An Empirical Investigation of the Linkages between Government Payments and Farmland Leasing Arrangements

Feng Qiu
Barry K. Goodwin
Jean-Philippe Gervais

Department of Agricultural and Resource Economics
North Carolina State University

Last updated, March 2010

Abstract: This article investigates the impacts of decoupled and coupled support payments on farmland rental contract choices using a principal-agent model. We consider cash and share contracts as well as hybrid contracts, which are increasingly prominent in US agriculture. The conceptual framework suggests that restrictions on sharing payments between contracting parties are ineffective and induce an offsetting contractual rearrangement. Empirical results from a multinomial logit model confirm that government support programs have large significant effects on contract choices and that these effects vary by types of subsidies.

Keywords: contract choice, hybrid contract, farm bill, program payments

J.E.L. Classification: Q12, Q15, Q18
An Empirical Investigation of the Linkages between Government Payments and Leasing Arrangements

About 45% of United States (US) farmland was operated by a tenant in 1999 (USDA/NASS 2001). Historically, contractual arrangements between landlords and tenants mostly included either cash payments or sharecropping. More recently, a third form of leasing arrangement involving both forms of payments - an arrangement that we designate as a hybrid contract - has gained popularity. USDA/NASS (2001) defines a hybrid contract (also called a cash/share contract) as one under which the tenant pays part of the rent in cash and part as a share of crops or livestock products.¹

The use of hybrid contracts is increasing in the US farmland leasing market. In 1999, about 11% of all US leased farmland was under hybrid contracts, compared to only 3% in 1988. The incidence of use of hybrid contracts was highest in the Corn Belt and the Northern Plains (USDA/NASS 2001). These two regions are mainly comprised of crop farms, which are also the primary beneficiaries of often generous government support programs. In 1999, 26% of leased farmland in Indiana was rented under hybrid contracts, as compared to less than 2% in 1988. Similar situations can be observed in Illinois, Ohio, Kansas, Nebraska, Missouri, and Iowa.

The literature on farmland contract choice is considerable. Marshall (1890) laid out the early foundations of the analysis of sharecropping and illustrated the source of inefficiency associated with sharecropping (in relation to a cash or wage contract). Sharecropping discourages the tenant’s own input use because he/she receives only part of his/her marginal product. A number of studies challenged Marshall’s conclusion. Cheung (1969) argued that sharecropping could be as efficient as other types of contracts if monitoring is costless. Stiglitz (1974), and Newberry and Stiglitz (1979) introduced land tenure choices into a principal-agent
framework. The standard agency model suggests that contracts are designed to achieve a balance between efficient risk-sharing and appropriate incentives to discourage moral hazard.

Allen and Lueck (1992, 2002) argued that in developed countries, where insurance markets are well developed, risk-sharing should not be the primary determinant of contract choices. They argued that the benefit of a sharecropping contract is that it curbs the tenant’s incentive to overuse the inputs (e.g., soil moisture and nutrients) supplied by the landlord. However, sharecropping requires the output to be divided between the landlord and the tenant and thus generates additional transactions and monitoring costs for the landlord.

More recently, Huffman and Just (2004) introduced a principal-agent model which allows for heterogeneity in the characteristics of principals and agents and relaxes the risk-neutrality assumption for landlords. They argued that the parameters of sharecropping vary across tenants and landlords because of the former’s heterogeneity (e.g., the agent-specific effort productivity). Huffman and Fukunaga (2008), and Fukunaga and Huffman (2009) provided recent empirical evidence on the determinants of contract arrangements using a model in which agents choose between a share and cash-rent contract. They found that both risk sharing and transaction cost incentives are important determinants of the contract type. They also emphasized the role of the landlords’ attributes into the optimal landlord-tenant contract choice.

The literature has neglected two main issues related to farm leasing arrangements. First, previous studies have for the most part ignore the existence of hybrid contracts, focusing on a binary decision rule that entails cash rentals versus sharecropping (e.g., Allen and Lueck 2002; Fukunaga and Huffman 2009). As argued above, hybrid contracts capture a growing share of leasing arrangements. Second, most studies ignored the impacts of government support on contract choices (Bierlen et al. 2000, is a notable exception). Government support programs are especially important in US agriculture. For example, the 2002 Farm Security and Rural
Investment Act was scored to provide more than $190 billion of financial support to agriculture. In the 2008 Farm Bill, taxpayer outlays were estimated to be nearly $300 billion. Previous studies demonstrated that the optimal contract choice depends on production risk, the tenant’s and the landlord’s risk preferences, and the expected returns from rented land. Income support programs and subsidies will affect the landlord-tenant contract choice because they potentially have impacts on expected returns and income variability as well as on the individuals’ degree of risk aversion.

The contribution of this study is twofold. First, we examine the effects of government programs on farmland rental contract choices. In an empirical model, we break down aggregate government support into five different programs and investigate to what extent each impacts the probabilities of selecting a given contract type. Second, we introduce hybrid contracts as a third alternative in the contract set of landlords and tenants in order to investigate the determinants of an increasingly popular form of rental arrangement in US agriculture. The individual-contract level data collected in the 1999 Agricultural and Economics Landlord Owner Survey (AELOS) and the 1999 Agricultural Resource Management Survey (ARMS) are combined to carry out the analysis.

The remainder of the paper is structured as follows. The next section introduces a simple principal-agent model to explain the landlord-tenant leasing arrangements. Section three presents the dataset and the empirical modeling strategy. Section four discusses the results of the estimation procedure. Concluding remarks are offered in the last section.

CONCEPTUAL FRAMEWORK

The model below builds upon earlier efforts of Huffman and Just (2004), and Huffman and Fukunaga (2008). We expand their work by introducing agricultural program payments into the
model. We begin by addressing the role of decoupled payments in leasing arrangements. Decoupled payments were introduced in the 1996 Farm Bill, and were renewed in the 2002 and 2008 Farm Bills. They refer to lump-sum income transfers that are independent of current production activities and market performance. For example, the Production Flexibility Contract (PFC) payments under the 1996 Farm Bill are completely independent of current farm output levels. The only requirement for a producer (or a landlord) to receive PFC payments is that he or she has established base acreage. There are restrictions on the distribution of decoupled payments. Legislation requires that the payments be shared among producers and landlords subject to the contract on a fair and equitable basis. Under a cash rental arrangement, 100 percent of the decoupled payments are allocated to the farm operator. Under a share contract, the government distributes payments to both the landlord and the tenant operator according to the shares terms of lease.

For simplicity, we assume that each landlord contracts with only one tenant. The principal is the landlord and the agent is the tenant operator. Following Huffman and Just (2004), we allow heterogeneity in risk preferences of agents and principals. We also allow heterogeneity in the productivity of effort, cost of effort, and reservation utility.

A Principal-Agent Model with Decoupled Payments

The output of tenant operator i on one unit of leased land (or net revenue with appropriate normalization) is defined as:

$$y_i(e_i) = a_i e_i + \epsilon_i,$$

where e_i is tenant i’s effort/labor input and a_i is the tenant-specific productivity of labor. Differences in productivity may be related to human capital in the form of farming experience.
(Huffman and Just 2004). Output is also function of a stochastic term ε_i which is assumed to have zero mean and variance σ_i^2.

Following Huffman and Fukunaga (2008), we assume the landlord offers a linear incentive contract to the tenant operator. The tenant operator’s compensation is:

$$I_i(e_i) = \alpha_i + \beta_i (a_i e_i + \varepsilon_i + g_d) - 0.5 k_i^2 e_i^2,$$

where k_i is the tenant-specific effort cost parameter. A high (low) value of k_i indicates a steep (flat) marginal cost curve. The variable g_d represents decoupled government payments. The parameter α_i is the tenant-specific cash payment of the contract. A positive α_i represents the cash wage paid by the landlord to the tenant; a negative value for α_i means that cash rent payments are made to the landlord. The parameter $\beta_i \ (0 \leq \beta_i \leq 1)$ is an incentive rate representing a share of output. Hence, when $\beta_i = 1$ and $\alpha_i < 0$, the leasing arrangement is a cash contract as opposed to $0 < \beta_i < 1$ and $\alpha_i = 0$ which indicate a share contract. More importantly in the context of this paper, $0 < \beta_i < 1$ and $\alpha_i < 0$ indicate that the leasing arrangement is a hybrid type contract.

Assume that the tenant has well-defined preferences over income summarized by the utility function $U_i(I_i)$. Expected income of the i^{th} tenant operator is $EI_i = \alpha_i + \beta_i (a_i e_i + g_d) - 0.5 k_i^2 e_i^2$. The variance of the tenant’s income is $VI_i = \beta_i^2 \sigma_i^2$. Let $RP_i \equiv 0.5 r_i VI_i$ denote the risk premium where $r_i \equiv -U_i''/U_i'$ is the tenant’s Arrow-Pratt coefficient of absolute risk aversion. Under the expected utility model, $EU_i(I_i) = U(EI_i - RP_i)$. Given that $U_i(I_i)$ is an increasing function of income, maximizing $EU_i(I_i)$ is equivalent to maximizing
the expression \((EI_i - RP_i)\) (Chavas, 2004). Therefore, the tenant operator’s optimal effort is determined by maximizing his/her certainty equivalent \(CE_i = EI_i - RP_i\):

\[
\text{max } CE_i = \text{max } [EI_i - 0.5r_iV_i]
= \text{max } \{\alpha_i + \beta_i (a_i, e_i + g_d) - 0.5k_i e_i^2 - 0.5r_i \beta_i^2 \sigma_i^2\}.
\]

The optimization problem defined in (3) solves the optimal effort \(e_i^* = \beta_i a_i / k_i\).

Similarly, the \(l^{th}\) landlord’s expected return from ownership of the rented land equals \(E\pi_i = E[(1 - \beta_i) (\nu_i + g_d) - \alpha_i]\) and its variance is \(V\pi_i = (1 - \beta_i)^2 \sigma_i^2\). As in the case of the tenant operator, we write the landlord’ optimization problem in terms of the certainty equivalent return:

\[
\text{max } CE_i = \text{max } [E\pi_i - 0.5r_iV_i]
= \text{max } \{(1 - \beta_i) (a_i, e_i^* + g_d) - \alpha_i - 0.5r_i (1 - \beta_i)^2 \sigma_i^2\},
\]

subject to the participation and incentive compatibility constraints:

\[
\alpha_i + \beta_i (a_i, e_i^* + g_d) - 0.5k_i e_i^{\ast^2} - 0.5r_i \beta_i^2 \sigma_i^2 \geq \mu_i,
\]

\[
e_i^* = \text{arg max } \{\alpha_i + \beta_i (a_i, e_i + g_d) - 0.5k_i e_i^2 - 0.5r_i \beta_i^2 \sigma_i^2\},
\]

where \(r_i\) is the Arrow-Pratt measure of the landlord’s absolute risk aversion, and \(\mu_i\) is tenant \(i\)’s reservation utility.

The landlord’s optimal choice of \(\alpha_i\) will be determined by the binding participation constraint. Substituting \(e_i^*\) and \(\alpha_i\) into (4) and optimizing over \(\beta_i\) yields the optimal incentive rate offered to the \(i^{th}\) tenant operator:

\[
\beta_i^* = \frac{c_i + r_i \sigma_i^2}{c_i + (r_i + r_i) \sigma_i^2} = 1 - \frac{r_i \sigma_i^2}{c_i + (r_i + r_i) \sigma_i^2},
\]
where \(c_i = \frac{a_i^2}{k_i} \) is an index of tenant-specific effort productivity. Substitute the optimal share rate into the participation condition to obtain the optimal cash component of the contract:

\[
\alpha_i^* = \mu_i - 0.5\beta_i^* \sigma_i^2 - \beta_i^* g_d
\]

The optimal share rate \(\beta_i^* \) in (7) emphasizes the role of the landlord’s and the tenant operator’s degree of risk aversion. If a tenant operator is risk neutral \((r_i = 0) \), the optimal share rate equals one and a cash contract is the optimal outcome. Similarly, the optimal share increases towards one as the landlord’s coefficient of risk aversion goes to infinity \((i.e. r_i \rightarrow \infty) \). Risk, represented by the variance of the income, is negatively correlated with the optimal share rate. The higher is the variance of income, the smaller is the optimal share rate. Therefore, an increase in income volatility can have a negative impact on the choice of a cash contract, *ceteris paribus*.

A quick look at (7) suggests that decoupled payments do not have a direct impact on the share rate. However, these payments may affect the contract choice indirectly, through the impact on the degree of risk aversion. If an individual has constant absolute risk aversion (CARA) preferences, decoupled payments will not have an impact on the solution in (7). However, if individuals’ risk preferences entail decreasing absolute risk aversion (DARA), decoupled payments reduce the degree of risk aversion through the impact on wealth.

Decoupled payments however do have a direct effect on the optimal cash component \(\alpha_i^* \) of the contract. It reflects a pass-through of program benefits from the tenant operator to the landlord. From (8), the optimal cash component with no decoupled payments \((i.e., g_d = 0) \) is

\[
\mu_i - 0.5\left(\beta_i^* \sigma_i^2\right) (c_i - r_i \sigma_i^2),
\]

which is greater than that with positive decoupled payments. The difference is \(\beta_i^* g_d \), which equals the share of decoupled payments going to the tenant operator under the current legislative environment for US farm programs. Hence, the landlord captures
the benefits that go to the tenant by charging an extra cash amount of size \(\beta_i^{*} \gamma_d \), and restores the equilibrium that would have been attained under no governmental restriction, *ceteris paribus.*³

Under the optimal leasing arrangement, the landlord is able to capture all of the benefits distributed to the tenant operator, given the conditions that payments are decoupled and the wealth effect is negligible. A governmental restriction on payment distribution does not influence the actual benefit distribution between landlords and tenant operators in the end. It merely results in offsetting contractual rearrangements.⁴ This is consistent with Lence and Mishra (2003), and Goodwin, Mishra, and Ortalo-Magne (2009) who have found evidence that landlord capture 62%-86% of the entire benefits from decoupled payments by raising cash rents.

When referring to the equilibrium leasing arrangement, it is interesting to look at the comparison between the equilibrium contract choice with decoupled payments and the choice without the payments under three general circumstances. Assume both parties have CARA preferences and define \(\beta_{i0}^{*} \) and \(\alpha_{i0}^{*} \) as the optimal share rate and cash component of the contract under no decoupled payments. First, if the optimal contract is a share contract (i.e., \(0 < \beta_{i0}^{*} < 1 \), and \(\alpha_{i0}^{*} = 0 \)), the introduction of decoupled payments will change the equilibrium to a hybrid contract, increasing the cash payment to the landlord and keeping unchanged the share rate (\(0 < \beta_{i}^{*} < 1 \) is constant, and \(\alpha_{i}^{*} = 0 - \beta_{i}^{*} \gamma_d < 0 \)). In a second case, if the equilibrium contract with no decoupled payments is a cash contract (\(\beta_{i0}^{*} = 1 \), and \(\alpha_{i0}^{*} < 0 \)), the introduction of decoupled payments would leave the share rate constant and the cash payment to the landlord would increase (\(\beta_{i}^{*} = 1 \), and \(\alpha_{i}^{*} = \alpha_{i0}^{*} - \beta_{i}^{*} \gamma_d < 0 \)). Therefore, the equilibrium contract choice will still be a cash contract; however the cash rent would increase. Finally, if the optimal leasing arrangement is a hybrid contract without decoupled payments, decoupled payments would not change the equilibrium contract type. The cash payments to the landlord would simply increase.
In summary, under the CARA assumption, the introduction of decoupled payments increases the use of hybrid contracts and decreases the use of share contracts. Decoupled payments have no effect on the choice of cash contracts.

On the other hand, if both parties have DARA preferences, decoupled payments will lower the degree of risk aversion. From the solutions in (7) and (8), a cash contract will emerge in the case where the landlord’s degree of risk aversion goes to infinity. Under more general conditions, the direct and indirect effects of decoupled payments on the cash component of the contract \(\alpha_i \) can go in different directions. The net effect depends on the risk preferences of both contracting parties. Table 1 summarizes the effects of decoupled payments on optimal leasing arrangements by risk preferences. The ambiguous causal effect of decoupled payments on leasing arrangement can only be resolved empirically. However, we examine the effects of coupled payments on contract choices before considering the empirical investigation.

A Principal-Agent Model with Coupled Payments

Coupled payments are based on current production and/or market price. Many forms of coupled programs exist in the US. These include price and/or yield support mechanisms and disaster relief programs. For simplicity, we investigate a per-unit production subsidy in this section. As before, the landlord and the tenant share the subsidies in the same proportion as they share output. The per-unit production subsidy rate is \(\phi > 0 \) and coupled support equals \(g_c = \phi y_i \). The landlord and the tenant operator’s payments are \(\beta_i \phi y_i \) and \((1 - \beta_i) \phi y_i \), respectively. Maximizing the objective function defined in (3) accounting for coupled support yields the optimal effort level \(e_i^* = (1 + \phi) \beta_i a_i / k_i \). The optimal share rate and the cash payment that maximize the landlord’s objective function are:
The per-unit production subsidy has a direct impact on income variability and the marginal productivity of effort. These two effects however cancel each other when determining the optimal share rate, which remains constant if no wealth effects are present. Turning our attention to potential wealth effects, coupled payments have an ambiguous impact on the share rate. The effect depends on both the landlord and tenant’s risk aversion. As discussed in the previous section, the optimal share increases towards one as the landlord’s risk aversion increases to infinity. However, coupled support may decrease the landlord’s risk aversion coefficient, which could entail a switch from a cash rental type to hybrid or sharecropping.

Production subsidy payments have a direct impact on optimal cash payments. If $\beta_i^* = \beta_i^*$, the cash payments decrease from $\mu_i - 0.5(1 + \phi)^2 \beta_i^* (c_i - r_i \sigma_i^2)$ to $\mu_i - 0.5(1 + \phi)^2 (\beta_i^* - r_i \sigma_i^2)$, which suggest that cash payments increase as per-unit production subsidies increase. Note that a decrease in cash payments is possible if the wealth effect decreases the landlord’s coefficient of absolute risk aversion.

The impacts of coupled payments on contract choice can differ substantially according to the support types. Coupled payments influence the optimal share rate and cash payments through one or more of the following factors: increases in expected returns, changes in income variability, changes in the (value of) marginal productivity of effort, and impacts on the contracting parties’ degree of risk aversion. Programs that decrease income variability and/or increase a tenant’s effort increase the optimal share rate, thus have a positive effect on the choice of a cash contract, unlike in the current case production subsidies are positively correlated with risk. While the latter
types of programs have not been explicitly modeled, we use the insights of this section to state the hypotheses related to the causal relationship between US coupled farm payments and leasing arrangements.

DATA AND EMPIRICAL MODEL

The data used in this study come from five sources: the 1999 Agricultural Economics and Land Ownership Survey (AELOS), the 1999 Agricultural Resource Management Survey (ARMS), the Regional Economic Information Systems (REIS) dataset for the 1990-1999 period, unpublished county level government program payments data from the United States Department of Agriculture (USDA) over the 1996-1999 period, and county level farmland data from the 1997 Census of Agriculture. In contrast to other studies that only use one source of data (e.g., Huffman and Fukunaga 2008, 2009), we combine the above datasets to increase the explanatory power of the empirical model. The AELOS is an integrated survey of farm finance and land ownership. It includes comprehensive information collected from both tenants and landlords. Each observation in this dataset represents a unique contractual relationship between a landlord and a tenant operator.

The ARMS is a national survey that provides observations of farm-level production practices, economic attributes, and operator households’ characteristics. We use this dataset to obtain information about rented farms, as well as additional operator characteristics that may impact the leasing arrangements. The REIS contains economic data and annual estimates of personal income for the residents of the entire nation as well as states, metropolitan areas, and counties. We obtained the county level farm income (cash receipts from marketing) data from REIS and county level farmland acres from the 1997 Agricultural Census.
We refine the combined dataset following these steps. First, we focus on the landlords who have only one renter. This accounts for 92% of the entire dataset. Second, some outliers (less than 2% of the available sample) are excluded from the analysis because they represent atypical situations (for example, landlords reporting land rent exceeding $2,000 per acre). Third, because crop farm producers are the main recipients of farm subsidies, farms that reported livestock product sales that exceeded 50% of their farm sales are excluded. Farms for which more than 50% of total sales were nursery products, fruits, or vegetables are also dropped from the sample. After this selection procedure, a total of 16,117 observations remain for the analysis. In the AELOS dataset, each landlord/operator observation has a different weight to represent their weight in the underlying population, as if a complete census had been carried out.\(^5\) We present the weighted results in this article.

We address the choice of leasing arrangements using a multinomial Logit (MNL) model, appealing to the concept of random utility derived by individual \(n\) from a set of \(j = 1, \ldots, J\) different alternatives (Train, 2003):

\[
U_{nj} = V_{nj} + \varepsilon_{nj}, \quad \forall \ j,
\]

where \(V_{nj}\) represents information that is known by researchers and \(\varepsilon_{nj}\) is the unobservable component of utility.

Let \(\mathbf{x}\) be a vector of individual-specific characteristics and \(\mathbf{\beta}\) a corresponding vector of estimated coefficients. If \(\varepsilon_{nj}\) is unknown but follows a logistic distribution, the choice probability is (Long and Freese 2006):

\[
P_{nj} = \frac{\exp(\alpha_{jnb} + \mathbf{x}_{jnb} \cdot \mathbf{\beta})}{\sum_{j=1}^{J} \exp(\alpha_{jnb} + \mathbf{x}_{jnb} \cdot \mathbf{\beta})},
\]
where \(b \) refers to the base alternative which is defined here as a “share contract” here. We normalize \(\alpha_{bb} = 0 \) and \(\beta_{bb} = 0 \) so that the log of the odds of an alternative compared with itself is always zero.

The log likelihood function for the MNL model is:

\[
\ln L(\beta) = \sum_{n=1}^{N} \sum_{j=1}^{J} d_{nj} \ln P_{nj}.
\]

The indicator vector \(d_{nj} \) equals 1 if individual \(n \) chooses alternative \(j \), and equals zero otherwise.

Model Specification

In the following empirical investigation, we use a generalized MNL model with an alternative-specified constant (Train 2003). Each observation in the dataset constitutes a landlord and tenant operator pair (landlord-tenant hereafter) who is involved in a specific farmland contract. The landlord-tenant chooses a contract among three alternatives: a cash contract, a share contract, or a hybrid contract. The decision is made conditional on a set of independent variables which are specific to the landlord-tenant pair \(n \) and are included in the vector \(x_n \). This vector can be decomposed into four different parts that include farm program payments, farming risk and risk preferences, tenant operator’s effort productivity, and other factors, each of dimension \(I_G \), \(I_R \), \(I_P \), and \(I_M \), respectively. Alternatives are assumed to be mutually exclusive. The utility function can be written as:

\[
V_{n,ib} = \alpha_{ib} + \sum_{g=1}^{I_G} \beta_{gib} \text{GovP}_{n,g} + \sum_{r=1}^{I_R} \beta_{rib} \text{Risk}_{n,r} + \sum_{p=1}^{I_P} \beta_{pib} \text{EffP}_{n,p} + \sum_{m=1}^{I_M} \beta_{mib} \text{Other}_{n,m}.
\]

The subscript \(i \) in (14) refers to either the “cash” or the “hybrid” contract. The parameter \(\alpha_{ib} \) is the \(i^{th} \) alternative specific constant which can be interpreted as the average effects of
unobserved factors. The variables $GovP_{c,g}$ are subsidies (per acre) received from government program g. The variables $Risk_{n,r}$ are proxies to capture farming risk and both parties’ risk preferences. One potential proxy candidate for risk is the coefficient of variation (CV) for farm income at the individual farm level. However, this may raise endogeneity concern if the individual CV is correlated with unobserved farm characteristics, such as land attributes. Therefore, we use the per-acre CV of cash receipts in the county where the individual farm is located over a ten-year period. A tenant operator’s risk preference is represented by household’s wealth measured using all assets. On the landlord’s side, we do not have access to this variable. We follow Goodwin and Mishra (2005) and use whether the landlord purchased insurance for the target farm as a proxy to the landlord’s risk preference. The variables $EffP_{n,p}$ represent the tenant operator’s productivity. We employ farming experience to capture the tenant operator’s effort productivity. The variables in $Other_{n,m}$ include different factors such as landlord’s residence and the farm type.

Government program payments include six components. They are the Production Flexibility Contract (PFC) payments, the Market Loss Assistance (MLA) payments, the Loan Deficiency Payments (LDP), Agricultural Disaster Payments (which include all market loss or disaster assistance payments, but exclude Federal Crop Insurance indemnity and other indemnity payments), the Conservation Reserve Program (CRP), and a final category including all other minor program payments. As discussed in the conceptual framework section, decision makers use expectations of future payments to determine the contract type. PFC payments are known with certainty. However, disaster, MLA, and LDP payments are not predetermined. They are triggered by market and production conditions. Measurement issues arise if actual reported payments are used to represent expectations as noted in Goodwin, Mishra, and Ortalo-Magne
(2003a). To control a potential errors-in-variables problem, we follow their approach and use a four-year county average of payments to proxy expected program subsidies. Future PFC payments are decoupled and known in advance of when a contract is signed. Therefore, we use realized farm-level payments to represent expected future payments.

Table 2 presents the definition of key variables and summary statistics. In the crop farm sample, 57% of farmland contracts were on a cash basis while 18% were share contracts. The remaining 25% were hybrid contracts, making the latter form of marketing arrangement more popular than pure share contracts for crop farms. From 1996 to 1999, farms received $13.10 PFC payments per acre on average at the county level. The corresponding MLA, LDP, and Disaster payments were $9.41, $9.64, and $1.77 per acre on average. Finally, the county average CRP payments were $2.44 per acre. All monetary values were adjusted by the consumer price index to represent 2004 dollars. Tenant operators had 25.6 years farming experience on average. Fifty-seven percent of landlords lived in a rural area and 39% of landlords are defined as absentee landowners and lived in an urban area. Principle crop farms –defined as oilseed and grain farms –account for 68% of the crop farm sample.

Expected Impacts of Key Factors on Contract Choices

The PFC payments are decoupled subsidies which are independent of current production and market price. The impacts of decoupled payments on leasing arrangements are summarized in Table 1. More specifically, when the wealth effects are small or negligible, the PFC payments will entice agents to move from a share contract to a hybrid contract and thus will redistribute the benefits between contracting parties. The MLA, LDP, and disaster assistance programs are coupled and are associated with current production and/or market conditions. When wealth effects are negligible, we can expect the following impacts of program payments
on the contract choice. The coupled programs (MLA, LDP, and disaster) lower income variation and have a positive effect on the optimal share lease rate. Thus, they raise the probability of selecting a cash contract. However, if a wealth effect influences the degree of risk aversion of both parties, the effects of program payments can have opposite impacts. In general, government programs can shift incentives to use a particular type of contractual arrangement and can redistribute income and risk between the landlord and tenant. The CRP is a special type of program when considering the impacts of government payments on leasing arrangements. In most cases, payments are not related to the leased land. Tenant operators receive payments from their own land. The CRP pays land owners annual rents to set their land aside under a ten to fifteen year lease agreement. Land committed to CRP must be removed from production. Because the CPR payments usually do not involve rented land, they do not affect the landlord’s incentives. However, they may have an impact on the contract choice by affecting the tenant’s degree of risk aversion (through wealth effects). According to the optimal share rate derived in (7), risk is expected to have a negative impact on the optimal share rate. Thus, it reduces the probability of choosing a cash contract.

One concern at the empirical stage is the possibility that a particular type of principals contracts with certain types of agents, a phenomenon dubbed endogenous matching by Ackerberg (2002). Ackerberg argues that if: 1) there exist incentives for particular parties to contract with a specific subset of the other parties (e.g., a risk-averse tenant being more likely to contract with a risk neutral landlord); and 2) some characteristics (e.g., landlord’s risk preference) of contracting parties are not observable, explaining the outcome may involve a possible bias if the endogeneity is not addressed. To investigate this possibility, we carried out a two-stage regression procedure that involves in the first stage, regressing the tenant operator’s risk preference (represented by all assets owned by the farm household) on the landlord’s risk
preference (proxied by purchase of insurance) and other exogenous factors may that may have an impact on matching (e.g., contracting parties age). We found no significant correlation between the contracting parties’ risk preferences. In a second stage, we use the predicted value of the tenant operator’s risk preference proxy and estimate the multinomial logit model. The results from the second stage are quite similar to the uncorrected MNL estimation results which does not control for endogenous matching. Intuitively, the similarity between the results is consistent with prior studies (e.g., Sherrick and Barry 2003; Allen and Lueck 2002) that emphasize how contracts emerge from long-run business relationship due to close ties between the landlord and the tenant. Therefore, it is not unreasonable to treat the matching of contracting parties as exogenous to the leasing arrangements in the US farmland market.

In the US, a tenant operator normally contracts with several different landlords (on average, one tenant operator contracted with four landlords in 1999). Some correlation among observations from the same tenant operator may exist. Therefore, clustered robust standard errors are used and based on the tenant operator’s id number in this article. The logit model implicitly imposes the Independence of Irrelevant Alternatives (IIA) assumption which states that the probability of choosing among two alternatives is unaffected by the presence of additional alternatives. We test the IIA using the Chi-Square test statistic proposed by Hausman and McFadden (1984). We are not able to reject the null hypothesis that the IIA assumption is valid at a high level of significance. Tests for combining alternatives (Long and Freese 2006) are also computed to examine if hybrid contracts are distinguishable from share and cash contracts. The Wald tests reject the hypothesis that any two of the alternative contracts are indistinguishable at a 0.01 level.
RESULTS

Table 3 reports the estimates of the coefficients in the three-alternative MNL model while Table 4 reports the marginal or discrete changes in predicted probabilities for each alternative derived from the estimates in Table 3.

Government Program Payments

Recall that program payments are measured in 2004 dollars. Not surprisingly, the change in the predicted probability following a dollar increase is small. Therefore, we report the effects of a standard-deviation change in Table 4. We define a standard deviation increase (centered on the mean) as one unit change when we refer to the marginal/discrete effects. Table 4 shows evidence that the PFC payments have a positive impact on the selection of hybrid contracts and a negative effect on share contracts. When a PFC payment increases by one unit, the probability of choosing a hybrid contract increases by 1.1% and the probability of choosing a share contract decreases by 3.7%. This is consistent with the theoretical explanation that landlords are more likely to capture the program benefits through a hybrid contract.

The impact of decoupled payments on choosing a cash contract is positive. A direct payment changes the wealth level and decreases risk aversion under DARA-type preferences. Both the disaster payments and the loan deficiency payments encourage the choice of a cash contract by reducing the income volatility as is summarized in Table 1. If a tenant operator receives an additional unit of loan deficiency payments, the probability of choosing a cash contract increases by 0.6%. The predicted probability of choosing a cash contract is 4.9% higher following a one unit increase in the tenant operator’s disaster payments. Meanwhile, both the LDP and the disaster assistance payments decrease the probabilities of choosing a share contract. In contrast, the MLA payments have negative impacts on the cash contract choice. The marginal
effects of the MLA payments on both the cash and share contracts are the largest among all government programs. Getting an additional unit of MLA payments decreases the probability of choosing a cash contract by 6.5%. The extent of LDP and disaster payments was determined by the 1996 Farm Bill. However, the MLA was determined outside of the Farm Bill. In 1998, the prices of many crops declined significantly. Congress authorized about $13.8 billion as emergency MLA payments (trigged by low market price, but based on historic base acreages) to help farmers deal with income losses. Therefore, MLA actually targeted higher risk farms/crops. This would in turn make MLA correlated with higher risk (high cv) and thus have negative impacts on the optimal share rate (i.e., a decrease in the probability of choosing a cash contract).

The impacts of CRP payments on the landlord-tenant contract choices are found to be insignificant. The “other” payment category reveals a positive impact on the choice of a cash contract and negative impact on a hybrid or a share contract.

In conclusion, the results indicate that benefits from all five main US farm support programs (with the exception of MLA) have positive effects on the choice of a cash contract. Conversely, the impacts on the probability of selecting a hybrid or a share contract differ depending on the specifics of the program. Most programs have negative impacts on the probability to observe a share contract. Decoupled payments encourage the use of hybrid contracts relative to share contracts. The impacts of program payments on contract choices show that risk-sharing and benefit distribution are important determinants of farmland leasing arrangements.

Risk and Risk Preference

The results in Table 4 provide evidence that risk sharing is an important determinant of leasing arrangements. Risk (as proxied by the CV variable) has a negative effect on the choice of a cash
contract \((\beta^* \text{ decreases as } \sigma^2 \text{ increases})\). A standard deviation increase in the coefficient of variation will reduce the probability of choosing a cash contract by 3.6%, and increase the probability of choosing a hybrid contract and a share contract by 1.6% and 2.0, respectively. The tenant operator’s wealth is found to be a significant variable in the MNL model. It indicates that the wealthier (and thus less risk averse under DARA) the tenant is, the more likely the resulting leasing arrangement is a cash contract \((\beta^* \text{ increases as } r_i \text{ decreases})\). The probability of choosing a cash contract increases by 8.0% when the tenant’s wealth increases by one unit while the probability of choosing a share contract decreases by 10.2%. The landlord’s purchase of insurance is found to be a significant determinant of contract choices. The results show that if a landlord purchases crop insurance for the rented farm (denoting possible risk aversion), he/she is less likely to choose a cash contract. This is not consistent with the intuition summarized in table 1. We expected that a risk-averse landlord would be more likely to choose a cash contract. One possible explanation is that the purchase of insurance indicates a more risky farming activity \((\sigma^2 \text{ is large})\) which deters the use of cash contracts.

Productivity of Effort

The tenant operator’s farming experience is not found to be a significant determinant of the landlord-tenant’s contract choice.

Other Attributes

Table 4 also reports that a landlord living in a rural area is more likely to choose a cash contract than those who live in an urban area. The evidence supports the transaction cost hypothesis proposed by Allen and Lueck (2002) which states that an absentee landlord is more likely to choose a share contract, under which the tenants’ incentive to overuse the land is smaller than
under a cash contract. It does not lend support to the transaction cost hypothesis that an absentee landlord is less likely to choose a share contract since the cost of monitoring is relatively high (e.g., Cheung 1969). The results show that the farm type significantly affects contract choices as well. If the target crop farm belongs to a principle crop farm type (i.e., oilseed and grain farms), the probability of choosing a hybrid contract increases 9.8%.

CONCLUSIONS
This paper provides a simple conceptual model to evaluate the impacts of government programs on contract choices in agriculture. The result shows that exogenous legal restrictions on the distribution of program benefits between contracting parties, such as the restriction on the direct payments distribution between landlords and sharecroppers under the 1996, 2002, and 2008 Farm Bills, can cause an offsetting contractual rearrangement in order to restore the benefit distribution to the unrestricted level. The increasingly common use of hybrid contracts (and decreasing use of share contracts) on crop farms is a form of this contractual rearrangement. We use data from a variety of sources to empirically analyze the determinants of contract choices using a multinomial logit (MNL) model with alternative-specified constants. The results confirm that different policy mechanisms have different effects on the farmland contract choices. More specifically, we find that a one standard deviation unit increase in the PFC (decoupled) payments increases the probability of using a hybrid contract 1.12% and decreases the probability of selecting a share contract by 3.72%. Other farm programs are also found to be significant determinants of leasing arrangements. Their effects vary by the types of programs. Risk-sharing incentives are important determinant of contract choices.

This study generates two important policy implications. First, it illustrates the potential biases that may arise when restricting the set of potential leasing arrangements to only cash
contracts and sharecropping. Introducing hybrid contracts into the analysis is especially important to understanding the impact of program payments on leasing arrangements. Second, the analysis suggests that governmental and legal restrictions on benefit sharing between contracting parties are ineffective and induce offsetting contractual rearrangements. The increasing use of hybrid contracts likely reflects a redistribution of program benefits between contracting parties. Most existing empirical research that analyzes the distribution of program benefit between landlords and tenants effects focuses on the cash rental contracts (e.g., Lence and Mishra 2003). Only a few studies examine the benefit distribution under share contracts (e.g., Goodwin, Mishra, and Ortalo-Magne 2009). Future studies may find it helpful to consider different types of contracts, especially hybrid contracts.
Table 1. Effects of Decoupled Program Payments on Contract Choices

<table>
<thead>
<tr>
<th>Program payments</th>
<th>Risk preference</th>
<th>Effect</th>
<th>Optimal share rate β_i^*</th>
<th>Optimal cash-part payments α_i^*</th>
<th>Effects on contract choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>No program payments</td>
<td></td>
<td></td>
<td>$1 - \frac{r_i \sigma_i^2}{c_i + (r_i + r_i)\sigma_i^2}$</td>
<td>$\mu_i - \frac{1}{2} \beta_i^{*2} (c_i - r_i \sigma_i^2)$</td>
<td>Cash: $\beta_i^* = 1$ $\alpha_i^* = 0$ Hybrid: $0 < \beta_i^* < 1$ $\alpha_i^* < 0$ Share: $0 < \beta_i^* < 1$ $\alpha_i^* = 0$</td>
</tr>
<tr>
<td>Both CARA direct</td>
<td>NO</td>
<td>–</td>
<td>NO</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>indirect</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Both DARA direct</td>
<td>NO</td>
<td>–</td>
<td>NO</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>indirect</td>
<td>+/−</td>
<td>+/−</td>
<td>+/−</td>
<td>+/−</td>
<td>+/−</td>
</tr>
<tr>
<td>TO CARA LL DARA direct</td>
<td>NO</td>
<td>–</td>
<td>NO</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>indirect</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+/−</td>
<td>+/−</td>
</tr>
<tr>
<td>TO DARA LL CARA direct</td>
<td>NO</td>
<td>–</td>
<td>NO</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>indirect</td>
<td>+</td>
<td>–</td>
<td>+/−</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Note.— TO refers to the tenant operator and LL represents the landlord.
Table 2. Summary Statistics (N=16,117)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-1999 County average program payments ($/acre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td>Production flexibility contract payments</td>
<td>13.10</td>
<td>8.70</td>
</tr>
<tr>
<td>MLA</td>
<td>Market loss assistance payments</td>
<td>9.41</td>
<td>6.16</td>
</tr>
<tr>
<td>LDP</td>
<td>Loan deficiency payments</td>
<td>9.64</td>
<td>7.14</td>
</tr>
<tr>
<td>Disaster</td>
<td>Disaster payments</td>
<td>1.77</td>
<td>2.31</td>
</tr>
<tr>
<td>CRP</td>
<td>Conservation reserve program payments</td>
<td>2.44</td>
<td>2.63</td>
</tr>
<tr>
<td>Other</td>
<td>Other payments</td>
<td>0.15</td>
<td>0.90</td>
</tr>
<tr>
<td>Risks and risk preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>10-year County average coefficient of variation of cash receipts (per acre) from market</td>
<td>0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>Allassets_t</td>
<td>Value of the tenant operator’s all assets</td>
<td>1.56E6</td>
<td>4.14E5</td>
</tr>
<tr>
<td>Insurance_l</td>
<td>1 if landlord’s purchase insurance for the target farm</td>
<td>0.32</td>
<td>0.47</td>
</tr>
<tr>
<td>Tenant operator’s effort productivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FarmingExp</td>
<td>Tenant operator’s farming experience</td>
<td>25.59</td>
<td>12.89</td>
</tr>
<tr>
<td>Other factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural_l</td>
<td>1 if landlord lives in a rural area</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>Urban_l</td>
<td>1 if landlord lives in an urban area</td>
<td>0.39</td>
<td>0.48</td>
</tr>
<tr>
<td>Ft_main</td>
<td>1 if the farm type is a principle crop farm (oilseed and grain farming)</td>
<td>0.68</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Table 3. Maximum Likelihood Estimation of MNL Models of Contract Choice

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Choice</th>
<th>Coef</th>
<th>Robust Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-1999 County average program payments ($/acre)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td>Cash</td>
<td>0.012*</td>
<td>0.003</td>
</tr>
<tr>
<td>PFC</td>
<td>Hybrid</td>
<td>0.012*</td>
<td>0.003</td>
</tr>
<tr>
<td>MLA</td>
<td>Cash</td>
<td>-0.067*</td>
<td>0.014</td>
</tr>
<tr>
<td>MLA</td>
<td>Hybrid</td>
<td>-0.044*</td>
<td>0.015</td>
</tr>
<tr>
<td>LDP</td>
<td>Cash</td>
<td>0.026*</td>
<td>0.013</td>
</tr>
<tr>
<td>LDP</td>
<td>Hybrid</td>
<td>0.041*</td>
<td>0.013</td>
</tr>
<tr>
<td>Disaster</td>
<td>Cash</td>
<td>0.075*</td>
<td>0.033</td>
</tr>
<tr>
<td>Disaster</td>
<td>Hybrid</td>
<td>0.008</td>
<td>0.038</td>
</tr>
<tr>
<td>CRP</td>
<td>Cash</td>
<td>-0.008</td>
<td>0.029</td>
</tr>
<tr>
<td>CRP</td>
<td>Hybrid</td>
<td>-0.020</td>
<td>0.026</td>
</tr>
<tr>
<td>Other</td>
<td>Cash</td>
<td>0.196*</td>
<td>0.073</td>
</tr>
<tr>
<td>Other</td>
<td>Hybrid</td>
<td>0.107</td>
<td>0.008</td>
</tr>
<tr>
<td>Risks and risk preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>Cash</td>
<td>-2.839*</td>
<td>0.962</td>
</tr>
<tr>
<td>CV</td>
<td>Hybrid</td>
<td>0.694*</td>
<td>0.942</td>
</tr>
<tr>
<td>Allassets_t</td>
<td>Cash</td>
<td>1.88E-07*</td>
<td>5.74E-08</td>
</tr>
<tr>
<td>Allassets_t</td>
<td>Hybrid</td>
<td>1.79E-07*</td>
<td>5.62E-08</td>
</tr>
<tr>
<td>Insurance_l</td>
<td>Cash</td>
<td>-0.913*</td>
<td>0.097</td>
</tr>
<tr>
<td>Insurance_l</td>
<td>Hybrid</td>
<td>-0.593*</td>
<td>0.091</td>
</tr>
<tr>
<td>Tenant operator's effort productivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FarmingExp</td>
<td>Cash</td>
<td>-7.11E-05</td>
<td>2.38E-04</td>
</tr>
<tr>
<td>FarmingExp</td>
<td>Hybrid</td>
<td>4.80E-04</td>
<td>0.088</td>
</tr>
<tr>
<td>Other Factors May Affect the Contract Choice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rual_1</td>
<td>Cash</td>
<td>0.325*</td>
<td>0.087</td>
</tr>
<tr>
<td>Rual_1</td>
<td>Hybrid</td>
<td>0.037*</td>
<td>0.087</td>
</tr>
<tr>
<td>Ft_main</td>
<td>Cash</td>
<td>-0.229</td>
<td>0.202</td>
</tr>
<tr>
<td>Ft_main</td>
<td>Hybrid</td>
<td>0.429*</td>
<td>0.200</td>
</tr>
<tr>
<td>Constant</td>
<td>Cash</td>
<td>1.259*</td>
<td>0.197</td>
</tr>
<tr>
<td>Constant</td>
<td>Hybrid</td>
<td>-0.396</td>
<td>0.238</td>
</tr>
</tbody>
</table>

N=957,660 (weight used)

Log pseudo-likelihood = -90,959.6

Note: The asterisks (*) indicate that a coefficient is significantly different from zero at 0.05 or smaller level.
Table 4. Marginal and Discrete Changes on the Predicted Probabilities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Marginal and Discrete Changes in Predicted Probabilities (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt of program payments in 1999</td>
<td>Cash</td>
</tr>
<tr>
<td>PFC</td>
<td>+sd/2</td>
</tr>
<tr>
<td>MLA</td>
<td>+sd/2</td>
</tr>
<tr>
<td>LDP</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Disaster</td>
<td>+sd/2</td>
</tr>
<tr>
<td>CRP</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Other</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Risks and risk preferences</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Allassets_t</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Insurance_1</td>
<td>0→1</td>
</tr>
<tr>
<td>Tenant operator's effort productivity</td>
<td></td>
</tr>
<tr>
<td>FarmingExp</td>
<td>+sd/2</td>
</tr>
<tr>
<td>Other factors</td>
<td></td>
</tr>
<tr>
<td>Rual_1</td>
<td>0→1</td>
</tr>
<tr>
<td>Ft_main</td>
<td>0→1</td>
</tr>
</tbody>
</table>

Note: +sd/2: change in predicted probability as x changes from ½ standard deviation below base to ½ standard deviation above.
REFERENCES

Imperfect Information” In J. Roumasset, ed. Risk, Uncertainty and Agricultural Development.

Contemporary Issues.” In C. Moss, and A. Schmitz, eds. Government Policy and Farmland

Press.

Agricultural Economics and Land Ownership Survey (AELOS 1999). Internet Website:
http://www.nass.usda.gov/census/census97/aelos/aelos.htm

Environmental Quality Incentives Program. Internet Website:
http://www.nrcs.usda.gov/PROGRAMS/EQIP/
Endnotes

1 In what follows, we use a relatively narrower definition of the hybrid contract as one that consists of a predetermined share percentage plus a fixed cash payment.

2 Tenant operators include pure-tenant operators, who rent all of the operating farmland from others; and part-owner operators, who own part of the operating farmland and rent part of the land from others.

3 We assume that transaction costs for renegotiating contracts are zero.

4 Cheung (1969, chapter 5) reaches a similar conclusion.

5 For more information about the calculation of these weights, see General Explanation for Agricultural Economics and Land Ownership Survey (1999), which is available at: www.nass.usda.gov/census/census97/aels/appdx-a.pdf

6 Market Loss Assistance payments were introduced in 1998 and we use the 1998-1999 average annual payments. For other programs, we use 1996-1999 average annual payments.