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Uncertainty Discounting for Land-Based

Carbon Sequestration

Man-Keun Kim and Bruce A. McCarl

The effect of stochastic factors on soil carbon makes the quantity of carbon generated under a
sequestration project uncertain. Hence, the quantity of sequestered carbon may need to be
discounted to avoid liability from shortfalls. We present a potentially applicable uncertainty
discount and discuss difficulties that might arise in empirical use. We insist that the variance
in historical crop yields across geographical areas is used to derive a proxy variance for
forming an uncertainty discount for carbon projects. Application of our approach suggests
that project level uncertainty discounts would be 15–20% for the East Texas region.
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Reduction of atmospheric carbon dioxide (CO2),

a major greenhouse gas (GHG), is central to

addressing the climate change problem and in the

formation of policies that aim to limit atmo-

spheric GHG levels (see discussion in IPCC

2007a,b). Land-based carbon sequestration—a

process whereby plants and trees, through pho-

tosynthesis processes, trap atmospheric CO2 and

fix carbon into soil and plant body mass—has

drawn attention as a strategy for GHG reduction.

If GHG emissions reductions are pursued, a

carbon market may be created as advocated for

example in the Kyoto Protocol (UNFCCC) or

potential legislation like Lieberman-Warner bill

(Lieberman and Warner Bill) where entities se-

questering carbon may be able to generate GHG

reduction credits that buying emitters can use to

offset their emissions (as discussed in Butt and

McCarl; Kim and McCarl).

Various studies have explored the potential

of land-based carbon sequestration strategies

such as afforestation, reforestation and other

land use changes (Adams et al.; Parks and

Hardie; Plantinga, Maudlin, and Miller; Sta-

vins; McCarl and Schneider; Lewandrowski

et al.; USEPA; Lubowski, Plantinga, and Sta-

vins; Antle et al.).1 These studies not only show

considerable potential for soil based seques-

tration, but also indicate that the strategy might

achieve GHG reduction targets at a lower cost

compared with other alternatives such as de-

veloping emission abatement technologies (see

Table 1 for a brief summary of the studies).

From an agricultural producer’s point of view,

the GHG emission credit price would be a pay-

ment that would offset the cost of implementing a

carbon sequestration project. The project cost
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1 There are two major classes of land related se-
questration practices that can be employed to offset
GHG emissions involving changes in land management
and changes in land use (IPCC 2000). The commonly
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mix, tillage systems, nutrients applied, and residue
management. Changes in land use involve conversion
of croplands to grassland, pasture, or forest uses.
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would be any foregone net income arising from

altered production plus any added cost to adopt

the sequestering practices. The potentially salable

quantity of GHGs would equal the net volume

sequestered plus any associated net GHG reduc-

tion from altered fossil fuel usage, if any. How-

ever, as argued in the next section, there also may

be uncertainty discounts that should be consid-

ered. Most previous studies generally ignore un-

certainty discount and thus may overestimate the

salable credits and revenues arising from a carbon

sequestration practice. Thus it is important to

assess the magnitude of uncertainty discount to

formulate the correct economics of a carbon

sequestration project. This paper presents a con-

fidence interval based uncertainty discount ap-

proach motivated by the Canadian suggestion in

the international negotiations and then presents an

empirical application in the context of a potential

Eastern Texas project.

Uncertainty Sources

There are a variety of ways uncertainties arise in

regards to the carbon sequestered by sequestration

projects. Namely, Birdsey and Heath, as well as

and Heath and Smith argue that the sources of

uncertainty include:

d Climate and other factors such as pests,
fire, and so on that induce annual pro-
duction variability in the quantity of car-
bon sequestered at a location;

d Aggregation induced sampling error at a
regional scale;

d Carbon pool measurement error; and
d Intertemporal variation in the duration

and permanence of carbon sequestered in
the future.

Uncertainty in the quantity of carbon se-

questered exposes a purchaser of carbon credit to

the risk of having the quantity sequestered falling

below the claimed level, causing the purchaser to

be out of compliance with regulatory limits and

having to pay penalties. Under many environ-

mental trading schemes, penalties are imposed

for shortfalls. For example, within the US sulfur

dioxide (SO2) trading scheme, the penalty for

excess emissions of SO2 is set at $2000/ton times

an annual adjustment factor that translates into an

amount which is more than 10 times the observed

price of emission rights (Seton’s EH&S Compliance

Table 1. Brief Summary of Economic Studies of Carbon Sequestration for U.S.

Study Activity Region

Potential

(MMTC/year)

Cost of Carbon

Sequestration ($/ton)

Adams et al. Forest plantation U.S. 640 20–61

Parks and

Hardie

Afforestation of crop

and pasture land

U.S. 150 5–90

Stavins Afforestation U.S. Delta states 7 0–6

U.S. 518 60–136

Plantinga,

Maudlin,

and Miller

Afforestation Maine 2.5 0–250

South Carolina 14 0–40

Wisconsin 40 0–85

McCarl and

Schneider

Reduced tillage U.S. 70 10–500

Afforestation 183 10–500

Biofuels 156 10–500

Lewandrowksi

et al.

Afforestation U.S. 8.5–133 10–125

Conservation tillage 1–26.9 10–125

Change from crops to

permanent grass

0 10–125

Lubowski,

Plantinga,

and Stavins

Afforestation U.S. 1700 7–275

Antle et al. Reduced fallow and

conservation tillage

Central U.S. 0.9–7.9 10–200
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Resource Center). This creates substantial in-

terest on behalf of the purchaser, directed to-

ward ensuring that the potential offset credits

acquired can be safely relied upon to exceed the

environmental commitments.

The risk of being out of compliance with

commitments might lead a purchaser to dis-

count the carbon offset quantity that arises from

a project so as to provide additional safety in

the face of uncertainty. Economically, the level

of such a discount would be based on the trade-

off between the costs of securing additional

certainty and the costs of being out of compli-

ance. The form of an uncertainty discount can

be based on the standard statistical confidence

interval concept where the creditable amount is

a reduction from the expected amount based on

the standard error of the sequestration amount.

While applying the confidence interval con-

cept, one must consider the characteristics of

the carbon contract that may have an important

bearing on the uncertainty; mainly spatial and

temporal aggregation as discussed below:

d Spatial aggregation: The biophysical na-
ture of carbon sequestration and the need of
potential emitting entities suggest that car-
bon contracts might involve aggregation of
multiple sites generating carbon credits.
West and Post show that on average an acre
of land when subjected to a tillage change
yields about 0.25 tons of carbon per acre
per year (equivalently 0.92 tons of CO2 per
acre per year). In contrast, power plants emit
larger volumes of CO2 and may need larger
volumes of credits like 10,000 or 100,000
tons of carbon as frequently mentioned at
various forums. Thus, a contract for 100,000
tons may require 800 farms of an average
farm size of 500 acres (note that the US
average farm size is about 440 acres, USDA).

d Temporal aggregation: Looking for new
sources of carbon credits and signing new
contracts involves transaction cost, which is
an addition to the price paid for the credits.
To keep the overall compliance costs low, it
is likely that an emitting entity would sign
multiyear contracts with the same group of
carbon credit suppliers (Butt and McCarl).

Project commitments spanning over a num-
ber of years are also expected due to the
impermanence characteristics of carbon,
where the sequestered carbon might revert
back to the atmosphere if sequestering
practices are discontinued (Kim, McCarl,
and Murray). Preserving the carbon seques-
tered in the soil over time would require
multiyear contracts.

Thus, a sequestration contract by a purchaser

would arise over a wide spatial area and for a

number of years and not from an individual plot

or field or farm for just one year. As such, the

uncertainty in the cumulative stock of carbon

generated at a project level for the entire length of

the contract is of relevance when signing a con-

tract. Therefore, when estimating the uncertainty

discount, spatial and temporal correlation should

be accounted for. In the sections that follow, we

first present the confidence interval approach for

estimating an uncertainty discount and then dis-

cuss how spatial and temporal correlation is in-

corporated in estimating the discount.

Confidence Interval Approach to an

Uncertainty Discount

Standard statistical theory prescribes a formula

for developing a certainty level of carbon gen-

erated (Ql) as a function of the mean ( �Q),

standard deviation (s) and a distribution based

multiplier za that is a function of the desired

level of confidence (a) for Ql. In statistical

terms, we can estimate a lower limit of the

quantity of carbon generated for a desired con-

fidence level as shown in equation (1) below:

(1) Ql 5 �Q� za � s.

Such a formula, in a one tailed context, reduces

the amount of the uncertain quantity until

one reaches a level that exhibits a particular

probability level (a) that Ql or more will be

produced. Frequently, this involves a normality

assumption where for example a za value of

1.64 implies a 5 95%.2 One can also convert

2 Distribution free assumptions can be used where
under Chebyshev’s inequality a za value of 4:47 5

1=
ffiffiffiffiffiffiffiffiffi

0:05
p

also implies a 95% confidence interval.
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this formula to coefficient of variation (CV)

where CV 5 = �Q and the formula for Ql be-

comes: Ql 5 �Q� za � CV � �Q 5 �Qð1� za �
CVÞ which is the form we will use and uncer-

tainty discount factor would be za � CV .

Potential use of this formula raises the is-

sues of

d What size of a and in turn za would one use.
d How big is CV and how does one develop

a CV estimate.

Size of a and in Turn za

Generally the uncertainty discount would be

tied to buyer preferences and the trade-offs

between the costs of assuring additional cer-

tainty and the costs of exposing oneself to the

risk of shortfall. In the absence of working di-

rectly with decision makers, we will use alter-

native confidence levels 80%, 90%, and 95%

that surround the Canadian proposal, which

recommends that offsets should be reported

with 90% certainty.

The establishment of the za level then de-

pends on the adoption of a distributional as-

sumption. We will assume that the total product

of the contract is normally distributed. The

rationale for the normality assumption arises

from the Central Limit Theorem (CLT). The

total quantity of carbon credits purchased will

be the sum of contributions from many indi-

vidual sites over a number of years leading to a

large number of observations paving the way

for the application of CLT. The theorem asserts

that the distribution of a sample mean is nor-

mally distributed as long as the independence

assumption holds or, following Moore and

McCabe (pp. 398–402), as long as the sample

observations are not too strongly associated.

Furthermore, while such an assumption is

convenient, it is not essential as the confidence

interval approach can be used with alternative

distributional assumptions and thus one just

needs to develop consistent values of za.

Size of CV

The CV is based on the mean and standard

deviation. The standard deviation is commonly

estimated based on field experiments (see the

estimates in West et al.) or from simulation

models. Typically, such estimates are summa-

rized in terms of the variation in the annual

accumulation rates for a single site, which do

not fully incorporate spatial and temporal cor-

relation in factors that affect the quantity of

carbon sequestered over multiple sites and

multiple years. To be consistent with the likely

multisite, multiyear nature of carbon contracts,

the CV should be based on carbon generated

from multiple sites across multiple years con-

sidering spatial and temporal correlation of

factors that affect soil carbon.

Statistically, if all sites were alike and in-

dependent with a field level standard deviation

of (population) s and exhibited independent

distributions across sites and time where n ob-

servations were obtained, then the CLT indicates

that the standard deviation for the average

amount of carbon would be the standard error at

each site divided by square root of the sample

size, s=
ffiffiffi

n
p

(Moore and McCabe, p. 398).

Therefore, we expect the standard deviation to

decrease substantially with aggregation over sites

and years, and the same is true for the uncertainty

discount.

While our derivation of the contract level CV

employs the assumption of independence of

quantities of carbon sequestered across sites and

time, the assumption is unlikely to hold. Com-

mon weather and biophysical characteristics of

sites are likely to introduce correlation in the

quantity of carbon across sites and over time.

The problem of sizing the CV then becomes the

problem of estimating the CV across the whole

aggregate sample, for which one either needs

such data or some way to develop a proxy CV.

Specifying the CV at the Project Level

Estimating a CV level that accounts for the

project level spatial and temporal correlations

in the quantity of carbon leads to the question

of how one can get such an estimate. There

might be three possible ways:

(i) Actual field measurements,
(ii) Data from biophysical simulations, or,

(iii) Use of a proxy distribution.

Journal of Agricultural and Applied Economics, April 20094



Field Measurement

To obtain the distribution of the quantity of

carbon sequestered from field measurements,

one can measure carbon stocks at alternative

locations and over time. Such measurements

involve collecting soil samples and testing the

samples for changes in carbon stock over time.

Anecdotal experience with such measurements

indicates a high CV. Results by West et al. (see

Figure 3 in West et al. that shows mean and

confidence intervals of annual carbon seques-

tration after reforestation on agricultural land)

approach 0.5.3

In addition, given the expected variation in

regional conditions it would be highly desirable

to have project area measurements available for

estimating the distribution of carbon generated

under a project. However, there are concerns

about field measurement. First, generally it is

fair to say that widespread project area mea-

surements are not currently available. The un-

certainty discount should be specified before

implementing carbon sequestration project,

particularly when projects are being set up.

Such a pool of measurements may be available

several years after the projects have already

begun, but estimates are needed to set up con-

tract terms before a project is implemented.4

Second, field measurement involves monitor-

ing and operational costs which might increase

the cost of carbon sequestration. Third, field

measurement can be used later in the project to

square up for carbon that has been sequestered

when the uncertainty has been reduced.

Biophysical Simulation

An alternative to field measurement is bio-

physical simulation of soil carbon over time.

Using data on soil and management charac-

teristics, along with localized temperature and

rainfall, biophysical models like CENTURY

(Parton et al.) and EPIC (Izaurralde et al.)

simulate changes in soil carbon. Model results

can be used to estimate mean and variance in

the quantity of carbon sequestered. This is

illustrated in Kurkalova which investigates

the optimal discounting of stochastic carbon

sequestration. The variance of change in car-

bon over time from CENTURY simulation has

been used in the sensitivity analysis on mea-

surement costs of carbon sequestration (Mooney

et al.).

When simulating changes in soil carbon, the

analyst controls management practices (e.g.,

crop, tillage method, irrigation, fertilizer appli-

cation, etc.), while the model simulates daily

weather from planting to harvesting for a speci-

fied number of years. The simulated weather is

based on weather parameters derived from his-

torical data for a location relevant to the field

for which the simulation is being performed,

typically a weather station in the county or a

nearby area. The combination of model param-

eters, management practices, and the daily sim-

ulated weather, the biophysical models provide

estimates of soil carbon over time, which can be

used to estimate mean and variance in the quan-

tity of carbon sequestered.

Such a simulation approach suffers from two

potentially critical shortcomings as they relate to

the CV for a potential project. First, the simula-

tion of site level weather in biophysical models

ignores spatial correlation across multiple sites in

a project making an independence assumption.

As a result, the fluctuations in soil carbon might

be biased if shortfall events at one site are com-

pensated for by excess events elsewhere, or if a

high degree of spatial correlation exists. Second,

important stochastic events like pests, hail, severe

winds, diseases, and so on, that affect crop and

the likely carbon production are omitted in bio-

physical simulations indicating variance may be

under estimated.

3 CV is back calculated from the reported carbon
management response (CMR) curve in West et al. It
may not be comparable to the use of CV in the
remainder of the paper because it is calculated from
the standard deviation, not from the standard deviation
of the mean.

4 Field measurement might be a practical approach
if highly similar projects appear within the same
region for which field measurements were available,
but this is generally not the case (at least at this point in
time). Also, field measurements may be used after the
project has been in place to resolve the uncertainty of
accumulation but this embodies the risk that the
sequestered quantity is found to be less than that
claimed quantity and may justify initial uncertainty
discounts.
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Spatial correlation across sites can be par-

tially incorporated by allowing the biophysical

model to use historical weather as it occurred at

all fields and associating the results by year or

by somehow correlating the generated weather.

However, the granularity of weather stations

may still cause a problem as does the omission

of localized pest outbreaks, hail damage, wind

effects, and so on.

Using Crop Yield as a Proxy

While actual field measurements account for the

spatial and temporal correlation in the quantity

Figure 1. Simulation results for soil carbon vs. crop yield for various cases.
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of carbon, the currently available data are in-

adequate to perform any statistical analysis for

derivation of uncertainty discount. In contrast,

biophysical models can provide extensive data

but ignore spatial and temporal correlation in the

quantity of carbon, which is critical to estimat-

ing CVat a project level. Another possibility is to

use biophysical models to generate average

quantity of carbon sequestered, while for esti-

mating the variation use a proxy variable that

might account for the variance reducing effects

of spatial and temporal correlations in factors

that affect the quantities of carbon. The use of a

proxy variable is a common practice in the lit-

erature when the variable of interest is unob-

servable (Kennedy, p. 170). The proxy variable,

however, must be highly correlated with the

variable of interest. In our case, we would need a

variable whose variations are highly correlated

with variations in the quantity of carbon. Ob-

served crop yields, which do include the spatial

and temporal correlation in the biophysical en-

vironment simultaneously impacting yield and

soil carbon, potentially could fulfill such a need.

Soil scientists anecdotally argue that the change

in soil carbon is strongly related to the amount of

carbon input that, in turn, is determined by the

size of the plant on the field that is highly cor-

related with yield (Kimble). Thomson et al.

demonstrate that the simulated EPIC crop yields

correspond closely with historical yields, water

usage and thus soil carbon. If the correlation

between EPIC crop yield and carbon is high we

can use crop yield as the proxy variable. Be-

cause there is no study about this, we ran nu-

merous EPIC simulations, and computed the

correlation coefficient. We found a high degree

of correlation with the coefficients ranging from

0.7–0.9 as explained below.

To examine correlation, we performed bio-

physical simulations using the EPIC model for

sorghum, rice, and soybean crops in Eastern

Texas over 25 years with historical weather

data and computed the correlation between

yield and net carbon flux which was calculated

as the difference between two successive esti-

mates of carbon inventory (following Smith

and Heath, 2001) as follows

(2) SOC=ac=year 5 SOCt�1 � SOCt,

where SOC/ac/year is the soil organic carbon

per acre per year and SOCt is the soil organic

carbon per acre at time t. Negative SOC/ac/year

indicates that sequestration is occurring. The

EPIC simulation results we obtained are sum-

marized in Figure 1 Panels A–F which shows

different cases arising across crops, land types

and tillage types. As shown in Figure 1, there is

a high, statistically significant (negative in all

the cases) correlation between changes in crop

yields and changes in soil carbon, ranging from

0.7 to 0.9. This leads us to conclude we could

use the CV for crop yields as the proxy for the

CV of quantity of carbon sequestered.

To use the crop yield CV as the proxy for

soil carbon CV, the variation in crop yields have

to be appropriately adjusted because they are

not perfectly correlated; measurement errors

result by definition when the instrument is not

perfectly correlated with the variable of interest

(Kennedy, p. 170). To include such adjust-

ments, we derive a relationship between the

coefficient of variation in yields (CVY) and the

coefficient of variation in soil carbon (CVQ)

based on a regression fit, CVQ 5 b � CVY 1 ei.

Using the EPIC results, coefficient b is esti-

mated, which is given by

(3)

CVQ 5 2:138 CVY

ð12:656Þ
R2 5 0:914, DW 5 2:21

where the number in parenthesis is the t-value

and the degrees of freedom is 9. Thus, the CV

Table 2. CV for Crop Yield over Space (1995–2005) (Unit: %)

Region Sorghum Corn Rice Wheat Upland Cotton Soybean

Brazoria county, TX 21.47 32.39 13.08 26.25a 25.08 27.39

TX Crop Reporting District 9 19.67 27.04 9.71 20.79 21.17 14.01

State of Texas 10.89 9.78 9.35 10.75 20.19 9.32

a Several years (1998, 2001, 2002, and 2004).
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for soil carbon is assumed to be 2.138 times

larger than the crop yield CV.

Empirical CV Estimates and Uncertainty

Discount

The wide availability of historical crop yield

data allows us to investigate the effects of ag-

gregation on crop yield CV and, in turn, on soil

carbon CV. Yield data are available from vari-

ous USDA sources at county and higher levels

and incorporate temporal and spatial correla-

tion due to weather and localized conditions.

We used data for five Eastern Texas crops—

sorghum, corn, rice, wheat, and soybeans from

1995 to 2005, drawing those data from the

USDA National Agricultural Statistics Service

(NASS) Quick Stat Internet site, http://www.

nass.usda.gov/.

To examine the effects on the CV of incor-

porating spatial correlation we computed CVs

for a Texas County (Brazoria), a crop reporting

district (Texas 9), and the whole state (Table 2).

As expected, aggregation across space reduces

the CVY. In case of soybeans, the CV is 27.4%

at the county level, falls to 14.0% at the district

level, and 9.3% at the state level. Results using

EPIC at the site level averaged about 90% (max

123.1% and min 61.7%).

As we also wished to see the effects of mul-

tiyear agreements on the CVY, we computed the

CV for 5-year moving average yields evaluated at

each of the above mentioned regional scales (see

Table 3). This shows a further decline in the CV.

For example for soybeans, the CVY falls to 13.8%

for the county, 5.1% for the district, and 4.4% for

the state. Collectively, the multisite multiyear

variation is much smaller, which portends a

much smaller uncertainty discount for a multisite

multiyear carbon contract.

The uncertainty discount from a confidence

interval approach is d 5 za � CVQ, where CVQ

is the CV of soil carbon production. We esti-

mate CVQ based on the CV for yields (CVY) via

the formula in equation (3). Based on the large

number of farmers that would be needed in a

contract and their geographic dispersion we

chose to use the 5 year CVs at the district level

and we averaged across crops that resulted in a

CV of 5.3%. In turn, multiplying CVQ by 2.138

gives a CV of 11.3% (Table 4), resulting in

uncertainty discounts of 18.6% for a 95%

confidence level and 14.5% with a 90% con-

fidence level (Table 5). Table 5 shows the un-

certainty discounts across different crops and

confidence levels ranging from 12.2 to 28.9%

with a 95% confidence level and from 9.5 to

22.6% with a 90% confidence level.

Summary and Conclusion

Land based carbon sequestration might become

an important instrument in future U.S. GHG

mitigation strategies where large emitters could

contact with producers to enhance sequestration

and in turn offset GHG emissions. The effect of

various stochastic factors such as weather, fire,

and so on, on the quantity of carbon makes the

quantity of carbon generated under a project

uncertain. As a result, purchasers of land based

Table 3. CV for Yield over Timea (5 year interval) (Unit: %)

Region Sorghum Corn Rice Wheat Upland Cotton Soybean

Brazoria county, TX 7.30 7.12 6.50 12.21 13.80

TX Crop Reporting District 9 3.48 4.12 6.85 3.94 8.25 5.09

State of Texas 1.36 1.58 6.67 3.17 8.00 4.37

a This CV is computed for 5 year moving averages for each crop at each level of aggregation.

Table 4. CV for Rate of Carbon Sequestered based on Tables 2 and 3 and Eq. (3) (Unit: %)

Region Sorghum Corn Rice Wheat Upland Cotton Soybean

TX Crop Reporting District 9 7.58 8.97 14.91 8.58 17.96 11.08

State of Texas 2.96 3.44 14.52 6.90 17.41 9.51
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carbon credits would be at risk for not meeting

their abatement obligations that might subject

them to noncompliance penalties. Hence, the

quantity of land based carbon credits may

need to be discounted to avoid the liability of

shortfalls. This would involve an uncertainty

discount that estimated the quantity of carbon

sequestered that one could confidently expect

with more than a given level of certainty. This

could also be applied by discounting the prices

paid by the credit purchaser for the quantity of

carbon sequestered and buying more. Also after

a project had been in operation for a number of

years one could develop improved stock mea-

surements and square up payments for some of

the discount applied in the past.

We presented a statistics based theoretical

approach for estimating the uncertainty discount,

which requires estimating the distribution of the

quantity of carbon sequestered. For empirical

investigation, however, one faces the difficulty

finding variability data compatible with multisite

multiyear contracts that would form under a

given project. To overcome this difficulty, we

suggest the use of proxy variable approach,

where historical crop yields across various geo-

graphical areas are used to derive uncertainty

discount for a multiyear multisite carbon project.

We presented the application of our meth-

odology for East Texas. We found that ignoring

spatial and temporal correlation in the quantity

of carbon that might be present in a multisite

multiyear project would result in a high coef-

ficient of variation (of about 90%); hence, a

high uncertainty discount. We adjusted the CV

in the quantity of carbon by incorporating the

correlations that would occur across farms and

time as induced by common weather and other

characteristics, using the observations reflected

in historical crop yield distributions across

time and geography. Such considerations were

found to reduce the CV and associated discount

substantially. The added time and spatial di-

mensions tend to reduce the CV by up to 90%.

Application of our approach suggests that the

project level uncertainty discounts would fall in

the neighborhood of 15–20% for the East Texas

region.

Finally we should address implications for

agencies and stakeholder groups trying to, form

rules, facilitate and/or support the use of agri-

cultural soil carbon sequestration programs. We

believe the results show the potential for sub-

stantial year to year variation in sequestration

results and an associated degree of buyer un-

certainty and caution. This may be the reason

why we observe two phenomena in the exist-

ing carbon markets. First, soil carbon has not

played a major role internationally with a lot of

discussion of issues such as permanence and

uncertainty. Second, the Chicago Climate Ex-

change is paying 0.2–0.6 ton of CO2 per acre

per year (CCX) which is substantially less than

West and Post’s 0.92 ton of CO2 per acre

per year of average accumulation possibly

reflecting an uncertainty discount. We feel the

concept of an uncertainty discount should be

embraced as it may alleviate the concerns and

could make the prospect more profitable than

current levels with informal discounts.

[Received December 2007; Accepted September 2008.]
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