d = st =

(yt−d − yt−d−1) or lagged seasonal difference ∆Jyt−d = st = (yt−d − yt−d−J) variable is used

as a transition variable, where d is referred as the delay parameter. Alternatively, t∗ = (t/T ),
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where T is the length of the time series, may be used as a transition variable leading to the

time-varying autoregressive (TVAR) model.

In empirical studies the logistic and exponential transition functions are used most fre-

quently, respectively forming logistic STAR (LSTAR) and exponential STAR (ESTAR) mod-

els. Another frequently used functional form is quadratic STAR (QSTAR). These transition

functions are defined as follows:

GL (st; γ, c) = (1 + exp [−γ (st − c)])−1 (9)

GE (st; γ, c) = 1− exp
[
−γ (st − c)2] (10)

GQ (st; γ, c) = (1 + exp [−γ (st − c1) (st − c2)])−1 (11)

In a transition function γ is a non-negative parameter. LSTAR model approaches a linear

AR model when γ → 0, and a threshold autoregressive model (TAR) when γ →∞. On the

other hand, ESTAR approaches linear AR in both cases, when γ → 0 and γ →∞. QSTAR

approaches to linear AR model when γ → 0, and a TAR model with two threshold variables

when γ →∞.

A family of smooth transition autoregressive models can be extended to a multivariate

case, forming a multivariate STAR (MSTAR) model. One specific case of the MSTAR model

is a smooth transition vector error correction (STVEC) model, expressed as follows:

∆Xt = Ψ1W (1−G (st; γ, c)) + Ψ2WG (st; γ, c) + εt (12)

or, alternatively

∆Xt = Ψ1W + (Ψ2 −Ψ1)WG (st; γ, c) + εt (13)

where W = (Xt−1, . . . , Xt−p+1, êt−1, Z
′
t)
′; and Ψk = (Γk,1, . . . ,Γk,(p−1), υ

′
k,Φk) are parameters

to be estimated. G (st; γ, c), for any given st, γ and c may be restricted to be the same, or

vary, across the equations, respectively forming one common, or n unique transition functions

for the equations.

The nonlinearity and parameter constancy in the smooth transition autoregressive model

is tested using the auxiliary regression, since the conventional test statistics are not directly

applicable to the STAR-type models due to the identification problems (see Luukkonen et al.,

1988)1. Suitable auxiliary regressions are first- or third-order Taylor series expansion of the

1Here we only present the brief overview of the test procedure. For more details refer to Luukkonen et al.
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transition functions. The third-order Taylor series expansion is a preferred form of the test,

because it embeds tests against LSTAR and ESTAR/QSTAR, along with the general test

against nonlinearity. Testable auxiliary equation, in general terms, may be expressed as

follows:

∆yt = θ′0xt + θ′1xtst + θ′2xts
2
t + θ′3xts

3
t + νt (14)

where θs, s = 0, . . . 3 are vectors of parameters to be estimated, and νt ∼ IID (0, σ2
ν). The

underlying hypotheses are: H0 : θ1 = θ2 = θ3 = 0 for no nonlinearity, H03 : θ3 = 0 and

H01 : θ1 = 0|θ2 = θ3 = 0 for no logistic nonlinearity, and H02 : θ1 = θ2 = 0|θ3 = 0 for no

exponential (or quadratic) nonlinearity. The F version of the LM test statistic is preferred

for the small and moderate samples:

LM =
(SSR0 − SSR1) / (lq)

SSR1/ (T − (m+ 1)q)
(15)

where SSR0 and SSR1 are sums of squared residuals of the restricted and unrestricted

models, respectively; q is the number columns in the matrix of independent variables; l takes

values 1 and 3, and m takes values 1, 2 and 3, depending on a hypothesis being tested;

T is the total size of the time series. This approach can be used for a single equation

autoregressive model, or in case when each equation in the system has its unique transition

function. However, for a system of equations with identical transition function across the

equations, the system of auxiliary equations will be as follows:

∆Xt = Θ′0Wt + Θ′1WtSt + Θ′2WtS
2
t + Θ′3WtS

3
t + νt (16)

where ΘS, S = 0, . . . 3 are matrices of parameters to be estimated; and St is a n× 1 vector

of the transition variable; other variables are as defined above. For testing the hypotheses

similar to those defined above, we should apply the likelihood ratio test statistics of the form:

LR = T (ln |Σu| − ln |Σr|) (17)

which is χ2 distributed with degrees o freedom equal to the number of restrictions; and

where Σu and Σr are estimated variance-covariance matrices of the error terms from the

(1988); Terasvirta and Anderson (1992); Eitrheim and Teräsvirta (1996)
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unrestricted and restricted models, respectively (see also Weise, 1999).

2.3 Generalized Impulse Response Functions

Generalized impulse-response (GI) function, proposed by Koop et al. (1996), is defined as

follows:

GI (h, ν, ωt−1) = E (yt+h|ν, ωt−1)− E (yt+h|ωt−1) (18)

where h is a horizon of the shock effect, ν is a shock in period t, and ωt−1 is a history.

Assuming that ν and ωt−1 are random variables, so that ν ∈ N and ωt−1 ∈ Ωt−1, GI function

itself represents the random variable realization:

GI (h,N,Ωt−1) = E (yt+h|N,Ωt−1)− E (yt+h|Ωt−1) (19)

Further, it is possible to define GI function as a random variable in terms of the history,

conditional on a particular shock:

GI (h, ν,Ωt−1) = E (yt+h|ν,Ωt−1)− E (yt+h|Ωt−1) (20)

or as a random variable in terms of the shock, conditional on a particular history:

GI (h,N, ωt−1) = E (yt+h|N,ωt−1)− E (yt+h|ωt−1) (21)

and, eventually, as a random variable in terms of subsets of shocks and histories:

GI (h,<,=t−1) = E (yt+h|< ∈ N,=t−1 ∈ Ωt−1)− E (yt+h|=t−1 ∈ Ωt−1) (22)

Below we present the approach of estimating GI based on the latter condition. A stocastic

simulation approach is used to obtain the estimates of the response function. Given a

particular subsets of histories and shocks, the GI function can be defined as:

GI (h,<,=t−1) = 1/J
J∑
j=1

GIj
(
h,<, ωjt−1

)
(23)
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where

GIj
(
h,<, ωjt−1

)
= 1/D

D∑
d=1

GId,j
(
h, νd, ωjt−1

)
and where

GId,j
(
h, νd, ωjt−1

)
= E

(
yt+h|νd, ωjt−1

)
− E

(
yt+h|ωjt−1

)
The expected realizations of yt+h are obtained using bootstrapping procedure, so that:

E (yt+h) = 1/R
R∑
r=1

yrt+h

where

yrt+h = y
(
h, νd, ωjt+h−1, θ, ε

r
)

where θ are estimated parameters from the model, εr are R randomly drawn shocks, D and

J are total number of selected shocks and drawn histories, respectively.

3 Empirical Framework

3.1 Data

In this research we use monthly time series of ENSO anomaly and vegetable oil prices

covering the period between January 1972 and December 2005. Anomaly of the Niño 3.4

monthly average index as an ENSO measure is derived from the index tabulated by the

Climate Prediction Center at the U.S. National Oceanic and Atmospheric Administration.

This index measures the difference in Sea Surface Temperature (SST) in the area of the

Pacific Ocean between 5oN-5oS and 170oW-120oW, and thus is a strong indicator of ENSO

occurrence. Niño 3.4 monthly measure is an average of daily values interpolated from the

weekly measures obtained both from satellites and actual locations around the Pacific. The

anomaly is the deviation of the Niño 3.4 monthly measure from the average historic measure

for that particular month from the period 1971-2000. The other widely used ENSO measure

(also used by most of the related aforementioned studies) is Southern Oscillation Index (SOI),

a measure derived from the sea level pressure. In current research SST was chosen over SOI
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essentially because the former has a stronger relationship with vegetable oil prices (Holt and

Inoue, 2006).

Vegetable oil price data was obtained from ISTA Mielke GmbH, better known as OIL

WORLD. All prices are in U.S. dollars per tonne, and are either FOB or CIF2. Plotting the

vegetable oil prices together allows us to see their apparent co-movement over the time (see

Figure 1)3. It is clearly seen that prices in general move together, and occasional divergences

are soon followed by convergences. It is, further, straightforward to imagine that all [other

pairs of] the oil prices co-move at least in a long run.

For the estimation purposes we deflated the nominal prices using the PPI for commodities

obtained from the U.S. Bureau of Labor Statistics. Further, real prices were transformed to

the natural log form, so that changes are explained in percentage terms. From here forward

whenever vegetable oil price is mentioned it is to be considered as real price in natural

logarithmic form, unless otherwise stated.

3.2 Estimation

Let Xt = (soyt, sunt, grnt, coct, plkt, plmt, ctnt, rapt)
′ be a vector of time series, where de-

pendent variables are natural logs of the real vegetable prices stacked in a sequence as listed

in the introduction. Then the associated VAR model is specified as in Equation 1, where

exogenous variable Zt = (ENSOt, ENSOt−1, . . . , ENSOt−m)′ are ENSO in levels4. Using

AIC number of lags in the VAR, p, was set to 4, and m was set to 2. Further we applied

Johansen’s procedure to test the hypothesis of cointegration. λmax statistics supported two

cointegrating vectors, and λtrace statistics supported four cointegrating vectors hypotheses

at α = 0.05 significance level (see Table 1). This type of outcome is not unusual in empir-

ics, and in such occasions λmax statistics is preferred to λtrace, because the former has the

sharper alternative hypothesis (e.g. Enders, 2004, p. 354). The hypothesis of an intercept

in the cointegrating vectors (Equation 5) was not rejected. Therefore the obtained VECM

is specified as in Equation 6.

With the obtained specification VECM requires estimating ((n× n)× (p− 1) + r × n+

2FOB - Free on Board; CIF - Cost, Insurance, and Freight
3It would be visually inconvenient to present the time series of all eight vegetable oil prices on the same

graph. Instead, we only plotted two the most diverging oil prices, selected by maximizing the sum of squared
differences across the pairs of normalized vegetable oil prices.

4The joint hypothesis of presence of monthly seasonal dummies in the model was rejected. In fact, only
6 out of total 88 parameters of the monthly dummy variables were statistically significant at α = 0.1 level.
With an anticipation of losing degrees of freedom due to estimating the smooth transition type of model, we
did not include monthly dummies in the model to retain some estimation flexibility

10



m × n) = 232 parameters, which in a smooth transition VECM application will reach 466

(twice the amount of VECM parameters plus two additional for the associated transition

function). Often it is the case that number of these parameters are far from being statistically

significant, and their presence in the model may even distort the precision of statistical

inference (Bruggemann and Lutkepohl, 2001). We, therefore, apply a strategy proposed

by Bruggemann and Lutkepohl (2001) to specify the subset VECM. Namely, each of the

n VECM equations is estimated using OLS, and regressors with the smallest absolute t-

value are deleted sequentially until the smallest remaining t-value is not smaller than some

threshold τ , where τi =
√

(exp(cτ/T )− 1)(T − k + i− 1), and where T is the effective

sample size, k is the number of parameters in the unrestricted model, and i is the iteration

number; cτ is to be set so that provided statistics will represent an information criterion of

choice. In this research cτ is set to 2, and hence, the AIC is used for selection the parameters

in each equation. It is notable, that parameters of the error-correction terms were restricted

to be present in each equation. The underlying reasoning is that it may be the case that in a

smooth transition form of the VECM, a parameter associated with a certain error correction

term may turn out to be significant in one (or both) regimes, even if it was not significant

in a linear VECM. After eliminating the parameters following the above-described strategy,

only 132 parameters were retained to be estimated in the VECM.

The ENSO is assumed to be weakly exogenous variable in the model. That is, vegetable

oil prices are contemporaneously correlated with ENSO, but not the other way around. With

this assumption holding, ENSO equation can be independently estimated in an univariate

mode. The optimal number of lags in ENSO equation was set to be equal to 4, using AIC,

and augmented Dickey-Fuller (ADF) statistics rejected the unit root hypothesis at α = 0.01

level.

Taking all the aforementioned into the account, the subset VECM with the exogenous

variable will have the following form:

∆xt =

p−1∑
i=1

Γi∆xt−i + υ′êt−1 +
m∑
j=0

ΦjENSOt−j + εt

∆ENSOt = µ+

q−1∑
i=1

βi∆ENSOt−i + βlENSOt−1 + ηt (24)
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where[
εt

ηt

]
∼ N

([
0

0

]
,

[
Σε 0

0 σ2
η

])

and where variables and parameters are as defined above, and p, m and q are 4, 2, and 4,

respectively. Note that because we work with the subset VECM, some of the elements of Γi

and Φj are restricted to zero.

The following step of the estimation is to specify the suitable STAR and STVEC models

for ENSO and the system of vegetable oil prices, respectively. For this, we apply the auxil-

iary regressions as presented in Equation 16, and the adequate hypotheses are tested using

Equations 15 and 17, respectively, for the univariate and multivariate cases. We used up to 6

lags of ENSO and seasonally differenced ENSO as the candidate transition variables. Based

on these test results (see Table 2), and also after comparing the log-likelihood functions and

AIC of different potential transition functions5 the following form of STVECM was selected:

∆Xt = Ψ1Wt + (Ψ2 −Ψ1)WtG (st; γ, c) + εt

∆yt = φ′1wt + (φ2 − φ1)′wtF (st; γ, c) + ηt (25)

where Yt is a vector of vegetable oil prices, and yt is ENSO; Wt = (∆Xt−1, . . . ,∆Xt−3,

ê1,t−1, ê2,t−1, yt, . . . , yt−2)′ and wt = (1,∆yt−1, . . . ,∆yt−3, yt−1)′; and Ψk = (Γk,1, . . . ,

Γk,3, υ
′
k,Φk) and φk = (αk, βk,1, . . . , βk,3, βk,l)

′, k = 1, 2; and where transition functions,

G (st; γ, c) and F (st; γ, c) are exponential and quadratic transition functions, respectively,

where sGt = ENSOt−6 and sFt = ∆12ENSOt−1.

The resulted transition functions are plotted in Figures 2 and 3.

3.3 Simulations

To analyze the effect of the ENSO shock on vegetable oil prices we use a generalized impulse-

response (GI) approach. We plotted two transition variables used in the STVECM estimation

to locate the candidate subsets of histories (see Figure 4).

5For example, in case of ENSO equation, the test for nonlinearity suggested LSTAR model with the first
lag of the seasonally differenced variable as the transition variable, but eventually the QSTAR model, with
the same transition variable, was selected for the estimation, because it yielded larger log-likelihood value
and smaller AIC compared to LSTAR, or ESTAR with the fifth lag of the seasonally differenced variable
as the transition variable. Analogously, in case of the system of vegetable oil prices, the first lag of the
seasonally differenced ENSO was the first choice for the transition variable, but the hypothesis against the
ESTAR model with first lag of ENSO was rejected with the stronger statistical significance.
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We selected three most interesting subsets for the GI analysis: 1) normal regime while

the seasonal change of the SST is close to zero (NN on the graph); 2) El Niño regime while

the seasonal change of the SST is positive (EE); and 3) La Niña regime while the seasonal

change of the SST is negative (LL). That is, we intend to simulate the behavior of vegetable

oil prices with respect to the positive and negative shocks of ENSO (SST), given that initial

conditions are in normal or extreme modes.

Using the procedure formulated above, we compute GI functions in the following manner.

All 9 histories of the LL regime, and random samples of 9 histories from the NN and EE

regimes are drawn to initialize the starting values from the data used to estimate the model.

Values of the normalized initial shock are set equal to ν = ±0.1σ̂η,±0.2σ̂η, . . . ,±1.9σ̂η, where

σ̂η is the estimated standard deviation of the residuals from the ENSO STAR model. The

maximum forecast horizon is set at 48 (4 years). An analytical expression for the conditional

expectation of GI function (Equations 18-22) are not available for h > 0, therefore, expec-

tations are evaluated numerically using 512 bootstrap simulations. Under the assumption

of weak exogeneity of ENSO variable, for each iteration, in the first stage ENSO forecasts

are obtained with and without the initial shock, and by using STAR residuals sampled with

replacement; then, in the second stage, the obtained forecasts of the ENSO variable and

STVEC normalized residuals sampled with replacement are used to obtain the forecasts for

the system of vegetable oil prices. With 19 shocks, 9 histories and 512 iterations, total of

87,552 GI vectors of length 48 for each, positive and negative shock, are calculated. The

expected GI functions are obtained using the Equation 2.3. Finally, by totaling the obtained

GI functions for the first differences, the impulse responses for the levels of vegetable oil

prices are constructed as follows:

GIX (h, ν, ωt−1) =
h∑
i=0

GI∆X (h, ν, ωt−1) (26)

Expected GI functions of the NN, EE and LL regimes are plotted in Figure 5.

4 Results and Discussion

The values of the log-likelihood functions and AIC of the ENSO and system of oil prices

regressions for linear and non-linear models are presented in Table 3. The non-linear models

fit better both, the system of equations and the exogenous variable regressions.

A “normal” regime for the ENSO STAR model is estimated to be between -3.37 and 1.24
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of the seasonal SST change. That also means that if the seasonal change is less than -3.37

then the model will predict the switch to the El Niño (extreme) regime; alternatively, if the

seasonal change is more than 1.24 then the model will predict the switch to the La Niña

(extreme) regime. For the system of vegetable oil prices, “normal” regime is estimated to

range between -0.55 and 0.23 of the SST. This result fits well with the formal definition of

the ENSO anomaly, where the normal condition is when SST index is in the neighborhood of

zero. In both non-linear regressions the transition from one regime to another is happening

smoothly, with the transition parameters being 1.33 and 4.17 for the STAR and STVEC

models, respectively.

Effects of the ENSO shock are analyzed using GI functions. The non-linear nature of

these shocks are easily noticed, as the GI functions tend to be asymmetric for positive and

negative shocks (see Figure 5). For most of the vegetable oil prices the ENSO shock has a

permanent effect, meaning that prices do not return to their initial, before the shock levels.

Generally, positive ENSO shock results in increased vegetable oil prices, and the opposite is

true for the negative ENSO shock. That is, in general higher prices are associated with the

El Niño regime, and lower prices are associated with the La Niña regime. The magnitude of

the price change is larger for the coconut oil and palm kernel oil prices, and is the lowest for

the ground nut oil prices. Also, it takes approximately two-year period for prices to stabilize

at a certain level, after the shock.

Further, in all cases, the positive shock has a larger magnitude when the initial conditions

are LL compared to EE; alternatively, the negative shocks have a larger magnitude (in

absolute terms) when the initial conditions are EE compared to LL. When initial conditions

are NN, in all but two cases, the positive ENSO shock has a larger effect on prices, compared

to the EE and LL conditions; and the negative ENSO shock has a smaller effect on prices

compared to the EE condition, but is mostly similar to the LL initial condition. This means

that, for example, if the ENSO anomaly is in the La Niña regime, then further deviation

towards the La Niña will result in reduction of prices at larger extent, compared to the cases

when the ENSO anomaly is in the normal or El Niño regimes. On the other hand, if the

ENSO anomaly is in the El Niño regime, then further deviation towards the El Niño will

result in increase of the vegetable oil prices at larger extent, compared to the case when the

ENSO anomaly is in the La Niña regime, but at smaller extent, if the ENSO anomaly is in

the normal regime.
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5 Conclusions

In this paper we attempted to explore a nonlinear nature of the vegetable oil price dynamics

with respect to the ENSO anomaly. Results of the research revealed the nonlinear behavior

of the prices conditional on the state of nature and the direction of shocks of the ENSO

anomaly. Overall, the negative deviation from the normal ENSO regime - La Niña results in

lower vegetable oil prices, and the positive deviation - El Niño results in higher vegetable oil

prices. Some oils are more responsive to the ENSO shock (e.g. coconut oil and palm kernel

oil) than others (e.g. ground nut oil and cotton seed oil). The magnitude of the effect of the

positive (negative) ENSO shock on vegetable oil prices is larger, if the ENSO anomaly is in

the El Niño (La Niña) regime, and smaller if the ENSO anomaly is in the La Niña (El Niño)

regime.

Arguably strong cointegration between the vegetable oil prices, and their impact on

number of socio-economic factors in the world of oil exporters and importers, coupled with

the fact that the behavior of these prices may be explained by an exogenous variable such

as ENSO, makes this research urgent from the perspective of the policy implications.

15



References

Bruggemann, R. and H. Lutkepohl (2001). Lag selection in subset VAR models with an

application to a US monetary system. Econometric Studies .

Brunner, A. (2002). El Nino and World Primary Commodity Prices: Warm Water or Hot

Air? Review of Economics and Statistics 84 (1), 176–183.

Debelle, G. and G. Stevens (1995). Monetary Policy Goals for Inflation in Australia. Eco-

nomic Research Dept., Reserve Bank of Australia.
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Tables

λmax 5% λtrace 5%
r ≤ 7 3.10 9.24 3.10 9.24
r ≤ 6 4.97 15.67 8.08 19.96
r ≤ 5 19.40 22.00 27.47 34.91
r ≤ 4 22.21 28.14 49.69 53.12
r ≤ 3 31.63 34.40 81.32 76.07
r ≤ 2 40.07 40.30 121.39 102.14
r ≤ 1 54.78 46.45 176.17 131.70
r = 0 61.51 52.00 237.68 165.58

Table 1: λmax and λtrace Test Statistics and Critical Values
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Nonlinearities in ENSO

LM LM3 LM2 LM1 Model
∆12yt−1 0.022 0.019 0.255 0.155 LSTAR
∆12yt−4 0.068 0.098 0.031 0.836 ESTAR/QSTAR
∆12yt−5 0.043 0.327 0.016 0.321 ESTAR/QSTAR

Nonlinearities in Vegetable Oil Prices

LR LR3 LR2 LR1 Model
yt−6 0.013 0.061 0.000 0.989 ESTAR/QSTAR
∆12yt−1 0.000 0.039 0.014 0.027 ESTAR/QSTAR
∆12yt−6 0.003 0.027 0.001 0.690 ESTAR/QSTAR
Numbers are p-values of the associated test statistics

Table 2: Candidate Transition Variables for STAR and STVEC models
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ENSOAR ENSOSTAR V ECM STV ECM
T 389 389 389 389
m 5 13 132 266
AIC 3.38 3.33 -49.88 -50.39
LLK -43.80 -35.91 5307.64 5405.34

Table 3: Diagnostic Statistics for the Estimated Models
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Figures

Figure 1: Nominal Palm Kernel and Cottonseed Prices in 1972-2005
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Figure 2: ENSO STAR Model: γ = 1.33, c1 = −3.37∗∗∗, and c2 = 1.24∗∗
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Figure 3: Vegetable Oil Prices STVEC Model: γ = 4.17∗∗, c = −0.16
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Figure 4: Distribution of the Transition Variables over the Different Regimes
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Figure 5: Generalized Impulse-Response Functions
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