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Abstract— Farmers who produce multiple outputs are 
portfolio managers in the sense that they use inputs to balance 
expected economic return and variance of return. This paper 
estimates the structure of the stochastic multi-output 
production technology in Norwegian dairy farming, allowing 
for a more flexible specification of the technology than 
previous studies. We find that an increase in input levels leads 
primarily to higher output variability, and that in puts also 
influence the covariance of shocks between outputs. Risk-
reducing effects of inputs on outputs are primarily present in 
the covariance functions. Technical change leads to shifts in 
the profit distribution over the data period, but no welfare 
improvement for risk-averse farmers. 

Keywords— Multi-output technologies, production 
risk, dairy farming 

I. INTRODUCTION  

Farmers face substantial risks caused by biophysical 
factors such as weather, soil, and diseases. Since 
farmers are generally risk averse (e.g. Chavas and 
Holt, 1996; Lence, 2000; Isik and Khanna, 2003; 
Kumbhakar and Tveteras, 2003), and adverse 
outcomes can have large consequences for their 
welfare, they will try to mitigate these risks through 
input and output choices. Many farmers produce 
several outputs, and can be regarded as portfolio 
managers who, through input and output choices, 
balance the expected economic return and risk (e.g. by 
using variance of return as a risk metric) of their farm 
assets. But farmers’ choice sets are much more limited 
than is generally the case for a financial investor. 
Many farmers, especially small-scale farmers, also 
typically face severe financing and liquidity 
constraints. Thus, the relative risk will generally be 
higher for many farmers than for well-diversified 
financial investors. Consequently, one could expect 
farmers to be concerned about on-farm decision 
variables that influence risk, primarily the effects of 
their input choices on economic risk. They should 
benefit from increased knowledge about risk effects of 

their input choices and technological change. Thus, 
econometric estimates of the relationships between 
input use and production risk would be useful. In this 
paper we will provide estimates of the structure of 
production risk. Our case study is the Norwegian dairy 
farming sector, where small farms produce several 
risky outputs, face significant economic risks, and 
where there is limited knowledge about the structure 
of production risk.  

After Just and Pope (1978) in a seminal paper 
characterised production functions with flexible risk 
properties, several econometric studies of production 
risk have appeared in the literature. The primary focus 
has been on agriculture, while a few have studied 
aquaculture.1 Just and Pope’s stochastic production 
function is useful in analysis of the structure of 
production in industries in which there are frequent 
stochastic exogenous shocks on the production 
technology, but where the mix of input levels or the 
choice of technology can influence the effect of these 
shocks on output.2 A central issue in econometric 
studies of production risk is the marginal effect of 
increasing or reducing input use on output risk, often 
measured by output variance. Some studies have also 
investigated the effects of technological changes on 

                                                           
1 Econometric studies of production risk in agriculture using a 
primal model approach include Antle (1983), Antle and Goodger 
(1984), Di Falco et al. (2007), Groom et al. (2008), Griffiths and 
Anderson (1982), Kumbhakar (1993), Just and Pope (1979), 
Nelson and Preckel (1989), Regev et al. (1997), Roberts et al. 
(2004), Serra et al. (2006), Traxler et al. (1995) Wan and 
Anderson (1990), and Wan et al. (1992), while aquaculture has 
been studied by Asche and Tveteras (1999) and Tveteras (1999, 
2000).    
2 The state contingent approach (Chambers and Quiggin, 2001) has 
been introduced as an alternative to the traditional parametric 
stochastic production function approaches such as the Just-Pope 
specification belongs. Full application of the state contingent 
approach is very data demanding (Just, 2003), and empirical work 
based on this approach has only recently appeared in the 
agricultural economics literature (O’Donnell and Griffiths, 2006; 
Chavas, 2008).  
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the structure of production risk (Traxler et al., 1995; 
Tveteras, 1999, 2000).  

Agricultural production is often a multi-output 
technology, but econometric analyses of production 
risk have predominantly specified single-output 
technologies. A few exceptions are Hallam et al. 
(1989), Wan et al. (1992) and Isik and Devadoss 
(2006), who all estimated multi-output Just-Pope (JP) 
production functions. Hallam et al. (1989) estimated 
their function using a cross-section of Sudanese crop 
farms, Wan et al. (1992) estimated the structure of 
production risk using Chinese regional crop 
production data, and Isik and Devadoss (2006) used 
Idaho district-level crop data. This study of Norwegian 
dairy farming is also concerned with estimating the 
structure of a stochastic multi-output technology. We 
extend the model framework of Wan et al. (1992) to a 
more flexible multi-output technology in which we 
allow elasticities of output means, variances and 
covariances of outputs to vary by input levels. Further, 
several studies using the JP model framework, 
including Wan et al. (1992) and Isik and Devadoss 
(2006), used aggregated data at the level of a region or 
nation in their estimation. This leads to biased 
estimates when there are producer-specific shocks and 
producer heterogeneity. Since we have available a 
large unbalanced farm-level panel data set, we can test 
a rich set of hypotheses on the structure of production 
risk. We allow input levels not only to influence the 
levels of output risk as measured by conditional output 
variances, but also to influence covariances between 
outputs. For example, we test for time-effects on 
production risk. Using our estimated production 
functions we also extend the analysis to the first two 
moments of profit to get a better understanding of how 
the means, variances and covariances of outputs 
influence the profit distribution.  

The paper is organised as follows: Section 2 
discusses the theoretical and econometric framework 
for analysis of production risk. Econometric 
specifications of Just-Pope production functions are 
provided in section 3. In section 4 we describe the data 
set on Norwegian dairy farms. Section 5 presents the 
empirical results and discusses their implications. 
Finally, in section 6 we provide a concluding 
discussion. 

II. MODELLING PRODUCTION RISK  

A. Production risk in the single-output case 

Just and Pope (1978, 1979) proposed a stochastic 
production function which is general enough to 
accommodate both increasing and decreasing output 
variance in inputs. The single-output JP production 
function has the general form 

( ) ( ) ( ) ε50.hfufy xxx +=+=    (1) 

where f(⋅) is the mean function (or deterministic 
component of production), h(⋅) is the variance function 
that captures the relationship between input use and 
output variability, and ε is an index of exogenous 

production shocks with zero mean and variance 2
εσ . 

With this formulation we see that inputs x influence 
mean output and output variance independently, since 

( )xf)yE( =  and ( ) 2
εσxh)u(Var)y(Var ==  (2) 

One of the requirements JP propose for 
specifications of risky production technologies is that 
the production function should be general enough to 
accommodate both increasing and decreasing output 
risk (variance) in inputs, i.e.  

∂Var(y)/∂xk = ∂h(⋅)/∂xk <=> 0   (3) 

should all be possible.3  
Theoretical models of the competitive firm under 

production risk generally use the expected utility (EU) 
framework, where risk averse producers choose the 
input vector x which maximises their expected utility 
based on observed (or expected) output and input 
prices (p, w) and a priori knowledge of the structure of 
the risky production technology. The solution to the 
EU maximisation problem maxx EU(π(x; p, w) is the 
indirect utility function 

( ) ( )[ ]ππ Var,E*U*U = , ( ) 0>πdE/*dU , 

( ) 0<πdVar/*dU     (4) 

where U* represents the solution to the maximisation 
problem, E(π) is mean profit and Var(π) is the 
variance of profit. The indirect utility function 

                                                           
3 See Just and Pope (1978) for other requirements for a risky 
production technology. 
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represents the producer’s subjective trade-off between 
mean profit (output) and variance of profit (output) on 
producer welfare. There is a positive linear 
relationship between the moments of output and the 
moments of profit under JP production risk (1), with 
the mean and variance of profit given by 

E(π) = p⋅E(y) - w'x = p⋅f(x) - w'x   (5a) 

Var(π) = p2⋅Var(y) = p2⋅h(x)σε
2    (5b) 

In the extreme case of risk neutrality (i.e. 
dU*/dVar(π) = 0), the producer is only concerned 
about mean profit (output), and completely ignores the 
profit variance effects of input choices. 

B. Production risk in the multi-output case 

Many farmers produce several outputs. Risk 
management is mentioned as a possible reason for 
multi-output production, for example, by Mundlak 
(2001, p. 41). In the multi-output nonjoint case the JP 
production function can be specified as 

( ) mmmm ufy += x     (6) 

for each output m = 1,..., M. Inputs can be allocable or 
nonallocable.4 In the case of nonallocable inputs, 
which we will assume here, the subscript m disappears 
from the input levels x. The means, variances and 
covariances of outputs are given by: 

E(ym) = fm(x), m = 1,..., M     (6a) 

Var(ym) = Var(um) = hm(x; σ2
εm), m = 1, . . . , M  (6b) 

Cov(yl, ym) = Cov(ul, um)  

 = glm(x; σ2
εlm),   l, m = 1,..., M, l ≠ m   (6c) 

where hm(x) is the variance function for output m, 
glm(x) is the covariance function, and σεm and σεlm are 
the variances of exogenous random shocks εm and εlm 
in the variance and covariance functions, respectively. 

The mean and variance of profit in the nonjoint, 
nonallocable multi-output case are: 

E(π) = Σm pm⋅E(ym) - w'x = Σm pm⋅fm(x) - w'x   (7a) 

                                                           
4 An input is allocable when the amount of the input used in 
producing output yj can be distinguished from the amount of the 
same input used in producing yk (j ≠ k) (Beattie and Taylor, 1985).  

Var(π) = Σm pm
2⋅Var(ym)  

 = Σm pm
2⋅hm(x) + 2ΣlΣm plpm glm(x)  (7b) 

respectively. The effects of a change in the level of 
input k on mean and variance of profit are: 

∂E(π) /∂xk = Σmpm⋅∂fm(x)/∂xk – wk    (8a) 

∂Var(π) /∂xk =  

 Σmpm
2⋅∂hm(x)/∂xk + 2ΣlΣm plpm ∂glm(x)/∂xk  (8b) 

We see from equations (4) and (8a and b) that in the 
nonallocable case the risk averse producer will take 
into account the aggregate marginal effect on all M 
outputs of changing input levels.5  

There may also be time-specific effects which 
influence both means, variances and covariances of 
output, E(ym) = fm(x; t), Var(ym) = hm(x; t)σεm, 
Cov(yl,ym) = glm(x; t)σεlm, where t is a vector of time 
dummy variables. Time-specific effects can include 
technological changes which affect fm(⋅), hm(⋅) and 
glm(⋅). Technological changes may be both risk-
increasing and risk-reducing. Again, when the risk 
averse producer compares technologies a trade-off will 
be made between the effects on mean and variance of 
output (profit). One additional challenge when one 
moves from a single-output to a multi-output 
technology is that the risk effects, as measured by 
output variances and covariances, associated with x 
and t may have different signs across outputs m, thus 
leading to ambiguous results for an analysis of 
producer welfare based on the primal JP model 
specification. In order to be able to analyse the effects 
on producer welfare it is then necessary to employ the 
predicted effects on conditional means, variances and 
covariances of outputs in the moments of profit (7a 
and 7b). 

One approach to the analysis technical change 
under production risk which is devoid of risk 
preferences, is to use the concept of first-order 
stochastic dominance (SD) (Hadar and Russell, 1969; 
Hanoch and Levy, 1969). We define the first two 
moments of profit associated with production 
technology 0, E(π0(⋅)) and Var(π0(⋅)), which are 

                                                           
5 However, the subjective weighting of the marginal effects is 
determined by the producer’s degree of risk aversion, i.e. the size 
of dU*/dVar(π). 



 4 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

determined by fm0(⋅), hm0(⋅), glm0(⋅), m = 1, …, M, and 
moments of profit associated with production 
technology 1, E(π1(⋅)) and Var(π1(⋅)), determined by 
fm1(⋅), hm1(⋅), glm1(⋅), m = 1, …, M. If the first two 
moments fully describe the distribution of profit, then 
the two technologies give rise to two distinct 
probability density functions g0(⋅) and g1(⋅) with 
associated cumulative density functions (CDFs) ( )⋅0G  

and ( )⋅1G , respectively. Assume that ( )⋅0G  and ( )⋅1G  
are continuous and monotonic. If technology 1 first-
order stochastically dominates technology 0 globally, 
i.e., 

),,p|(G),,p|(G xwxw ππ 01 ≤   

for all nonnegative p, w, x, with strict inequality for 
some p, w, x, then all producers with utility functions 
U such that U’ ≥ 0 will prefer technology 1 to 
technology 0. In words, if the CDF of technology 1, 

( )⋅1G , lies to the right of the CDF of technology 0, 

( )⋅0G , both risk averse, risk neutral and risk loving 

producers will adopt technology 1. When Eπ1(⋅) > 
Eπ0(⋅) and ( ) ( )⋅≤⋅ 01 ππ VarVar  for given values of 
(p,w,x), then technology 1 is preferred by all 
producers. However, when Eπ1(⋅) > Eπ0(⋅) and 

( ) ( )⋅>⋅ 01 ππ VarVar , then technology 1 may not first-
order stochastically dominate technology 0. 

III.  ECONOMETRIC SPECIFICATIONS OF MULTI-
OUTPUT JP PRODUCTION FUNCTIONS 

The Cobb-Douglas (CD) form has been used in 
many econometric specifications, including the multi-
output approach of Wan et al. (1992), both for the 
mean functions fm(⋅) and variance and covariance 
functions hm(⋅) and gm(⋅) of the JP technology. Yet it is 
well-known fact that choice of a CD function imposes 
very strong restrictions on the production technology. 
For this reason, more flexible functional forms have 
been used in many econometric studies of production 
technologies and productivity. Log-linearization of the 
Cobb-Douglas or the more flexible translog cannot be 
used in a JP model framework since the error term is 
not specified in the usual multiplicative form 

( ) mu
mm efy ⋅= , but in the additive manner 

( ) mmm ufy +⋅=  to ensure consistency with the JP 
postulates. If the um term is normally distributed then 
the multiplicative form will give rise to a log-normal 
output distribution, while the additive form will give 
rise to a normally distributed output. Hence, the model 
has to be estimated by nonlinear methods with these 
functional forms. The less flexible Cobb-Douglas has 
probably been preferred relative to the translog in 
previous studies due to the difficulties of obtaining 
convergence of nonlinear estimates with the latter 
functional form. 

We use a generalised Leontief (GL) (Diewert, 1971; 
Driscoll et al., 1992) specification of the mean 
function f(⋅) in this paper. Earlier studies have 
compared the GL with other functional forms, such as 
the popular translog (TL).6 The generalised Leontief 
(GL) mean function for output m is given by 

mitmik
.
it,kt tmktt tmt

j k
.
it,k

.
it,jmjkk

.
it,kmkm

mitmtmitmmit

uxDD

xx.x

u),,;(fy

++∑+∑+

++=

+=

∑

∑ ∑∑

µαα

ααα
50

505050
0 50

αµDx

 (9)

 m = 1, 2, 3. 

where the subscripts j, k = 1,..., K refers to inputs, 
subscripts i and t refer to firms and years, respectively 
and where Dt is a dummy for time. We avoid the 
conventional time trend straitjacket by allowing the 
rate of technical change to vary from year to year 
using time dummy variables. The time trend model is 
convenient when there is only a single time series data 
set available to the researcher, since few degrees of 
freedom are lost. However, neither theory nor 
empirical observations provide any support for a 
constant rate of technical progress. Farm-specific 
effects on mean output are given by µm,i, and are 
treated as fixed effects.  

                                                           
6 Driscoll et al. (1992) compare the flexibility properties of the TL 
and GL. Tveteras (1999, 2000) estimate both translog and GL 
mean production functions. Several studies have employed the 
more restrictive Cobb-Douglas specification for the mean 
function, e.g. Hallam et al. (1989) and Wan et al. (1992) in their 
multi-output Just-Pope functions. They were then forced to 
estimate the Cobb-Douglas nonlinearly in order not to violate the 
Just-Pope postulates. 



 5 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

We make the following assumptions on the error term 
umit: (a) E[umit] = 0, i.e. expectation is zero; (b) 
Var(umit) = hm(z; β, σ2

εm), i.e. variances are functions of 
explanatory variables z, which may include input 
levels x, and associated parameters β, and the variance 
of exogenous stochastic shocks σ

2
εm; (c) Cov(umit, ulit) 

= glm(z; λ, σ2
εml), i.e. covariances between two random 

output shocks are functions of explanatory variables z, 
which may include input levels x, associated 
parameters λ, and the variance of exogenous stochastic 
shocks σ2

εml; (d) Cov(umit, uljs) = 0 for (i ≠ j and t = s) 
or (i = j and t ≠ s), i.e. there is no stochastic 
interdependence between output shocks for different 
farms or over time. 

The marginal mean of output m with respect to 
input k is given by 

∑ 505050 5050
∂
∂

∂
∂

j

.
k

.
jjkkk

.
kk

k

m

k

m xx.x.
x

f

x

)y(E ααα +==  (10) 

Returns to scale for product m is given by RTSm(x) 
= ΣkEm,k(x) = Σk(∂fm/∂xk)(xk /fm(x)), i.e. it is equal to the 
sum of the K input elasticities for output m (the Em,k’s). 
If the estimate of RTSm(x) is greater than, equal to, or 
less than unity, the returns to scale are increasing, 
constant, or decreasing, respectively. 

The econometric specifications of the variance 
functions estimated here are special cases of Harvey’s 
(1976) variance function specification Var(um) = hm(z) 
= exp[zββββm], where the vector z represents input levels 
or transformations of input levels, e.g., logarithms of 
inputs and second-order terms.7 A nice property of the 
variance function in Harvey’s formulation is that 
positive output variances are always ensured. Note 
that in the JP model Var(ym) = Var(um). 

The argument of the exponent is a generalised 
Leontief function given by: 

                                                           
7 The first element of z, z0, is taken as unity. This implies 

that Var(ε) = exp(β0). 

.321 

50 505050
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xx.xexp(
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βββ

βDx

(11) 

This specification satisfy the flexibility 
requirements of JP. The marginal output risk in input k 
is given by 



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 (12) 

The elasticity measures for the variance function 
( )⋅h  are analogous to the Em,k, and the RTS elasticities 

for the mean function f(⋅). The output variance 
elasticity of product m with respect to input k is given 
by 

m

k

k

m
k,m h

x

x

h
VE

∂
∂=     (13) 

If input k is risk-increasing (risk-decreasing), then 
VEm,k is greater (less) than zero. For our GL 
specification of the variance function VEm,k is 

k
.

k
j jk

.
jjk

.
kkk,m xxx.x.VE 







 += −

≠

− ∑ ∑ 505050 5050 ββ  (14) 

The total output variance elasticity (TVE) of product 
m in inputs is defined as 

)(h

x

x

h
)(VE);(TVE

m

k
k

k

m
k k,mm x

xx ∑∑ ==
∂
∂β  (15) 

i.e. the sum of the K output variance elasticities with 
respect to inputs. TVE is the analogue of the RTS 
elasticity measure derived from the mean function. If 
TVE is greater (smaller) than zero, then a factor-
neutral expansion of input levels will lead to an 
increase (decrease) in the variance of output m. 
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The econometric specification of the covariance 
functions for outputs (l, m) also employs a generalised 
Leontief functional form: 

∑

∑ ∑

∑

+

++=

=

t tt

j k
.

k
.

jjk

k
.

kk

tmitlmml

D

xx.

x

),;(g)u,u(

λ
λ
λλ

λ

5050

50
0

50

Cov Dx

 (16) 

where l, m = 1, 2, 3, l ≠ m, and λ is a vector of 
parameters. This specification is flexible enough to 
allow both positive and negative effects of input 
changes on output covariances, and to allow the 
effects of inputs to vary over their levels. 

The marginal covariance for outputs (l, m) in input k 
is given by 

∑ 5050

50

50                                     

50
∂
∂

∂
Cov∂

j

.
k

.
jjkkk

.
kk

k

lm

k

ml

xx.

x.
x

g

x

)u,u(

λλ

λ +==
 (17) 

The covariance elasticity of outputs (l, m) in input k 
is given by 

)(g

x

x

g
)(CE

lm

k

k

lm
k,lm x

x
∂
∂=    (18) 

The total output covariance elasticity (TCElm) for 
outputs (l, m) in inputs is defined as 

)(g

x

x

g
)(CE);(TCE

lm

k
k

k

lm
k k,lmm,l x

xx ∑∑ ==
∂
∂λ  (19) 

i.e. the sum of the K output covariance elasticities with 
respect to inputs, CElm,k. If TCE is greater (smaller) 
than zero, then a factor-neutral expansion of input 
levels will lead to an increase (decrease) in the 
covariance between outputs l and m. 

The stochastic Just-Pope production functions are 
estimated in two stages. In the first stage we handle 
the potential covariance between errors and 

heteroskedasticity by estimating the mean production 
functions simultaneously by Zellner’s SURE, where 
White’s heteroskedasticity-consistent covariance 
matrix of the parameter estimates is computed (White, 
1980). Since production risk is a special form of 
heteroskedasticity, as noted by Asche and Tveteras 
(1999), the first-stage White estimates provide 
consistent estimates and valid inference. In the second 
stage the variance and covariance functions are 
estimated by SURE using the predicted residuals from 
the first stage. When the production model is 
estimated by SURE, the error terms (i.e. the 
exogenous shocks to production) are assumed to be 
correlated. In the context of dairy farms this means, 
for example, that when there are shocks to milk 
production there also tend to be shocks to meat 
production (e.g. diseases or weather conditions which 
affect both milk and meat production). 

IV.  DATA 

The data source is the Norwegian Farm 
Accountancy Survey. This is an unbalanced set of 
farm-level panel data, collected by the Norwegian 
Agricultural Economics Research Institute (NILF). It 
includes farm production and economic data collected 
annually from about 1000 farms, divided between 
different regions, farm size classes, and types of farms. 
Participation in the survey is voluntary. There is no 
limit on the numbers of years a farm may be involved 
in the survey. Approximately 10% of the survey farms 
are normally replaced every year. The farms are 
classified according to their main category of farming, 
defined in terms of the standard gross margins of the 
farm enterprises.  

The data set used in the analysis is a unbalanced 
panel with 4624 observations on 651 dairy farms from 
1993 to 2003. We distinguish between three outputs; 
milk measured in litres (y1), meat measured in kg (y2) 
and an aggregate of other outputs measured in 
Norwegian kroner (NOK) (y3).

8 The aggregate of other 
outputs includes revenues from additional farm 
enterprises and direct payments (mainly paid per 
livestock head or per hectare, with rates varying 
according to type of livestock and crops). Dairy farms 

                                                           
8 5.10 NOK ≈ 1 USD. 



 7 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

use both allocable and nonallocable inputs. The six 
inputs included in our econometric models are farm 
land (x1), labour (x2), purchased feed (x3), materials 
(x4), number of cattle (x5) and machinery capital (x6). 
Labour is to some extent allocable, for example, 
labour used in meat production instead of e.g., milking 
the cows. But to distinguish between the amount of 
labour input used in producing milk and the amount of 
the same input used in producing meat is difficult. The 
same applies to inputs such as fixed capital (e.g. 
buildings and machinery), purchased feed, 
miscellaneous materials and services purchased (e.g. 
veterinary services), and the stock of cattle. In our case 
we also have a measurement problem, since we do not 
have data on, e.g., labour-hours used in meat 

production and labour-hours used for managing the 
dairy cows. Hence, we have to use the total amount of 
each input in the production functions for each output. 
This means that we should be somewhat cautious in 
drawing too strong conclusions from individual input 
elasticities.  

Table 1 presents summary statistics for all farms in 
the estimating sample. All monetary values have been 
deflated by the consumer price index. 

Table 2 presents correlation coefficients for outputs 
and inputs. The correlations were moderately positive. 
Materials and number of cattle exhibited the strongest 
correlation (0.79) between inputs. 

 

 

Table 1 Summary statistics for sample 1993-2003 

  Mean SD Minimum Maximum 
y1 Milk (litres) 80797 32944 9005 273929 
y2 Meat (kg) 3558 2102 -78.0 29140 
y3 Other outputs (NOK) 284189 77720 56749 1935202 
x1 Farm land (ha) 196 81.8 36.0 595 
x2 Labour (hours) 3385 863 669 7460 
x3 Purchased feed (NOK) 144926 67904 3704 793298 
x4 Materials (NOK) 97776 43153 10986 366333 
x5 Cattle (number of animals) 20.6 8.1 2.6 80.2 
x6 Machinery capital (NOK) 87532 46084 587 411321 
 Number of farms 651    
 Number of observations 4624    
 

Table 2 Correlation coefficients for inputs and outputs 

 y1 y2 y3 x1 x2 x3 x4 x5 x6 
y1 1.00         
y2 0.65 1.00        
y3 0.58 0.53 1.00       
x1 0.67 0.64 0.71 1.00      
x2 0.52 0.43 0.46 0.45 1.00     
x3 0.75 0.69 0.61 0.57 0.49 1.00    
x4 0.75 0.71 0.71 0.76 0.51 0.70 1.00   
x5 0.88 0.82 0.66 0.73 0.53 0.75 0.79 1.00  
x6 0.51 0.51 0.49 0.52 0.34 0.51 0.61 0.54 1.00 

Outputs: Milk (y1), meat (y2) and other outputs (y3). Inputs: farm land (x1), labour (x2),  
purchased feed (x3), materials (x4), number of cattle (x5) and machinery capital (x6). 
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V. EMPIRICAL RESULTS 

A. Test for heteroskedasticity 

Before we proceeded to the estimation of 
production risk using multi-output JP production 
functions, we determined whether heteroskedasticity 
was present in dairy farming production technology. A 
Breusch-Pagan (BP) test was first undertaken 
(Breusch and Pagan, 1979) based on the GL mean 
production functions. The BP test statistic, when the 
explanatory variables in the GL models are used, was 
distributed as chi-square with 44 degrees of freedom. 
The estimated BP values were 3073 (p < 0.001) for 
milk output , 5237 (p < 0.001) for meat output, and 
8440 (p < 0.001) for other outputs. Hence, the null 
hypothesis of homoskedasticity can be firmly rejected 
for all three outputs at conventional significance 
levels, implying that White’s heteroskedasticity-
consistent covariance matrix should be estimated to 
ensure valid inference. 

B. Just-Pope model results 

Table 3 presents estimated elasticities for a JP 
model with farm-specific fixed effects in the mean 
function. We evaluated the mean, standard error and t-
values of the elasticities in the sample mean value of 
each variable. The delta method was used for 
estimation of the standard errors (Oehlert, 1992).  

Most inputs had a positive effect on the mean 
function, as measured by the input elasticities (Em,k), 
with stock of cattle having the highest elasticity for 
milk and meat. As expected, the sum of the input 
elasticities, returns to scale (RTS), was positive for all 
outputs. Only meat had returns to scale around one, 
while milk and other outputs had an RTS around 0.5.  

The estimated variance functions predict that there 
are both risk-increasing and risk-decreasing inputs, as 
measured by the output variance elasticities (VEm,k) in 
Table 3. Furthermore, the estimates show that the 
same input can have opposite risk effects on the three 
outputs (e.g., materials). For both milk and meat 
output land had the most positive variance elasticity, 

while labour had the most negative variance elasticity 
for milk and meat output, implying that labour input 
plays a risk-reducing role. The total variance elasticity, 
which is the sum of all VEm,k values, was positive for 
all three outputs, implying that the variance function 
contributed to increased variability as the scale of the 
farm increases.  

To get a more complete picture of production risk in 
dairy farming, the covariance functions must also be 
investigated. Inputs had both significant positive and 
significant negative marginal effects on covariances, 
as measured by the covariance elasticities (CElm,k) in 
Table 3. For example, machinery capital had a 
significantly positive effect at the 10% confidence 
level on the covariance between milk and meat output 
(CE12,6), but significantly negative effects on the 
covariances between milk and other outputs (CE13,6) 
and meat and other outputs (CE23,6). We found that the 
total covariance elasticity tended to be negative 
between milk and meat outputs, and between milk and 
other outputs, but positive between meat and other 
outputs. But none of the elasticities were significantly 
different from zero at the 10% confidence level. 

C. Time-specific effects 

Next, we examined time-specific effects on the 
distribution of output. We found statistically 
significant differences between several years in mean 
and variance of output for each of the three outputs, 
according to the estimated parameters associated with 
the time-dummy variables of the mean, variance and 
covariance functions.9 However, it is difficult to assess 
from the parameters what the total effect is on the 
risky production technology. As a first step to 
understanding the total effect, we present the predicted 
conditional means, variances and covariances of 
outputs in Table 4. The estimated models are 
evaluated at the overall sample average input levels. 

  
 

                                                           
1. 9 The estimated parameters are not reported here due to space 

considerations, but are available from the authors upon request. 
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 Table 3 Elasticity estimates JP model with farm-specific effects in mean function 

Function Symbol Estimate St.err. 
t-

value 
p-

value 

Mean function      

Output 1 (milk)      

Farm land E11 0.014 0.011 1.320 0.188 

Labour E12 0.022 0.009 2.540 0.011 

Purchased feed E13 0.129 0.007 17.640 0.000 

Materials E14 0.042 0.008 5.290 0.000 

    Number of cattle E15 0.200 0.014 14.260 0.000 

Machinery capital E16 0.019 0.004 5.040 0.000 

Return to scale RTS1 0.427 0.017 25.860 0.000 

Output 2 (meat)      

Farm land E21 0.145 0.030 4.830 0.000 

Labour E22 -0.025 0.025 -1.010 0.310 

Purchased feed E23 0.272 0.020 13.380 0.000 

Materials E24 0.016 0.022 0.710 0.475 

    Number of cattle E25 0.708 0.039 18.180 0.000 

Machinery capital E26 -0.003 0.011 -0.290 0.772 

Return to scale RTS2 1.114 0.046 24.240 0.000 

Output 3 (other outputs)      

Farm land E31 0.139 0.020 7.090 0.000 

Labour E32 0.050 0.016 3.080 0.002 

Purchased feed E33 0.107 0.013 8.050 0.000 

Materials E34 0.074 0.015 5.100 0.000 

    Number of cattle E35 0.202 0.026 7.920 0.000 

Machinery capital E36 -0.017 0.007 -2.500 0.013 

Return to scale RTS3 0.555 0.030 18.470 0.000 

Variance function      

Output 1 (milk)      

Farm land VE11 0.933 0.185 5.050 0.000 

Labour VE12 -0.491 0.185 -2.650 0.008 

Purchased feed VE13 0.344 0.165 2.080 0.037 

Materials VE14 -0.432 0.192 -2.250 0.024 

    Number of cattle VE15 0.072 0.250 0.290 0.774 

Machinery capital VE16 -0.057 0.094 -0.600 0.547 

Total variance el. TVE1 0.368 0.164 2.260 0.024 

Output 2 (meat)      

Farm land VE21 0.478 0.173 2.760 0.006 

Labour VE22 -0.454 0.173 -2.620 0.009 



 10 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

Purchased feed VE23 0.184 0.154 1.190 0.233 

Materials VE24 0.393 0.179 2.190 0.029 

    Number of cattle VE25 0.398 0.234 1.700 0.089 

Machinery capital VE26 0.290 0.088 3.300 0.001 

Total variance el. TVE2 1.289 0.153 8.440 0.000 

Output 3 (other outputs)      

Farm land VE31 0.313 0.178 1.760 0.079 

Labour VE32 0.390 0.179 2.190 0.029 

Purchased feed VE33 0.120 0.159 0.760 0.449 

Materials VE34 0.485 0.185 2.620 0.009 

    Number of cattle VE35 -0.037 0.241 -0.150 0.877 

Machinery capital VE36 0.149 0.091 1.640 0.100 

Total variance el.  TVE3 1.421 0.158 9.020 0.000 

Covariance function      

Milk – meat      

Farm land CE12,1 0.104 0.070 1.490 0.137 

Labour CE12,2 -0.325 0.070 -4.640 0.000 

Purchased feed CE12,3 0.098 0.062 1.570 0.117 

Materials CE12,4 -0.082 0.073 -1.130 0.257 

     Number of cattle CE12,5 0.048 0.095 0.510 0.613 

Machinery capital CE12,6 0.064 0.036 1.790 0.074 

Total cov. elasticity TCE12 -0.094 0.062 -1.530 0.127 

Milk - other outputs      

Farm land CE13,1 -0.386 0.284 -1.360 0.174 

Labour CE13,2 -0.183 0.285 -0.640 0.521 

Purchased feed CE13,3 0.646 0.254 2.540 0.011 

Materials CE13,4 0.434 0.295 1.470 0.142 

    Number of cattle CE13,5 -0.466 0.385 -1.210 0.226 

Machinery capital CE13,6 -0.385 0.145 -2.660 0.008 

Total cov. elasticity TCE13 -0.341 0.252 -1.350 0.176 

Meat - other outputs      

Farm land CE23,1 -0.037 0.351 -0.110 0.915 

Labour CE23,2 0.177 0.352 0.500 0.614 

Purchased feed CE23,3 0.799 0.313 2.550 0.011 

Materials CE23,4 0.529 0.365 1.450 0.147 

    Number of cattle CE23,5 -0.902 0.476 -1.900 0.058 

Machinery capital CE23,6 -0.458 0.179 -2.560 0.010 

Total cov. elasticity TCE23 0.107 0.311 0.350 0.729 
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Table 4 Predicted means, variances and covariances of outputs from the estimated model with  
farm-specific fixed effect 

Year E(y1) Var(y1) E(y2) Var(y2) E(y3) Var(y3) Cov(u1,u2) Cov(u1,u3) Cov(u2,u3) 

1993 64,579 3,076,810 7,944 57,718 37,484 137,101,550 -302,502 56,196,501 1,453,941 

1994 63,669 2,767,340 8,140 48,375 30,712 93,906,470 -310,470 61,124,243 2,371,017 

1995 63,829 2,921,096 8,173 41,750 8,338 99,229,831 145,964 36,967,316 158,133 

1996 63,232 3,464,287 8,229 54,240 12,557 101,832,457 -74,001 37,167,316 986,799 

1997 63,869 2,974,168 8,228 40,599 10,390 80,735,921 -116,242 38,867,316 774,445 

1998 64,325 3,068,561 8,312 57,818 20,828 85,175,215 -105,672 35,767,316 -1,450,991 

1999 65,482 3,075,124 8,375 63,618 15,807 100,518,480 290,917 10,067,316 -1,979,941 

2000 66,980 2,388,094 8,278 53,713 23,621 110,720,675 166,959 25,167,316 -972,383 

2001 67,369 3,141,941 8,346 47,677 7,144 99,226,200 410,624 39,167,316 -2,397,461 

2002 69,705 3,676,869 8,372 71,830 20,923 113,302,404 172,329 56,911,337 -2,310,220 

2003 73,276 5,879,484 8,476 74,727 4,715 119,202,162 -887,664 208,267,316 428,625 

 

Table 4 shows that there are no clear trends in 
conditional means, variances and covariances of 
outputs over time. For milk and meat the trend is 
increasing mean output, but there are negative shifts in 
some years. For other outputs (output 3) there were 
sharp drops in the mean in some years, in particular 
the last year, 2003. The variances of outputs do not 
exhibit a clear trend, with negative and positive shifts 
from year to year. For milk and meat output the 
variance increased in the last years. However, the 
picture is not complete without the covariances 
between outputs. The table shows that the covariance 
between milk and meat, Cov(u1,u2), takes both 
negative and positive values over time. The covariance 
between milk and other outputs, Cov(u1,u3), is always 
positive and is highest in the final year, while the 
covariance between meat output and other outputs, 
Cov(u2, u3), exhibits large shifts between positive and 
negative values.  

Table 4 provides ambiguous results with respect to 
which technology is the preferred one for the average 
farm. In order to rank these technologies we need to 
employ the estimated JP production functions in the 
profit mean and variance equations (7a and b). Next, 
we examine the effects of these individual moments of 
output on the moments of profit. Table 5 presents 
predicted mean and standard deviation of profit 
evaluated at the overall sample mean output prices, 
input prices and input levels. What emerges from 
Table 5 is that technological change is not a smooth 

process, and that it has not necessarily led to welfare 
improvements for farmers when economic risk is 
taken into account. Fig. 1 plots the associated CDF of 
profit for selected years, using the conditional means 
and standard deviations from Table 5, and assuming a 
normal distribution for profit. This figure shows that 
the 2003 profit CDF, having the highest mean, does 
not stochastically dominate by first or second degree 
the profit CDFs for the previous years since it has a 
longer left tail than the other CDFs. 

Table 5 Predicted mean and standard deviation of profit 
from the estimated model with farm-specific fixed effect 

Year E(π) SD(π) 

1993 -385164 27746 

1994 -388059 28597 

1995 -408456 24272 

1996 -404577 24789 

1997 -404100 23393 

1998 -388411 19555 

1999 -386095 16725 

2000 -375741 20688 

2001 -387923 22537 

2002 -363220 25427 

2003 -360280 42880 



 12 

12th Congress of the European Association of Agricultural Economists – EAAE 2008 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

C
um
ul
at
iv
e 
pr
ob
ab
ili
ty

Prof it

1993

1995

1997

1999

2002

2003

 

Fig. 1 Cumulative density function of profit in various years assuming a normal distribution 

VI.  CONCLUDING DISCUSSION 

Multi-output farmers are portfolio managers who 
balance expected economic return and variance of 
return through input choices. Hence, farmers and 
policy makers can benefit from a better understanding 
of the structure of risk. This paper has demonstrated 
that econometric analyses becomes much richer when 
one accounts for both the multi-output character of 
production and output risk. But at the same time it 
becomes more difficult to predict the effects of input 
changes, technical change etc. on the welfare of risk-
averse producers only by examining the estimated 
production functions. We have attempted to provide 
implications for risk-averse producers by estimating 
not only the predicted effects on moments of output 
from multi-output Just-Pope technologies, but also by 
using predicted moments of outputs to predict 
moments of profit.  

Our estimated econometric model can be used by 
farmers to evaluate the effects of changes in input use, 
for example, an input-neutral scale expansion or a 
change in the use of one of the inputs, on both the 
expected profit and variability in profit. This would be 
valuable for risk averse farmers who are concerned 

about effects on both the mean and variance to assess 
riskiness of profits. Furthermore, it increases the 
understanding of the effects of technological change 
over time on the structure of economic risk. 

We find that inputs primarily increase output 
variance, and that the size of the effect of an input may 
differ across outputs. Our results show that input 
levels also influence the covariance of shocks between 
outputs, and that risk-reducing effects of inputs 
primarily are present in the covariance functions. 
Technical change leads to shifts in the profit 
distribution over the data period. Mean profit is higher 
in the last two data years compared to the previous 
nine years, but profit variance is also higher. Hence, 
there is no evident welfare improvement for risk 
averse farmers in the sense that the technology in the 
last year does not first-order stochastically dominate 
earlier years. 
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