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Farm-Level Risk Management Using

Irrigation and Weather Derivatives

Shanshan Lin, Jeffrey D. Mullen, and Gerrit Hoogenboom

An agronomic crop growth model—the Decision Support System for Agro-Technology

Transfer—and a constant relative risk aversion utility function are used to examine corn

irrigation strategies in Mitchell County, Georgia. Precipitation contracts are designed to

help farmers manage risk. Three conclusions originate from the findings. First, the optimal

irrigation strategy can greatly increase producers’ certainty-equivalent revenue. Second,

changes in water pricing policy would have a limited impact on the amount of water used.

And third, across levels of risk preference, the precipitation contracts are not effective in

increasing certainty-equivalent revenue or reducing cumulative water use.
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Agricultural production has always been a

risky endeavor, with stochastic weather con-

ditions affecting farm production and revenue,

and irrigation has been identified as an

important risk management strategy (Boggess

et al.). In Georgia, although annual rainfall is

adequate for most agricultural crops, the

distribution of rainfall across a year is highly

unpredictable. Irrigation is extensively used in

Georgia to offset the impact of rainfall

variability on crop yield and to reduce the

risk associated with weather variability.

Recently, water scarcity has become a

social and economic concern for policymakers

in Georgia. Since irrigated agriculture has

historically represented the largest consump-

tive use in the state, a comprehensive water

policy for Georgia’s future must address

agricultural water demand. Simulation tools

provide the opportunity to analyze water use

efficiency and its impact on water scarcity

(Morgan, Biere, and Kanemasu). Several

studies have examined on-farm irrigation

using the engineering notion of irrigation

water (i.e., the ratio of water stored in the

crop root zone to the total water diverted for

irrigation) and have found opportunities for

water savings while increasing yield (e.g.,

Harris and Mapp 1980, 1988; Howell, Hiler,

and Reddell; Lyle and Bordovsky; Raju et al).

While engineering studies have addressed

the changes and the diffusion of irrigation

technologies in agriculture, they often lack

economic intuition. The decision environment

is typically nonoptimizing—with the exception

of yield maximization—and the issue of risk is

rarely considered.

In the financial world, new insurance

instruments (catastrophe options, weather

derivative contracts, and so on) are being

developed to improve farmers’ risk manage-

ment options (Miranda and Vedenov). There

are currently markets for temperature-based

weather derivatives traded on the Chicago

Mercantile Exchange as well as more personal

markets for over-the-counter weather deriva-

tives exchanged in the form of weather swaps
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and options (Forrest). While the market for

weather derivatives based on temperature

indices has grown significantly, the market

for precipitation-based derivatives is still in its

infancy, making it a natural area for further

research (Varangis, Skees, and Barnett).

The primary objective of this paper is to

present a theoretical framework of irrigation

water decisions when weather derivatives are

available. The framework is then applied to

corn production in southwest Georgia. The

application illustrates the impact of both

water price and risk preferences on the

financial parameters defining the optimal

weather derivative as well as their impact on

expected water applications.

Literature Review

Advances in the understanding of the physical,

chemical, and biological environment of the

soil–plant– atmosphere continuum and envi-

ronmental monitoring technology offer us the

opportunity to base crop performance and

assessment on sound scientific principles

(Jagtap et al.). A number of studies have used

simulation models to evaluate irrigation

schedules based on plant growth relationships

(e.g., Harris and Mapp; Howell, Hiler, and

Reddell; Lyle and Bordovsky). The primary

contributions of these studies have been

improved specifications of the agronomic

relationships describing the irrigation–plant

growth environment and incorporation of

multiple crops into the decision framework.

For example, Zavaleta, Lacewell, and

Taylor use the grain sorghum growth model

by Maas and Arkin to consider stochastic

weather and allow irrigation timing and

quantity decisions to be based on an expected

profit maximization criterion. Numeric search

procedures, referred to as open-loop stochastic

control, are used to derive irrigation strategies

that maximize expected profits over eight

discrete irrigation periods of the crop year.

Harris and Mapp (1988) use the same grain

sorghum plant growth model to analyze

intensive and water-conserving irrigation

strategies. A number of irrigation strategies

are simulated with their modifications to the

plant growth model. Stochastic dominance

procedures are used to identify risk efficient

irrigation strategies.

Endale and Fipps apply the Irrigation

District Decision Support System, a crop

growth and irrigation district simulation model

capable of predicting biomass development and

yields for fields varying in soil type and

irrigation management scenarios, to a large

irrigation scheme in the Middle Awash Valley of

Ethiopia. Crop yields are simulated over a 12-

year period to determine which of 12 separate

irrigation schedules in use meet the objectives of

maximizing yields or minimizing water use.

Their results illustrate the potential role of

decision support systems in the evaluation and

management of large irrigation projects.

Apart from irrigation, farmers also choose

insurance products to improve their risk

profile (Schnitkey, Sherrick, and Irwin). The

flexibility of defining weather indices allows

innovative structures to be developed using

these instruments to manage a wide variety of

weather-related risks (Mahul). Sellers of

weather derivatives usually include major

energy companies that use the instruments to

hedge their own risks and to make trading

profits. Insurance and reinsurance companies

are also important providers of capacity as

they look for alternative ways to deploy their

capital. Weather derivatives appeal to a wide

array of investors as an uncorrelated asset

class.

Richards, Manfredo, and Sanders found

that a temperature-based weather index insur-

ance product could be used to offset produc-

tion risks faced by nectarine growers in Fresno

County, California. Skees et al. found that a

rainfall index insurance scheme could be

feasible in Morocco and Argentina. Turvey

examined the economics and pricing of

weather index insurance in Ontario and

suggested that temperature and precipitation-

based insurance contracts could be used to

insure against yield losses for some crops.

Vedenov and Barnett investigated the feasibil-

ity of using weather index insurance to protect

against shortfalls in corn and soybean yields in

Iowa and Illinois and cotton yields in Mis-

sissippi and Georgia.
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Methodology

In order to study the decision problem of a

risk-averse competitive agricultural producer

under output price and weather risks, we used

an expected utility maximizing model. The

objective was to maximize the expected value

of a von Neumann–Morgenstern utility func-

tion of profit u(p), with u9 . 0 and u0 , 0. As

empirical studies have demonstrated that

farmers in many areas exhibit decreasing

absolute risk aversion (Escalante and Rejesus),

that is,

R0a yð Þ~ {u000u0 z u002

u02
v 0

given that u9 . 0, u0 , 0, a necessary condition

for decreasing absolute risk aversion is u999 . 0.

A widely used representation of expected

utility that satisfies the maintained hypothesis

of u9 . 0, u0 , 0, and u999 . 0 is the constant

relative risk aversion utility function that is

best parameterized as

ð1Þ U ~
R1 { j

1 { j
,

where R is the return to the decision maker

and j is the relative risk aversion coefficient.

This model is employed in this paper to

examine irrigation strategies and precipitation

contract design across different levels of risk

aversion coefficients.

Expected farm yield, revenues and costs

for various irrigation strategies were generated

by the Decision Support System for Agro-

Technology Transfer (DSSAT). We were then

able to identify the plant-available water

threshold that maximized the expected utility

function.

Certainty-equivalent revenues (CERs) were

used to assess the robustness of the risk

reduction performance of the optimal irriga-

tion and precipitation contract (Manfredo and

Leuthold). For a specified utility function,

CER is the level of return that, if received with

certainty, would generate a level of utility

equal to the expected utility of the risky

investment. While it allows for consideration

of higher moments of the return distribution,

CER also requires one to make assumptions

about the decision maker’s utility function

over returns (Chen, Roberts, and Thraen).

Using the utility function in Equation (1), the

CERs can be calculated as

ð2Þ CER ~ 1 { jð Þ EU Rð Þð Þð
1

1 { j:

The critical components in the precipita-

tion contract design involve setting the indem-

nity payments and the premium of the

contract. Indemnity refers to the payments

made to the holder of the contract when

events as specified in the contract trigger a

payment. The proposed insurance product

would function much like a put option on

precipitation. In particular, the precipitation

contract envisaged here is designed to trigger a

payment when rainfall in the said time period

falls short of a certain set strike rainfall

amount. The indemnity is paid conditional

on the realization of the precipitation accord-

ing to the following schedule:

ð3Þ

f i x,i�,ljð Þ~ x |

0

i� { i

i� { li�

1

i w i�

li� v i ƒ I�,

i ƒ li�

8>>><
>>>:

where f (i|x, i*, l) is the indemnity, i is the

rainfall index for a specific period measured

not at the farm as in Equation (3) (in the crop

simulation model) but rather at the weather

station referenced in the insurance contract, i*

is the strike, and x is the maximum indemnity.

The contract triggers an indemnity whenever i

falls below i*, and the maximum indemnity x

is paid whenever the index falls below the limit

l*i. Thus, the contract can be uniquely

identified by fixing the three parameters i*,

l, and x.

The premium on the precipitation standard

contract is a function of i*, l, x and the

probability distribution of i. The distribution

can be estimated based on historical precipi-

tation data either by fitting a standard

parametric distribution or by using a non-

parametric approach such as kernel smooth-
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ing. For this study, kernel smoothing is used

to derive a continuous probability density

function h(i) of i. Formally, for index realiza-

tions i; t 5 1, . . . , T, the kernel density

function of the index is calculated as

ð4Þ h ið Þ~ 1

TD

XT

t ~ 1

K
i { it

D

� �
,

where K(?) is a kernel function, and D is a

degree of smoothness or bandwidth (Härdle).

The expected payoff and hence the actuarially

fair premium for the standard contract can be

determined by

ð5Þ
pfair x,i�,lð Þ~

ð
i x,i�,ljð Þh ið Þdi

~ x

ðli�

0

h ið Þdi z x

ði�

li�

i� { i

i� 1 { lð Þ h ið Þdi:

This formulation for calculating the pure

premium is based on the pure loss cost history

and does not cover the transaction costs or

risk preference of partners. Reinsurance firms

usually load the pure premium based on the

variance of the loss costs. If one further

assumes that a proportional premium load

c(c $ 0) is applied to the actuarially fair

premium to cover transaction costs, return on

investment, and reserve building, then the

loaded premium is

ð6Þ ploaded i�,l,cð Þ~ 1 z cð Þpfair:

For the purposes of this study, a 10% load

is imposed on the standard deviations of

indemnity payments per liability. Using the

previous procedure, preliminary estimates for

indemnity payments, pure premium rates, and

loaded premium rates (the ratio of premium to

maximum liability) for Mitchell County can be

arrived at given strike, limit, and liability.

The irrigation cost during the worst years is

considered a good proxy for the value at risk

and used to establish a liability estimate by crop.

Strikes are selected as the levels of precipitation

at which the predicted yields are equal to the

corresponding longtime average; that is, the

contracts are designed to pay at least some

indemnity whenever predicted yields dropped

below the average. Similar index insurance

contract designs are presented in Martin,

Barnett, and Coble. The remaining parameters

for the contract are the strikes i* and limit

parameter l, which can be solved as follows.

Suppose a producer values investment

returns according to maximizing the expected

value of the previously mentioned utility

function. Further suppose a representative

producer’s investment portfolio consists only

of irrigation application and precipitation

contracts. The mathematical formulation of

the farm level model is as presented here:

ð7Þ

Max EUð Þ~ 1

25

X2000

t ~ 1976

NRwithoutð Þt
	

z ft it x,i�,ljð Þ

{ p x,i�,lð Þ�1 { j

71 { j

~
1

25

X2000

t ~ 1976

qPcrop { wCpumping


 �
t

h

z ft it x,i�,ljð Þ

{ p x,i�,lð Þ�1 { j

71 { j,

where E denotes the expectation operator,

NRwithout denotes net return to an irrigated

farm without weather derivative contract for a

specific year t, Cpumping denotes per unit

irrigation cost, w denotes irrigation amount,

q denotes crop yield, P denotes crop price, ft

denotes instrument payoff (indemnity) for

year t, p is contract premium, and A denotes

relative risk aversion coefficient.

The decision variables, namely, the strike,

the limit parameter l, and irrigation amount

w, are selected for each analysis unit so as to

maximize the expected utility function over a

historic period (1976–2000). Once the contract

parameters strike, liability and limit are

solved, and indemnity payments and premium

rates can be formulated.

Data

The DSSAT crop growth model utilizes crop

management data, daily weather data, and soil

data. The economic model requires output

price data and crop management cost data.
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Daily weather data are available from the U.S.

National Climate Data Center. Evapotranspi-

ration rates are calculated from daily weather

data using Priestley–Taylor methods. The

climate data can be plotted or tabulated and

saved as a prm climate file. Soil information

came from the University of Georgia’s Agri-

cultural Economics Extension Program. Three

common soil types in Georgia (Norgram

Sandy Soil, Tifton Loamy Sand, and Norfolk

Loamy Sand) are included in the study.

Results

The results are organized as follows. The first

section provides evidence that irrigation is a

viable tool in farm-level risk management and

analyzes the impact of water pricing policy on

expected water use. Regional estimates for the

precipitation insurance are developed for the

study area. The third section provides analysis

on the impact of the precipitation contract on

irrigation decision and risk management.

Irrigation in Farm-Level Risk Management

Figure 1 shows the impact of the optimal

irrigation strategy on producers’ CER for corn

production in Mitchell County. From this

graph, we can see that the CER of the optimal

irrigation ranges from two to nearly five times

the CER for dryland production. Across all

soil types and risk aversion levels, irrigation is

shown to be an effective risk management tool

for corn production.

The impact of water price on expected

water use is shown in Figure 2. This graph

indicates that water application rates that

maximize expected utility are independent of

water price and risk aversion coefficients over

wide ranges. Soil type, however, does have an

impact on expected water use.

Regional Estimates for Precipitation Contracts

Table 1 present optimal combinations of i*

and l for three soil types in Mitchell County.

These are the combinations that yield the

largest expected utility for a specific risk

aversion level j. The variety of indices and

contract types presented from Table 1 indi-

cates that weather derivatives cannot be

designed in a one-size-fits-all manner, even

for the same crop within the same area.

The optimal strike is much smaller than the

average precipitation, resulting in 0 payoff in

most of years, and thus the fair premium is 0.

The probability of triggering a payment for

Mitchell County is very low. This is why the

premium rate on the contract is also very low.

Figure 1. Impact of the Optimal Irrigation on Producers’ Certainty Equivalent Revenue for

Corn Production in Mitchell County
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As indicated in Table 1, the premium rates

associated with the weather contracts turned

out to be low, ranging from 1.4% to 2.8% of

maximum liability for both risk aversion

levels.

Impact of Precipitation Contract on Irrigation

and Risk Management

Table 2 presents changes in producers’ irriga-

tion decision from purchasing precipitation

insurance as well as changes in producers’

well-being as measured by CER. The CER are

calculated using i* and l from Table 2 for r 5

6 and r 5 1.5, respectively. From the table, we

can see that a weather derivative based on

rainfall does not change a producer’s irriga-

tion decisions for any soil type, regardless of

the level of risk aversion. Unexpectedly, risk-

averse corn producers in Mitchell County are

not generally made better off by purchasing

rain-based insurance contracts. The optimal

strikes are much lower than the expected

rainfall during the growing season, making the

indemnity each year very low, and leads to low

fair premium and loaded premium rates. As a

result, producers gain little from buying

weather derivative contracts each year, and

the 10% proportional load only increases their

cost. If the weather derivative contract is

applied on nonirrigated crops, it may increase

producers’ utility because of its role in

variance reduction, but in our case, with

irrigation application, the variance of profits

during the 25 years is already much lower than

that for nonirrigated crops.

Figure 2. Impact of Potential Water Pricing Policy on Producers’ Optimal Water Use for

Mitchell County

Table 1. Contract Parameters for Corn Production in Mitchell County

Soil r max_liability expected_rain Strike Limit Tick premium_rate

1 1.5 700.03 564.76 132 0.76 7.56 0.01447

1 6 700.03 564.76 132 0.76 7.56 0.01447

2 1.5 512.12 564.76 132 0.84 7.14 0.02162

2 6 512.12 564.76 132 0.84 7.14 0.02162

3 1.5 471.82 564.76 132 0.77 3.78 0.02775

3 6 471.82 564.76 132 0.77 3.94 0.02775

r is relative risk aversion level; max_liability is maximum liability.
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Conclusions

Crop simulation models offer new opportuni-

ties to explore potential impacts of water policy

and financial instruments on farm welfare. We

used the DSSAT model to simulate yield,

revenue, and irrigation cost responses to

various irrigation strategies over 25 years.

Our analysis provides evidence that irrigation

is an important risk management strategy for

corn production in Georgia. However, because

of the supplemental nature of irrigation in the

state, optimal water application rates for corn

appear to be largely independent of water price

and risk aversion levels.

Given the recent rise in corn prices, irri-

gated corn acreage in Georgia is expected to

increase substantially in 2008. This could have

a significant impact on water withdrawals,

especially if the current drought continues, as

expected. Our analysis suggests water price

adjustments would do little to dampen water

demand on corn acres. This conclusion

appears to hold even if rain-based insurance

contracts were available.
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