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Measuring Liquidity Costs in Agricultural Futures Markets 
 

Estimation of liquidity costs in agricultural futures markets is challenging because bid-ask 
spreads are usually not observed. Spread estimators that use transaction data are available, 
but little agreement exists on their relative accuracy and performance. We evaluate four 
conventional and a recently proposed Bayesian estimators using simulated data based on 
Roll’s standard liquidity cost model. The Bayesian estimator tracks Roll’s model relatively 
well except when the level of noise in the market is large. We derive an improved estimator 
that seems to have a higher performance even under high levels of noise which is common in 
agricultural futures markets. We also compute liquidity costs using data for hogs and cattle 
futures contracts trading on the Chicago Mercantile Exchange. The results obtained for 
market data are in line with the findings using simulated data. 
 
Keywords: liquidity costs, bid-ask spread, Bayesian estimation, Gibbs sampler 
 
 
Introduction 

The cost of liquidity, often referred to as the bid-ask spread, is the difference between the 
prices for immediate purchase and sale (Bryant and Haigh 2004). This component of the 
transaction costs is usually ignored in analyses of futures markets as bids and offers occur in 
an open outcry pit and are not recorded. To circumvent this problem, spread estimators have 
been proposed that use transaction data only. Some examples are serial covariance estimators 
(Roll 1984; Choi, Salandro and Shastri 1988; Chu, Ding, and Pyun 1996), and mean absolute 
price change estimators (Thompson and Waller 1988; Wang et al. 1997). However, research 
suggests that these estimators are biased with respect to actual bid-ask spreads, with little 
agreement on the direction and magnitude of the bias. For example, Locke and Venkatesh 
(1997) and Ferguson and Mann (2001) show that both serial covariance estimators and mean 
absolute price change estimators are upward biased using audit data.1 In contrast, Bryant and 
Haigh (2004) and Anand and Karagozoglu (2006) find that both serial covariance and mean 
absolute price change estimators are downward biased with respect to bid-ask quotes.2  
 
Conventional spread estimators have been commonly used because of both the lack of 
alternative estimators and their simplicity. However, previous research has shown their 
weaknesses. For example, the covariance between adjacent price changes can yield positive 
values when using serial covariance estimators, making it difficult to obtain spread estimates. 
The Thompson-Whaley estimator can fail to distinguish between true price change volatility 
and volatility attributable to the bid-ask price bounce (Smith and Whaley 1994). Locke and 
Venkatesh (1997) and Smith and Whaley (1994) suggest that Roll’s estimator is inadequate 
for futures markets. Chu, Ding and Pyun (1996) find that, in general, Roll’s measure 
overestimates the bid-ask spread in foreign exchange futures prices because it fails to account 
for the possibility that buys and sells might not be equally likely. The above research 
suggests that further investigation of conventional spread estimators as well as alternative 
measures is needed. 
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Recently, Hasbrouck (2004) implemented a Bayesian Markov Chain Monte Carlo (MCMC) 
algorithm, the Gibbs sampler, to generate estimates of liquidity costs. Bayesian techniques 
are attractive in this context for a number of reasons. Estimation is based on parameters’ 
posteriors which incorporate all the information in the observed transaction prices. Like the 
mean absolute price change estimators, this procedure does not contain the problem of 
unfeasible values (i.e. positive covariance between adjacent price changes) because the 
parameters are random draws from their conditional distributions. In addition, unobserved 
latent variables, like the trade direction indicator, are estimated conditional on observed 
transaction prices rather than derived from tick rules. However, the Bayesian estimator has 
been less explored and its level of accuracy is not well documented. Moreover, Hasbrouck’s 
estimates for pork bellies are considerable smaller relative to Roll’s conventional estimates. 
 
Accurate estimates of liquidity costs are of interest to exchanges, market participants, and 
researchers. For exchanges, knowing the cost of providing liquidity in their different markets 
can help develop strategies for the development of new products as well as in the regulation 
of market-making services of existing products. For example, liquidity costs might be useful 
to assess the quality of the hedging service provided by a futures contract (Pennings and 
Meulenberg 1997). For market participants, estimates of liquidity costs in different markets 
and exchanges are useful in making operational decisions. Brorsen, Buck, and Koontz (1998) 
suggest that wheat hedgers would maximize their utility by choosing the Chicago Board of 
Trade (CBOT) if they are slightly risk averse and face high liquidity cost differences, but the 
Kansas City Board of Trade (KCBT) is a better (utility maximizing) option if they are faced 
with low liquidity cost differences. For researchers, understanding the structure of liquidity 
costs in futures markets may provide a more comprehensive view of the pricing process. For 
example, Phillips and Smith (1980) show that failure to account for bid-ask spreads in the 
calculation of excess returns in options and stock markets leads to abnormal returns and to 
the wrong conclusion of market inefficiency. Much research has been done in stock markets, 
however, futures markets have been less explored due to the lack of bid-ask quotes.  
 
The purposes of the research are to evaluate commonly used and alternative (i.e., Bayesian) 
spread estimators, determine their source of bias, and identify the most adequate measure of 
liquidity costs for different market conditions when the only data available are transaction 
prices. The analysis focuses on the Bayesian estimator as there are no previous studies in this 
arena. Due to the lack of actual bid-ask spreads, we assess the accuracy of the different 
measures using simulated data based on the Roll model of spread behavior. We use the mean 
square error and correlations to assess the performance of the spread estimators. We also 
compare different spread estimates using data from the lean hogs and live cattle contracts 
trading on the CME. 
 
 
Literature Review 
 
Considerable research has been performed on market microstructure in general, and on 
liquidity in particular for stock and financial futures markets. Studies on commodity futures 
markets, however, are more scarce. Moreover, as argued by Bryant and Haigh (2004) and 
Ferguson and Mann (2001), findings from financial markets are not always directly 
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applicable to commodity markets because both markets have different levels of transparency 
(i.e. amount of information available to market makers and other participants). Hence, our 
discussion focuses on research performed in commodity futures markets. 
 
Research in liquidity costs for agricultural futures markets can be classified in those studies 
addressing specific characteristics of the different markets and those dealing with 
measurement problems. Very few studies exist in the first group (Thompson and Waller 1987 
and 1988, and Thompson, Eales, and Seibold 1993). In the second group most of the studies 
stress the problems associated with spread estimators, specially when the Roll and 
Thompsom-Waller measures are used (for example, Ma, Peterson, and Sears 1992, Smith and 
Whaley 1994, and Bryant and Haigh 2004). 
 
Thompson and Waller (1987) studied coffee and cocoa contracts in the New York Board of 
Trade (NYBOT) over the three-year period 1981-83. Under the hypothesis of negative price 
correlation, they use the average absolute value of price changes to measure execution costs. 
Negative price correlation emerges because market makers fill buy orders at a higher price 
than sell orders. Their findings show lower execution costs in actively traded nearby 
contracts relative to thinly traded more distant contracts.  
 
Thompson and Waller (1988) analyzed liquidity costs for corn and oats contracts traded in 
the Chicago Board of Trade (CBOT) in 1984 and 1986. Their results are mixed and in some 
cases not consistent with expectations when Roll’s serial covariance measure is used. For 
example, they found that the trading volume is negatively related to liquidity costs when they 
use the absolute price change as a proxy but has a positive relationship when they use Roll’s 
measure as a proxy. Based on theory and past research, an increase in trading volume is 
expected to be negatively related to liquidity costs because it is associated with a faster rate 
of inventory turnover thus reducing the time and information risk faced by the market maker 
associated with a change in real price.  
 
Thompson, Eales, and Seibold (1993) compared liquidity costs for the same commodity 
traded in different exchanges, i.e. wheat in the CBOT and in the KCBT in 1985. Using Roll’s 
measure and the average absolute price changes measure, their results suggest that in Kansas 
City liquidity costs are significantly higher due, to some extent, to its lower trading volume. 
In both exchanges, liquidity costs are higher and more sensitive to trading volume at 
expiration.  
 
Ma, Peterson, and Sears (1992) investigate the intraday behavior of selected futures 
contracts, including corn and soybeans. They argue that the Thompson –Waller estimator 
might be upward biased, and that the Roll estimator might overstate the actual spread when 
transaction prices are recorded on a tick basis. However, all three estimators basically reflect 
the U-shape price behavior during the day which suggests that different spread estimators are 
correlated as they capture spread variability during the day.  
 
Smith and Whaley (1994) recognize the problems associated with the Roll and Thompson-
Waller estimators. They point out that the Roll estimator becomes troublesome when the 
covariance between adjacent price changes is positive, and that the Thompson-Waller 
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estimate gives an upward bias of the spread because it fails to recognize the variance of true 
price changes contained in the absolute value of price changes. To overcome this problem, 
Smith and Whaley suggest a new spread estimator based on the first two moments of 
absolute price change distribution. Their estimator is derived for tick-basis datasets, and is 
robust to different levels of serial correlation and volatility of true price changes when both 
simulated data and S&P500 futures data for the period 1982-1987 are used. However, their 
model assumes that true price changes are distributed normally with mean zero and variance 
σ2 which not always holds. 
 
Locke and Venkatesh (1997) compute futures transactions costs for several commodities to 
assess the performance of commonly used spread estimators. Transaction costs are defined as 
dollar flows from customers to market-makers, and are estimated as the difference between 
the average purchase price and the average sale price for all futures customers, with prices 
weighted by transaction size. Transactions costs are measured directly using data provided by 
the CFTC which contains information about each trade (commodity, delivery month, 
quantity, price, date and time), the trade direction (whether it is a buy or a sell), and the 
executing trader (whether it is a customer or a market maker). Roll’s (1984) and Smith and 
Whaley’s (1994) estimates for live cattle and lean hogs in the CME appear to be higher than 
the observed transaction costs (all but Roll’s estimate for lean hogs are significantly higher at 
the 5% level).  
 
Ferguson and Mann (2001) use a similar approach as Locke and Venkatesh (1997) to study 
agricultural commodities trading in the CME, namely live cattle, pork bellies, hogs, feeder 
cattle and lumber. Their results are consistent with Locke and Venkatesh as the observed 
execution spreads are lower than estimated spreads using Roll’s serial covariance measure. 
For example, the article finds execution spreads for live cattle and lean hogs that are 85% and 
73% lower than their respective estimates using Roll’s measure.  
 
Bryant and Haigh (2004) contrast observed and estimated spreads in commodity futures 
markets. Observed bid and ask prices, as well as transaction prices, are taken from the LIFFE 
for cocoa and coffee. Estimated spreads are computed using serial covariance and absolute 
price change measures. Observed spreads are higher than estimated spreads for both serial 
covariance and absolute price change measures. The correlation between estimated and 
observed spreads is higher for the absolute price change measures than for the serial 
covariance measures. Also, absolute price change estimators perform better than serial 
covariance estimators when evaluated using the bias and the mean square error criteria, 
however the latter show lower error variances. Similar results regarding the downward bias 
in spread estimators are found by Anand and Karagozoglu (2006) when estimated spreads are 
contrasted with actual spreads from the SFE in financial futures markets. These findings 
imply that spread estimators might not be reliable and alternative measures of liquidity costs 
are needed when observed bid and ask prices are not available, as is the case for major US 
exchanges.  

 
 
 



 6

Methods 
 
The model 
 
We use Roll’s standard model as a framework to generate the simulated data which will be 
used to assess the performance of the other procedures. The basic Roll model is commonly 
used in the microstructure literature to relate transaction prices and liquidity costs. It is also 
the underlying model assumed by spread estimators as shown below. In the model, in the 
absence of transaction costs the efficient price mt reflects all available public information and 
follows a random walk. Futures markets operate through dealers who offer bid (Bt) and ask 
(At) prices, so that buyers buy at the price At, sellers receive the price Bt, and the cost of a 
transaction is c. Prices are affected by the direction of trade, qt={-1 for a sell, +1 for a buy}. 
When trading is observed, the transaction prices pt are determined using (1) and (2).  
 
 mt = mt-1 + ut  ut ~ iid N(0, σ2

u) (1) 
 pt = mt + cqt  qt ~ Bernoulli(1/2) (2) 
 
When qt = -1 then pt = Bt and when qt = +1 then pt = At, with c being a measure of the half 
spread. 
  
Conventional estimators 
 
Conventional spread measures that use transaction prices only are based on price changes 
negative serial dependence and prices absolute price changes. Serial covariance estimators 
have been proposed by Roll (1984), Choi, Salandro and Shastri (1988), and Chu, Ding and 
Pyun (1996). Roll is the most extensively used estimator while the other two are used for 
market conditions associated with different distributions of qt. Since Choi, Salandro and 
Shastri is a special case of Chu, Ding and Pyun, it is not included in the analysis. Mean 
absolute price change estimators include Thompson and Waller (1987) and the CFTC 
measure described in Wang, Moriarty, Michalski and Jordan (1990) and Wang, Yau and 
Baptiste (1997).  
 
Roll (1984) argues that trading costs induce negative serial dependence in successive 
observed price changes and derives the first serial covariance estimator. The assumptions are: 
1) the market is informationally efficient, 2) observed price changes follow a stationary 
probability distribution, 3) all trades are made through the market maker who maintains a 
constant spread, 4) the direction of the trade is independent of the efficient price movement, 
i.e. qt is independent of Δmt = ut, and 5) each transaction is equally likely to be a purchase or 
a sale, i.e. qt ~ Bernoulli(1/2) in (2). Under these assumptions and taking the covariance of 
subsequent price changes yields,  
 
Δpt = ut + cΔqt ut ~ iid N(0, σ2

u) (3) 
Cov (Δpt,Δpt-1) =  E[ut ut-1] + c(E[utΔqt-1] + E[ut-1Δqt]) + c2ΔqtΔqt-1 = - c2 (4) 
 
The first term on the RHS of equation (4), E[ut ut-1], vanishes under market efficiency as 
there is no information from t-1 contained in t. The second term, E[utΔqt-1] + E[ut-1Δqt], is 
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also zero as the fourth assumption states that the direction of incoming orders does not 
provide information that is reflected in the efficient price. That is, changes in the direction of 
trades are non-informative. Solving for the last term and rearranging yields the Roll estimator 
for the half spread, c, 
 
RM = 1cov( , )t tp p −− Δ Δ  (4.1) 
where Δpt, t = 1,…,T, are the observed transaction prices in first differences. 
 
Choi, Salandro and Shastri (1988) relax the assumption that each transaction is equally likely 
to be a purchase or a sale, i.e. qt ~ Bernoulli(1/2) in (2), and incorporate the possibility of 
serial correlation in transactions. Serial correlation in transactions might be due to floor 
brokers executing market orders for a large number of shares and splitting them among 
quotations of other market participants. An observer would then see successive transactions 
of the same type. Serial correlation may also emerge when limit orders get executed at the 
same time after a certain price change. Chu, Ding, and Pyun (1996) extend this idea by 
incorporating a longer memory in the model. In addition to the one-period conditional 
probabilities, δ = P(At⏐At-1) = P(Bt⏐Bt-1), they define two-period conditional probabilities, α 
= P(At+1⏐Bt-1At) = P(Bt+1⏐At-1Bt), 
 

( ) )1(1
),cov(

2
1 1

αδ −−
ΔΔ−

= +tt pp
CDP   (5) 

 

∑
=

=
n

t
iT

n 1

1δ̂  

 

)1()()1()(
)()(ˆ

cNcNaNaN
cNaN

−++−+
+

=α . (6) 

 
Here δ̂  is the maximum likelihood estimator of δ, n is the number of transactions, Ti = 1 if 
transaction i is the same type as i-1 and 0 otherwise, α̂  is the maximum likelihood estimator 
of α, and N(•) is the number of observations corresponding to each of the following events: a 
= P(At+1⏐Bt-1At), c = P(Bt+1⏐At-1Bt), 1-a = P(Bt+1⏐Bt-1At), 1-c = P(At+1⏐At-1Bt). Transactions 
are classified as bid and asks following Lee and Ready’s (1991) tick rule. A transaction is an 
ask if it occurs at an uptick or zero-uptick, and as a bid if it occurs at a downtick or zero-
downtick. A trade is an uptick (downtick) if the price is higher (lower) than that of the 
previous trade. When a trade occurs at the same price as the previous trade’s, it is a zero-
uptick (zero-downtick) if the last price change was an uptick (downtick) or zero-uptick (zero-
downtick). The CDP is a more generalized estimator than RM; if α = δ = 0.5, CDP reduces to 
RM.   
 
Thompson and Waller (1987) propose a measure of liquidity costs that is also based on the 
negative dependence of price changes. They argue that the placement of a buy order is likely 
to increase the average price level and the placement of a sell order is likely to decrease the 
average price level. When this is true for all orders, the mean absolute value price change is 
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an unbiased estimate of the execution cost which is directly related with the bid-ask spread. 
The Thompson and Waller measure is defined as, 
 

∑
=

Δ=
T

t
tp

T
TW

1

*1  (7) 

 
where *

tpΔ is the series of non-zero price changes. 
 
From (1) and (2), it can be shown that TW is a rough estimator of c. Under the assumption 
that zero price changes (i.e. Δpt = 0) are a proxy for zero trade direction changes (i.e. Δqt = 
0), the expected value of ⏐Δpt ⏐ is (see appendix): 
 

( ) ( )
2

2
4
2* 2 2

2

c

tE p e c F c F cμσμσ
π

−

⎡ ⎤Δ = + − −⎡ ⎤⎣ ⎦⎣ ⎦  (8) 

where F(•) is the normal cumulative distribution function with mean zero and variance 2
μσ .3  

 
The CFTC measure is similar to the TW but eliminates any price change that follows another 
price change of the same sign. This modification is designed to reduce the chance of 
attributing variability due to new information to the bid-ask spread, and to eliminate serially 
correlated transaction types. The measure, described in Wang et al. (1990), is as follows, 
 

∑
=

Δ=
T

t
tp

T
CFTC

1

**1  (9) 

where **
tpΔ  is the series of non-zero price changes that are price reversals (i.e. subsequent 

price changes of different sign).  
 
Bayesian estimator 
 
Hasbrouck (2004) proposes Bayesian estimation to infer the effective bid-ask spread. 
Bayesian estimation is implemented using the Gibbs sampler which is a Markov chain Monte 
Carlo estimator. This technique is attractive because the estimation is based on parameters 
posteriors which incorporate all the information in the observed transaction prices, and the 
trade direction indicator is estimated conditional on observed transaction prices rather than 
assuming buys and sells are equally likely (as in RM) or derived from tick rules (as in CDP). 
Hasbrouck argues that an additional strength of the Bayesian estimate is that simulated 
posteriors are exact small sample distributions as they account for serial correlation and 
changes in information. However, as we show below, the correlation found in the estimation 
is inflated. 
 
The Gibbs sampler generates a sequence of samples from the conditional probability 
distributions of random variables. The algorithm is motivated because it is applicable when 
the joint distribution F(q,c,σ2

u|p) is not known but the conditional distribution of each 
variable is known. As a Markov chain Monte Carlo method, the Gibbs sampler generates 
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sample values from the distribution of each variable in turn, conditional on the current values 
of the other variables. 
 
In the Bayesian approach the transaction cost, c, and the variance of the efficient price 
changes, σ2

u, are the unknown parameters from the regression specification 
 
Δpt = cΔqt + ut ut ~ N(0, σ2

u) (10) 
 
We use the Gibbs sampler to obtain sample values (q(i),c(i),σ2

u
(i)) ~ F(q,c,σ2

u|p) based on 
known conditional distributions for a known set p={p1,p2,...,pT}. For the vector variable 
Θ=(q,c,σ2

u), a Markov chain is used to make n random draws which converge in distribution 
to the joint distribution after a sufficiently large number of iterations. Notationally,  
 
(q(0),c(0),σ2

u
(0)), (q(1),c(1),σ2

u
(1)),..., (q(n),c(n),σ2

u (n))  Θ (n) ~ F(n)( q,c,σ2
u|p) 

where Θ (n)→ D Θ as n→∞. The liquidity cost c is then computed as the first moment of the 
marginal distribution f(c|p). 
 
In Hasbrouck’s approach, the conditional prior distribution for c is imposed to be positive 
normal, so the posterior is c| p ~ N+(μc

post, Ωc
post), where, N+ is the normal density restricted 

to [0,+∞), μc
post=Dd, Ωc

post=σ2
u(X’X)-1, D-1=X’σ2

u
-1X+(Ωc

prior)-1, d=X’σ2
u

-1p+(Ωc
prior)-1 μc

prior, 
X=[Δq(t)], μc

prior= 0, and Ωc
prior=106. The conditional posterior distribution for σ2

u is σ2
u | p 

~ IG(αpost, βpost), where αpost= αprior+T/2, and βpost= βprior+Σut
2/2, αprior =βprior =10-12.  

 
The implementation of the algorithm follows a straightforward structure. Begin with an 
initial (arbitrary) guess of (q,c,σ2

u)(0) and generate n =1,000 draw sequences (we discard the 
first 20% considered as a burning time and keep the remaining 80% for estimation), where 
each draw incorporates the most recent information from previous draws and is conditional 
on the set of observed transaction prices p. Specifically,  
 

1. Draw c(1) from f(c׀σu
(0), q(0), p), c| p ~ N+(μc

post, Ωc
post) 

2. Draw σ2
u  (1) from f(σ2

u׀m(0), p), σ2
u | p ~ IG(αpost, βpost) 

3. Draw q (1) from f(q׀c(1), σu
(1), p), q׀c, σu, m, p ~ Bernoulli(pbuy) 

where pbuy is the probability that q = +1.4 
 
Hasbrouck’s spread estimates are considerable smaller than serial covariance estimates. 
Hasbrouck argues that this discrepancy is due to a small sample effect because the 
independence assumption in (10) is not imposed in the Bayesian model. Therefore, the term 
E[ut ut-1] in (4) is not zero but usually negative. When this term is introduced in (4), solving 
for c would yield lower Roll estimates that are similar to the Bayesian estimates. However, 
negative correlation in the error might not be due to a small sample effect as argued by 
Hasbrouck, but to the structure of the model. Specifically, the truncation of the distribution of 
the half spread c might introduce correlation in the model. In the next section we analyze the 
consequences of truncating the distribution of c and we derived an improved estimator.  
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Estimation of the half spread 
 
The estimation of the half spread c deserves special attention as it is suspected that the 
adjustments done to meet the economic meaning of c might actually bias its estimation. 
Specifically, to ensure that c is positive, Hasbrouck limits its posterior distribution to positive 
values only. However, this truncation might introduce serial correlation between the errors ut. 
To show this, we compute the serial correlation for non-truncated and truncated models. In 
view of the non-zero correlation found in the truncated case, we then suggest an alternative 
estimator of c that uses the absolute values of ∆qt and ∆pt. This is done for the simple case in 
which T = 1. Then we analyze the case for T > 1, for which the correlation appears to be non-
zero even when no modification is done in the estimation of c (i.e., no truncation is made). 
We then derive the conditions required for an estimator to yield zero serial correlation. These 
conditions appear to be very restricted. Finally, we impose a less restrictive correlation 
condition and we derive an estimator meeting this condition.  
From the Roll model in (10),  
 

t t

t

p uc
q

Δ −
=

Δ
 ∆qt ≠ 0 (11) 

 
Then, it is straightforward that the probability density distribution for c for any fixed ∆pt and 
∆qt (∆qt ≠ 0) is5, 
 

, 2 ~ ,t u
t t

t t

pc p q N
q q

σ⎛ ⎞Δ
Δ Δ = ± ⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠

 (12) 

 
In the Gibbs sampler the objective is to make draws from c⎪∆pt, ∆qt. There are two cases for 
∆qt, ∆qt = -2 and ∆qt = 2; and also ∆pt could be ∆pt > 0 or ∆pt < 0. If (∆pt/∆qt) > 0, then c is 
more likely to be positive and this will happen in approximately half of the loops of the 
Gibbs sampler. The final distribution of c would look like Figure 1, from where it follows 
that the draw for c could be positive or negative. However, because c is associated with the 
cost of liquidity its value should be positive. Hasbrouck (2004) proposes a truncation, by 
drawing c from a positive normal distribution. However, as shown below the truncation 
introduces correlation between ut and ut+1. We first compute the correlation between 
consecutive errors when the draws for c come from (12) and then we compute the correlation 
when the draws for c come from the truncated distribution. 
 
From the Roll model in (10), ut ut+1 = (∆pt – ct ∆qt) (∆pt+1 – ct+1 ∆qt+1), where ct and ct+1 are 
independent of each other. Distributing and taking expectations yields, 
 
E[ut ut+1⎪∆pt, ∆pt+1, ∆qt = ±2, ∆qt+1 = ±2] =  
= ∆pt ∆pt+1 – E[ct] ∆qt ∆pt+1 – E[ct+1] ∆qt+1 ∆pt + E[ct ct+1] ∆qt ∆qt+1 (13) 
 
Using (12) and substituting E[ct] = ∆pt/∆qt, E[ct+1] = ∆pt+1/∆qt+1 and E[ct ct+1] = E[ct]E[ct+1] 
= (∆pt/∆qt) (∆pt+1/∆qt+1) makes all the terms in (13) to cancel out and the resulting 
correlation between ut and ut+1 to be zero. 
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When the distribution of c is truncated and ct and ct+1 are estimated independently, the 
posterior E[ut ut+1⎪∆pt, ∆pt+1, ∆qt = ±2, ∆qt+1 = ±2] is no longer zero. To see this, take the 
expectation of ct, 
 

2 2 2

2 2 2
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c c cE c e dc e dc e dc
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letting x = (c - μ)2, 
2

2 2 22
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2 22 2 2

x x c

t
e e eE c dx dx dc

μ
σ σ σμ

μ
πσ πσ πσ

−
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∞ ∞
= − + +∫ ∫ ∫  

letting w = c - μ and solving, 

( )
2

22[ ] 1 ( )
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Using the truncated version of E[ct], (14), to solve (13) shows that 
E[ut ut+1⎪∆pt, ∆pt+1, ∆qt = ±2, ∆qt+1 = ±2] ≠ 0. In Hasbrouck’s model, the restriction c| p ~ 
N+(μ, Ω), comes from the prior c ~ N+(μprior, Ωprior), but this might conflict with the standard 
regression assumptions.   
 
Another way to draw positive values for c is to change the sign in ∆pt/∆qt by taking absolute 
values. The correlation in this case is, 
 
E[ut ut+1⎪|∆pt|, |∆pt+1|,|∆qt|, |∆qt+1|] = - |∆pt| |∆pt+1| + E[ct ct+1] |∆qt| |∆qt+1|] = 0 
 
By using this approach there is still a probability that c < 0 equal to the shaded area in Figure 
1, however this area is negligible. 
Next, we expand these results for the entire sample set. For ∆p = (∆p1, …, ∆pT)’, ∆q = (∆q1, 
…, ∆qT)’ and u = (u1, …, uT)’, solving for c in the Roll model yields, 
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q p q uc q q q p q u
q q q q

− Δ Δ Δ
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 (15) 

 

From (15) it follows that ', , ~ ,
' '

u
u

q pc p q N
q q q q

σσ
⎛ ⎞Δ Δ

Δ Δ ⎜ ⎟Δ Δ Δ Δ⎝ ⎠
 (16) 

 
which is the OLS estimator. It should be noted that ∆qt = 0 does not contribute neither to the 
mean μ = (∆q1∆p1 + … + ∆qT∆pT)/(∆q1

2 + … + ∆qT
2) nor to the variance σ2 = σu

2/(∆q1
2 + … 

+ ∆qT
2). We can generalize our previous result of using absolute values for the entire sample 

(T > 1), μ = (|∆q1| |∆p1| + … + |∆qT| |∆pT|)/(∆q1
2 + … + ∆qT

2) and  
2 2
1/ ...u Tq qσ σ= Δ + + Δ  
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The correlation between subsequent errors for the entire sample differs from the simple case 
above,  
 
E[ut ut+1⎪∆p, ∆q, σu] = E[(∆pt - c∆qt)(∆pt+1 - c∆qt+1)]  
= ∆pt ∆pt+1 – E[c] ∆qt ∆pt+1 - E[c] ∆qt+1 ∆pt + E[c2] ∆qt ∆qt+1 
= ∆pt ∆pt+1 + μ (∆qt ∆pt+1 + ∆qt+1 ∆pt) + (σ2 + μ2) ∆qt ∆qt+1 ≠ 0 (17) 
 
The above result shows that, for the general case T > 1, the correlation does not vanish. 
Notice that for T → ∞, μ → 0 because ∆q’∆p is expected to converge to zero6 and ∆q’∆q to 
+∞, and σ2 → 0 because σu

2 is fixed and ∆q’∆q → +∞. Then, 
 
[ ] 11 ,, +

∞→
+ ΔΔ⎯⎯ →⎯ΔΔ tt

T
utt ppqpuuE σ  

 
Furthermore, if ∆qt ≠ 0 and ∆qt+1 ≠ 0 then for a finite sample, 
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1 1 1
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q q
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+ + +
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⎡ ⎤⎛ ⎞Δ Δ
⎡ Δ Δ ⎤ = Δ Δ + + − + Δ Δ⎢ ⎥⎜ ⎟⎣ ⎦ Δ Δ⎝ ⎠⎣ ⎦

 (18) 

 
In the above expression (18), as T increases, σ2 and μ2 become negligible with respect to μ 
because they are of quadratic order. Therefore, σ2 and μ2 may be dropped for large values of 
T and the correlation is,  
 
E[ut ut+1⎪∆p, ∆q, σu] ≅  ∆pt ∆pt+1 - μ (∆qt ∆pt+1 + ∆qt+1∆pt)   
 
For ∆qt = ±2 and ∆qt+1 = ±2, E[ut ut+1] will be distributed symmetrically on both sides of ∆pt 
∆pt+1. If  pt-1 ≈ pt+1, the time series behaves as a “sawlike” manner (i.e., negatively correlated 
as in Figure 2) and it is easy to see ∆pt ∆pt+1 = (pt - pt-1) (pt+1 - pt) ≅ – ( pt+1 – pt)2 = – 
∆pt+1

2<0. 
 
We have shown above that for a sample size T > 1, that negative correlation will always exist 
Next, we try to answer the question, can the estimation of the half spread c be improved? To 
answer this question, we analyze the conditions needed to have E[ut ut+1⎪∆p, ∆q, σu] = 0. 
Recall the posterior error correlation expression from (17) which can be written as, 
 

( )2 21 1
1 1

1 1

, , t t t t
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t t t t

p p p pE u u p q q q
q q q q
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+ +
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⎡ ⎤⎛ ⎞Δ Δ Δ Δ
⎡ Δ Δ ⎤ = Δ Δ − + + +⎢ ⎥⎜ ⎟⎣ ⎦ Δ Δ Δ Δ⎝ ⎠⎣ ⎦

     

for ∆qt, ∆qt+1 ≠ 0  
 
Let μt = ∆pt/∆qt and μt+1 = ∆pt+1/∆qt+1, which are the means for ct and ct+1 respectively.  
Then, the condition for E[ut ut+1⎪∆p, ∆q, σu] = 0 is, 
 
(μt - μ) (μt+1 - μ) + σ2 = 0 
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If T → ∞, then σ2→ 0 and the condition for zero correlation is μ = μt or μ = μt+1. For a 
sample containing t = 1, 2, …, T prices this appears to be a very restrictive condition as it 
must be fulfilled for all pairs μt μt+1 simultaneously. That is, μ should be simultaneously 
equal to μ1 or μ2, μ2 or μ3,…, μT-1 or μT. Imposing no correlation between consecutive 
posterior errors simultaneously leads to imposing T-1 conditions simultaneously, which in 
practice is not achievable. A less restrictive condition is, 
 
E[u1 u2 u3 ... uT⎪∆p, ∆q, σu] = 0 (19) 
 
which is that the joint correlation for all errors is zero and leads to imposing only one 
condition instead of T – 1 simultaneous conditions. The condition for (19) is derived as 
follows, 
 
u1 u2 u3 ... uT = (∆p1 - c∆q1) … (∆pT - c∆qT) = ∆q1 … ∆qT (μ1 – c) … (μT – c)  
for ∆qt, ∆qt+1 ≠ 0  
 
E[u1 u2 u3 ... uT⎪∆p, ∆q, σu] = ±2T E[(∆μ1 … ∆μT) – (c – μ) (∆μ1 … ∆μT-1 + … + ∆μ2 … ∆μT) 
+ (c – μ)2 (∆μ1 … ∆μT-2 + … + ∆μ3 … ∆μT) + … + (-1)T (c – μ)T (20) 
 
Distributing the E[.] operator among the sums we arrive at an expression containing E[c – μ] 
= 0, E[(c – μ)2] = σ2, …, E[(c – μ)T]. From (17) we know that c is normally distributed, 
therefore, 
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From (16) we also know that 
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For any fixed n, as T → ∞, σ2 in (22) goes to zero, making E[(c – μ)n in (21) go to zero. 
However, when n = T this result is different, 
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So, for σu < 2 , (20) simplifies to, 
 
E[μ1 μ2 μ3 ... μT⎪∆p, ∆q, σu] ≅  ±2T (∆μ1 … ∆μT) = ±2T (μ1 – μ) … (μT – μ) 
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If we now impose (19), zero correlation between errors, then (μ1 – μ) … (μT – μ) ≅  0 and μ = 
μ1, μ2, …, μT. That is, by choosing any μT the joint expectation of μ1 … μT will vanish. 
However, this will introduce a bias in μ because the original μ was, 
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The mean value in (23) minimizes the distances dt = ⎪μT - μ⎪ because  
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So, choosing as μ the value μt that is closest to (μ1 + … + μT)/T might provide a good 
estimator. 

 
We can summarize the results obtained in this section as follows: 1) Truncating the 
distribution of c introduces correlation between consecutive errors as shown by (14); 2) In 
the simple case T = 1 the correlation between two consecutive errors introduced by the 
truncation is corrected when we take absolute values, |∆qt| and |∆pt|; 3) When we expand the 
results for the entire sample set the correlation between two consecutive errors never 
vanishes as shown in (17). Moreover, the correlation will be approximately ∆pt ∆pt+1 and 
likely to be negative; 4) Imposing no correlation between two consecutive posterior errors 
leads to imposing T-1 conditions simultaneously, which in practice is not achievable, 5) A 
less restrictive condition is to impose no overall correlation between posterior errors which 
leads to the condition μ = μ1 or μ2 or … μT; and 6) The value μt closest to the usual estimator 
(μ1 + … + μT)/T might provide a good estimator. However, no matter how close μt and (μ1 + 
… + μT)/T are, convergence will only be possible if σu < 2 . 
 
 
Data 
 
Simulated data 
 
We first use simulated price data to evaluate the different measures of liquidity costs. We 
simulate transaction prices using the basic Roll model as described in (1) and (2) which is the 
underlying model in all the bid-ask spread measures described above. We perform k = 1,000 
simulations, and generate a distribution of the half bid-ask spread estimates yielded by each 
spread estimator. For each simulation we generate T = 500 prices which is within the range 
of the number of trades per day observed in the live cattle and lean hogs markets (Table 2). 
Simulated data follows the standard Roll model with the assumptions described above. This 
means that price change series with positive covariance were eliminated and estimators are 
assessed by their ability to reflect the Roll model under its most favorably conditions.  
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We simulate prices for different market conditions to study spread estimator response and the 
source of bias they might have. The parameters of the model are selected based on price 
behavior of the markets under study. In the model, the parameters are c, qt and σ2

u and are 
selected among the range of values reported in previous studies. For c, Locke and 
Venkatesh’s (1997) found 1.5 and 3.6 for LC and LH respectively. Ferguson and Mann 
(2001) report values of 0.8 and 2 for LC and LH. We select c = 1 for the simulations as it 
seems to be a reasonable half spread value for LC and LH markets. For qt, we use the default 
distribution Bernoulli(1/2). We also use a higher probability of 0.7 as reported by Choi, 
Salandro and Shastri (1988) for options traded in the Chicago Board Options Exchange 
(CBOE) and a lower value of 0.3 (Chu, Ding, and Pyun 1996 report values between 0.4 and 
0.5 in foreign exchange futures prices).7 The variance σu

2 represents the level of noise in the 
market. In the simulation we represent three scenarios, with corresponding variances of 0.5, 
1.0 and 1.5. In general, these values of σ2

u are high when compared with the level of c. We 
choose these values following results reported by Hasbrouck (2004) for pork bellies and 
preliminary analysis of our own data.    
 
Market data 
 
The simulated data is used to assess spread estimators’ performance under controlled 
conditions in an ideal market. However, in practice, the market might behave differently with 
the introduction of new information. Real transaction prices differ from simulated prices in 
that the former might have, for example, short-term price trends, or substantial changes due 
to new information arrival, or large jumps due to infrequent trading. Therefore, we compare 
spread estimates using real data. 
 
Liquidity costs in the real market are estimated for lean hogs and live cattle futures contracts. 
We choose these commodities as they are among the most traded agricultural commodities in 
the CME and therefore are of interest for many market participants. We use the volume by 
tick database from the CME, which provides prices of all trades (including zero price 
changes) executed during the day in the open auction with their corresponding time stamps. 
 
Preliminary analysis of the data shows that the spread estimators described in the previous 
section are sensitive to the time interval used. Roll (1984) finds differences between spreads 
estimated from daily and weekly data in the stock market. He suggests that this difference 
could be caused by market inefficiencies or non-stationary data. Non-stationarity may be due 
to short-term fluctuations (in expected returns) which dampen out over longer periods. The 
spread itself might be non-stationary due to the reaction of dealers to stochastic information 
arrival. Stationarity of the data is hard to assess because transaction prices are observed at 
unequally spaced intervals. Therefore, following common practice in the literature (e.g. 
Bryant and Haigh 2004, Locke and Venkatesh 1997) to avoid estimation problems due to 
non-stationary price behavior, we estimate liquidity costs on a daily basis.  
 
For each commodity we selected three contracts with differing trading activity. Table 1 
summarizes the trading month and contract specifications, and Table 2 shows summary 
descriptive statistics for each contract.  
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Results 
 
Table 3 shows the response of each spread estimator to simulated data for different scenarios 
of increasing levels of noise, σu, and probabilities of trade directions q, pbuy. Table 4 shows 
the correlation coefficients for all spread estimators and corresponding scenarios of noise in 
Table 3. For clarity of exposition we only included the correlation coefficients for the base 
case when the pbuy = 0.5. The RM estimator is included in the first line of each scenario and 
as expected is able to replicate itself when prices are generated in line with all its five 
assumptions. When the fifth assumption is not met, that is, when the probability of each 
transaction being a purchase is different from than that of being a sale (in the table, pbuy ≠ 
0.5), the expected value of the RM estimator for 1,000 simulations is slightly downward 
biased, however the true value of c = 1 falls inside the two SD interval for the range of noise 
in all simulations (from σu = 0.5 to σu = 1.5). Also as expected, the RM estimator shows 
increasing precision as the level of noise declines (i.e., lower SD and MSE as σu gets lower).  
 
The top portion of the tables corresponds to a market with a low level of noise. Under this 
scenario, the Gibbs sampler estimators (HAS, ABS, and AVG) seem to perform better that 
other measures. The level of precision of these estimators when pbuy = 0.5  is higher than the 
RM measure, a reflection of the limited amount of noise and the iterative nature of the Gibbs 
sampler estimator which uses 1,000 iterations to estimate c for each series of price changes. 
When pbuy ≠ 0.5 the Gibbs sampler estimates behave much like the RM estimate, with a lower 
expected mean but containing the true value in their two SD interval. From all these three 
measures, ABS and AVG behave similarly, however HAS shows a larger downward bias 
together with a higher SD and MSE. Surprisingly, the correlation between AVG and all other 
spread estimators (including ABS) is practically zero. 
 
For the other estimators, the half spread c = 1 does not fall inside their two SD interval. CDP 
is downward biased and the mean absolute price change estimators are upward biased. The 
CFTC has the highest bias and SD, however both mean absolute price change estimates 
(CFTC and TW) are closer to the generated half spread of one when pbuy ≠ 0.5. The 
correlation coefficients are higher between these estimators and RM than those between HAS 
or ABS and RM. However, because this is the scenario with the lower level of noise in the 
market, correlation coefficients may not be very informative as it is likely that most 
estimators perform well under these conditions.    
 
The second part of Table 3 represents a market in which the level of noise σu equals the 
parameter to be estimated, c. As expected, the performance of the spread estimators 
decreases. All estimators but CFTC and TW show even a lower performance for data 
generated with a pbuy ≠ 0.5. As in the top part of the table, CFTC and TW estimates are less 
upward biased and have a lower MSE for both cases in which the probability of incoming 
trades is different for buys and sells. However, all spread estimators other than RM do not 
contain the generated c = 1. It is important to note that ABS and AVG yield similar estimates 
which are the ones with the highest performance relative to RM and their correlation remains 
very low. The CDP estimator also has a low MSE and is highly correlated with RM, as it is 
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expected as both are serial covariance estimators. However, it doesn’t seem to be capturing 
the different buy/sell probabilities as we expected based on its design.   
 
When the level of noise increases to a higher level than the parameter c, as shown in the third 
part of Table 3, all spread estimators but ABS and AVG get more inaccurate. The relative 
performance follows the same pattern as just described, ABS and AVG are the most accurate 
estimates (given by their estimate of c of 0.97 and low SD and MSE), followed by CDP and 
HAS which have lower MSE than TW and CFTC when pbuy = 0.5. The RM, CDP and HAS 
estimators have correlation coefficients higher than 0.90 while TW and CFTC are more 
highly correlated. In all cases CFTC shows the highest MSE. The high correlation between 
ABS and TW might be due the fact that both use absolute values in the estimation. The picture 
changes slightly when the prices are generated with a different pbuy. The mean absolute price 
change estimates and their precision slightly improve and all other estimates become more 
downward biased.  
 
The results for all three scenarios of σu show that when the data is generated with a pbuy 
different from 0.5, the Gibbs sampler and serial covariance estimates of c become more 
downward biased and less precise. For the Gibbs sampler estimates these results were not 
expected as P(qt = 1) = 0.5 is not a necessary assumption as it is for the RM estimator. 
Furthermore, the Gibbs sampler yields estimates of the latent variable qt instead of using tick 
rules. Table 5 shows the estimated pbuy ( ˆbuyp ) for the above scenarios. When σu is low, the 
estimated pbuy is closer to the generated pbuy (for example, ˆbuyp = 0.35 for pbuy = 0.30) and 
these results are similar for all Gibbs sampler estimators and values of pbuy. However, when 
σu increases, the estimated pbuy converges to 0.50. These results can be explained using the 
expression for pbuy in footnote 4. Both the numerator and denominator basically contain e 
raised to a ratio between c and σu. Keeping c constant at one, as σu increases the ratio goes to 
zero and each exponential goes to one which gives the result of 0.5. Therefore, in markets 
with a high level of noise accurate estimates of qt are hard to obtain and they are expect to be 
close to 0.5. For the serial covariance estimators, CDP is basically the RM estimator with the 
assumption of P(qt = 1) = 0.5 relaxed. The correction is made through δ which is the 
probability that a transaction at time t is of the same type than the transaction at t-1, and α 
which takes into account one more period. Table 5 shows the estimated δ for each scenario. 
The estimated δ cannot be directly compared with pbuy. Intuitively, δ can be thought as the 
probability that a qt = 1 follows a qt-1 = 1 or that a qt = -1 follows a qt-1 = -1. That is, P(qt = 1) 
P(qt-1 = 1) + P(qt = -1) P(qt-1 = -1) = P(qt = 1)2 + P(qt = -1)2 = pbuy

2 + (1- pbuy)2. Therefore, a 
generated pbuy of 0.3 or 0.7 could be associated with a δ of 0.58. When the level of noise in 
the market is low (i.e., σu = 0.5), the estimated δ follows this behavior closely (i.e., δ̂ = 0.54). 
However, q is a latent variable which is not known and CDP uses the tick rule based on price 
changes instead of qt to determine the direction of the trade. Therefore, when the level of 
noise is high, the estimated δ might not yield these exact values based on qt. Furthermore, 
when the level of noise in the market is high and prices fluctuate more, it is likely that qt goes 
from +1 to -1 more frequently, and the probability of two consecutive qt being the same is 
low. Therefore, it is expected that for large σu, δ reaches a minimum value, which in terms of 
qt would be 0.58, but in terms of pt could be lower. In fact, for the generated data in Table 5 
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δ̂ converges to approximately 0.3 regardless the value of pbuy for which the data was 
generated. 
 
Next, we analyze a common issue found in prices which is the presence of correlation, and its 
effects on the estimates of the half spread. Table 6 shows the estimates of c for data 
generated with different levels of correlation (ρ) in the error term ut of the Roll model and for 
the same three same scenarios of noise as before. First we compute the correlation coefficient 
of ut in the Roll model of the Gibbs sampler for the simple case in which data are generated 
with iid ut. The coefficient of correlation for HAS, ABS and AVG are negative and oscillate 
between -0.1 and -0.2 depending on the level of noise in the data. These results are in line 
with our theoretical finding that for a sample size of T > 1 there will always exist negative 
correlation as shown by (17). Then we generated data using two different levels of 
correlation, ρ = -0.2 and ρ = -0.4 and compare these results with the iid case. For comparison 
purposes and ease of exposition, in Table 6 we repeat the estimates of c from Table 3 which 
correspond to the base case ρ = 0.  
 
The top portion of Table 6 shows that when σu is low, the generated correlation does not have 
a great impact on spread estimates and the estimation of ρ is fair relative to the actual ρ. 
However, as σu increases the serial covariance estimators become upward biased for 
increasing levels of ρ. This behavior can be explained using (4). Serial covariance estimates 
assume that the first term, E[ut ut-1], is zero when in this case should be negative. Therefore, 
in the presence of negatively correlated data which is likely to occur due to the bid-ask 
bounce, serial covariance estimates will be inflated. When ρ = 0 this is not a problem and 
both RM and Gibbs sampler estimators yield similar estimates. In all cases the estimated ρ 
roughly approximates the actual ρ.  
 
The Gibbs sampler estimators show a different response to correlated data. For the lowest 
level of σu there are no differences between estimators and for different levels of ρ. As σu 
increases, the level of correlation has some impact on c estimates. The impact is greater for 
the HAS estimator and it is more pronounced for the higher level of σu as ˆ[ ]E c  increases 
from 0.68 to 0.88 for ρ = 0 and ρ = -0.4 respectively. For the same level of noise, ABS and 
AVG only change from 0.97 to 1.01. The mean absolute price change estimators doesn’t seem 
to be affected by the level of correlation introduced in the data. Particularly, TW remains 
unchanged for the three levels of ρ, 0, -0.2, and -0.4. The CFTC slightly increases for higher 
ρ when the noise increases. However these estimators are upward biased for levels of noise 
and ρ. These results indicate that for a market in which the prices show a fair level of 
negative correlation ABS and AVG are the best spread estimators. 
 
The analysis with the market data was developed to provide insights into the performance of 
the estimators in relevant market situations. Initially, we investigate the behavior of the 
estimators prior to and in the maturity month which among other things will provide insights 
into the presence of a maturity effect (Do the estimators provide different information 
regarding liquidity cost behavior as maturity approaches?). Then, assuming that traders do 
not hold contracts into the maturity month which is common practice, we examine the 
differences in liquidity costs from trading in the nearby contract (which is usually the most 
actively traded contract) and two subsequent contracts.  
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To examine the maturity effect, Figure 3 provides estimates of daily liquidity costs starting 
50 days prior to maturity for the April cattle and October hog contracts (other contracts yield 
similar pictures). For ease of exposition, we included one serial covariance estimator (RM), 
one mean absolute price change estimator (TW), the Bayesian estimator (HAS), and its 
proposed modification (ABS).  In the figures, spread estimators behavior is consistent with 
the findings using simulated data in the presence of ρ<0. The average estimated ρ are -0.25 
and -0.29 for live cattle and lean hogs respectively. The average estimated σu are 6.30 and 
6.09 for live cattle and lean hogs respectively which is a little more than twice the estimated 
c. Based on these results, we expect that the spread estimators behave as in the last portion of 
Table 6. The HAS estimator generates measures of liquidity costs that are almost always 
considerably smaller relative to the other estimators. The ABS estimator is always higher than 
HAS and lower than the rest of the estimators, and just like the simulated case, it might be the 
least biased with respect to actual spreads. The RM estimates are higher than ABS which 
might be due to the failure to account for the negative correlation. The TW estimator is the 
highest and it is occasionally exceeded by RM. With regards to the maturity effect, no clear 
evidence emerges to support a sharp increase in liquidity costs in the expiration month for 
any of the estimators or contracts. 
 
To examine whether there are differences in liquidity costs from trading in the nearby 
contract, we compare the liquidity costs for nearby and subsequent contracts generated on the 
same day in the contract prior to maturity. For example, Figure 4 a) shows the liquidity cost 
estimates for the live cattle February, April, and June contracts generated daily in January, 
one month prior to nearby maturity. Similarly, Figure 4 b) shows the liquidity costs estimates 
for the lean hog August, October, and December contracts generated daily one month prior to 
nearby maturity in July. Liquidity cost estimates are provided for the ABS estimator as it has 
shown to be the best choice for the particular conditions of these markets.  
 
Figure 4 a) suggests that there is no real difference in liquidity cost from trading in the nearby 
and more distant contracts for live cattle. This is somewhat surprising because traders often 
profess to trade in the nearby contract because of higher volume and low costs of liquidity. 
For lean hogs, Figure 4 b) suggests that trading in more distant contracts is associated with a 
higher liquidity cost.  
 
 
Conclusions 
 
Estimating liquidity costs in agricultural futures markets is challenging because bids and asks 
occur in an open outcry and are not recorded. The problem becomes more severe as different 
measures that use transaction prices have been reported to be biased with respect to actual 
bid-ask spreads. Here we assess the performance of different conventional measures, a 
recently proposed Bayesian estimator, and our suggested modified estimator,  using 
simulated and market data.  
 
Different spread estimators may be more or less suitable to different market conditions. 
Serial covariance estimators (RM and CDP) cannot be computed when subsequent price 
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changes have positive covariance. Absolute price change (TW and CFTC) and Bayesian 
(HAS) measures do not have this problem, however, the absolute price change measures 
might not distinguished true price change from bid-ask spread. The HAS estimator seems to 
be downward biased when the level of noise in the market is high and there are short term 
inefficiencies (i.e., negative correlation). To overcome this problem we propose a 
modification of the HAS estimator. Instead of truncating the distribution of c to make sure 
that the draw will yield positive values we suggest taking absolute values (ABS estimator).  
 
For the simulated data, we perform the analysis for different market scenarios with increasing 
levels of noise. When the market is least noisy, we find that Gibbs sampler estimators (HAS, 
ABS and AVG) provide highly precise estimates of liquidity costs, even more precise than the 
RM measure estimated with simulated data entirely consistent with its structure. This finding 
is likely attributable to the iterative procedure used to develop these estimates. As the noise 
in the market increases (i.e., higher σu), the more biased the estimators become. An exception 
is the ABS estimator which seems to be the more appropriate under common conditions in the 
real market. Absolute price changes measures (TW and CFTC) appear to be upward biased, 
while the serial covariance (CDP) and Bayesian (HAS) measures are downward biased. The 
magnitude of the bias as reflected by the MSE is largest for the absolute price change 
measures in all scenarios.  
 
However, when we use real data, market effects such as serial correlation and changes in 
information emerge that are captured by the ABS estimator and not by the rest of the 
estimators. Using market data we also estimated liquidity costs for nearby and distant 
contracts and for different days prior to expiration. We found no differential behavior of the 
estimators for different contracts in live cattle. For lean hogs more distant contracts appear to 
have higher liquidity costs. In both commodities we found no expiration effects for the 
contracts and periods analyzed. 
 



 21

References 

Anand, A. and A. Karagozoglu. “Relative Performance of Bid-Ask Spreads Estimators: 
Futures Markets Evidence.” Journal of International Financial Markets, Institutions and 
Money 16(2006): 231-245. 
 
Brorsen, W., D. Buck, and S. Koontz. “Hedging Hard Red Winter Wheat: Kansas City versus 
Chicago.” Journal of Futures Markets 18(1998):449-466. 
 
Bryant, H., and Michael Haigh. “Bid-Ask Spreads in Commodity Futures Markets.” Applied 
Financial Economics 14(2004):923-936. 
 
Choi, J.Y, Dan Salandro and Kuldeep Shastri. “On the Estimation of Bid-Ask Spreads: 
Theory and Evidence.” Journal of Financial and Quantitative Analysis 23(2): 219-229 
Chu, Q. C., Ding, D. K. and C. S. Pyun 1996. “Bid-ask and Spreads in the Foreign Exchange 
Market.” Review of Quantitative Finance and Accounting 6(1988):19-37. 
 
Ferguson, M. and S. Mann. “Execution Costs and their Intraday Variation in Futures 
Markets.” Journal of Business 74(2001):125-160. 
 
Hasbrouck, J. “Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete 
Data.” Journal of Financial and Quantitative Analysis 39(2004):305-326. 
 
Lee, C. and M. Ready. “Inferring Trade Direction from Intraday Data.” Journal of Finance 
46(1991):733-46. 
 
Locke, P., and P.C. Venkatesh. “Futures Markets Transaction Costs.” Journal of Futures 
Markets 17(1997):229-245. 
 
Ma, C., R. Peterson, and S. Sears. “Trading Noise, Adverse Selection, and Intraday Bid-Ask 
Spreads in Futures Markets.” Journal of Futures Markets 12(1992):519-538. 
 
Pennings, J.M.E., and M. Meulenberg. “Hedging Efficiency: A Futures Exchange 
Management Approach.” Journal of Futures Markets 17(1997):599-615. 
 
Phillips, S. and C. Smith. “Trading Costs for Listed Options: The implications for Market 
Efficiency.” Journal of Financial Economics 8(1980):179-201. 
 
Roll, R. “A Simple Implicit Measure of the Effective Bid-ask Spread in an Efficient Market.” 
Journal of Finance 23(1984):1127-1139. 
 
Smith, T., and R. Whaley. “Estimating the Effective Bid-ask Spread from Time and Sales 
Data.” Journal of Futures Markets 14(1994):437-456. 
 
Thompson, S., and M. Waller. “The Execution Cost of Trading in Commodity Futures 
Markets.” Food Research Institute Studies 20(1987):141-163. 



 22

 
Thompson, S., and M. Waller. “Determinants of Liquidity Costs in Commodity Futures 
Markets.” Review of Futures Markets 7(1988):110-126. 
 
Thompson, S., J. Eales, and D. Seibold. “Comparison of Liquidity Costs between Kansas 
City and Chicago Wheat Futures Contracts.” Journal of Agricultural and Resource 
Economics 18(1993):185-197. 
 
Wang, H.K., E. Moriarty, R. Michalski, and J. Jordan. “Empirical Analysis of the Liquidity 
of the S&P 500 Index Futures Markets during the October 1987 Market Break.” Advances in 
Futures and Options Research 4(1990):191-218. 
 
Wang, H.K., J. Yau, and T. Baptiste. “Trading Volume and Transaction Costs in Futures 
Markets.” Journal of Futures Markets 17(1997):757-78. 



 23

Endnotes 

                                                 
1 They compute the actual customer execution spread which is defined as the mean customer 
buy price less the mean customer sell price for 5-minute intervals. They use Computerized 
Trade Reconstruction (CTR) audit trail data provided by the Commodity Futures Trading 
Commission (CFTC). These data are not available to the public; it is only occasionally 
available for academic purposes. Ferguson and Mann study agricultural futures contracts 
traded in the Chicago Mercantile Exchange (CME). 
 
2 Bryant and Haigh use coffee and cocoa bid-ask quotes from the London International 
Financial Futures Exchange (LIFFE), and Anand and Karagozoglu use two financial futures 
bid-ask quotes from the Sydney Futures Exchange (SFE). Bid-ask quotes are not available 
from US exchanges. 
 
3 When c >> σu (i.e., small random noise compared to c), [ ]*

tpE Δ  converges to c because the 

exponential in the first term becomes negligible and ( ) ( )2 2 1F c F c− − ≅  (note that the 
integration limits 2c and -2c are much higher than 2σμ and -2 σu which is approximately 
0.95). If the level of noise in the model is high, say uc σ≅ , * 1.004tE p c⎡ ⎤Δ ≅⎣ ⎦ because 

( ) ( )2 2 0.95F c F c− − ≅  and the first term in (8) reduces to 0.054 c. 
 
4 The expression for pbuy which is in Hasbrouck’s (2004) appendix is: ( )

4
2

2 41 1
2 2

cpt

u

c m m cpt t t

u u

e

e e

σ

σ σ

+− +

+

 

 
5 The case ∆qt = 0 is not possible because that would make ut = ∆pt, making ut fixed at ∆pt 
which is not consistent with ut ~N(0, σu). It follows that ∆qt = 0 is non informative. 
 
6 Positive values of ∆q and ∆p are equally likely. Because μ → 0, it is necessary to make a 
truncation or take absolute values to estimate c. 
 
7 To our knowledge, there are no studies assessing the conditional probability of the 
transaction type in commodity futures markets. These two studies’ estimates are upper and 
lower values of the default probability of 0.5 that is usually assumed. Therefore, they 
constitute a good reference for our purposes of studying spread estimators response to 
different market conditions. 
 
8 2 2* (1 ) 2 2(1 ) 0 0.5buy buy buy buy buy

buy buyp p p p p p pδ∂ ∂
∂ ∂ ⎡ ⎤= + − = − − = ⇒ =⎣ ⎦ , where δ* represents an 

intuitive approximation of δ based on qt (if they were known) rather than in the differences of 
pt. 



Table 1: Trading month and contract specifications. 

 Live Cattle Lean Hogs 
Trading month Jan 05 Jul 05 
Tick 0.025 0.025 
Size of contract 40,000 lb 40,000 lb 
 

Table 2: Summary descriptive statistics 

Commodity Live cattle Lean Hogs 
Expiration month Feb Apr Jun Aug Oct Dec 
Avg. price (cents/lb.) 89.78 87.95 82.02 67.25 58.17 55.64 
Standard deviation 0.28 0.24 0.21 0.26 0.26 0.22 
Min price (cents/lb.) 87.40 85.65 83.78 64.85 56.20 54.50 
Max price (cents/lb.) 93.00 90.30 83.78 69.10 59.80 56.65 
Avg. daily volume 11597 8798 2117 7725 5971 1007 
Avg. daily trades 634.2 550.8 201 611 335 93.8 
Avg. time b/w trades (sec.) 25.31 31.35 80.27 26.26 36.67 113.65 
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Table 3: Estimates of the half bid-ask spread using simulated data 

a) Parameters of the simulated data: c = 1 and σu = 0.5 

 pbuy = 0.3 pbuy = 0.5 pbuy = 0.7 
 ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE 

RM 0.92 0.05 0.01 1.00 0.05 0.00 0.92 0.05 0.01 
CDP 0.88 0.04 0.02 0.89 0.03 0.01 0.88 0.04 0.02 
TW 1.07 0.04 0.01 1.20 0.04 0.04 1.07 0.04 0.01 
CFTC 1.23 0.06 0.06 1.36 0.05 0.13 1.23 0.06 0.06 
HAS 0.85 0.14 0.04 0.98 0.02 0.00 0.85 0.14 0.04 
ABS 0.91 0.09 0.02 0.98 0.02 0.00 0.91 0.09 0.02 
AVG 0.90 0.09 0.02 0.98 0.02 0.00 0.91 0.09 0.02 
 
b) Parameters of the simulated data: c = 1 and σu = 1 

 pbuy = 0.3 pbuy = 0.5 pbuy = 0.7 
 ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE 

RM 0.92 0.07 0.01 1.00 0.07 0.01 0.92 0.07 0.01 
CDP 0.75 0.06 0.06 0.81 0.06 0.04 0.76 0.06 0.06 
TW 1.31 0.04 0.10 1.41 0.04 0.17 1.31 0.05 0.10 
CFTC 1.44 0.06 0.19 1.54 0.06 0.29 1.44 0.07 0.20 
HAS 0.62 0.05 0.14 0.72 0.05 0.08 0.62 0.05 0.14 
ABS 0.79 0.03 0.05 0.86 0.03 0.02 0.79 0.03 0.05 
AVG 0.79 0.03 0.05 0.86 0.03 0.02 0.79 0.03 0.05 
 
c) Parameters of the simulated data: c = 1 and σu = 1.5 

 pbuy = 0.3 pbuy = 0.5 pbuy = 0.7 
 ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE ˆ[ ]E c  SD MSE 

RM 0.91 0.10 0.02 1.00 0.10 0.01 0.92 0.10 0.02 
CDP 0.72 0.08 0.08 0.79 0.08 0.05 0.72 0.08 0.08 
TW 1.59 0.05 0.35 1.66 0.05 0.44 1.59 0.05 0.35 
CFTC 1.70 0.07 0.49 1.78 0.07 0.61 1.69 0.08 0.49 
HAS 0.60 0.08 0.17 0.68 0.07 0.11 0.60 0.07 0.17 
ABS 0.92 0.03 0.01 0.97 0.03 0.00 0.92 0.03 0.01 
AVG 0.92 0.03 0.01 0.97 0.03 0.00 0.92 0.03 0.01 
 
Notes: RM (Roll) and CDP (Chu, Ding, and Pyun) are serial covariance estimators, TW (Thompson and Waller) 
and CFTC (Commodity Futures Trading Commission) are mean absolute price change estimators, HAS 
(Hasbrouck), ABS and AVG are estimators using the Gibbs sampler. All estimations come from k = 1,000 
simulations using T = 500 simulated prices, and n = 1,000 iterations for the Gibbs sampler. 
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Table 4: Correlation coefficients between c estimators using simulated data 

 
a) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 0.5 

 RM CDP TW CFTC HAS ABS AVG 
RM 1.00       
CDP 0.75 1.00      
TW 0.83 0.54 1.00     
CFTC 0.70 0.59 0.76 1.00    
HAS 0.32 0.41 0.45 0.35 1.00   
ABS 0.30 0.40 0.44 0.32 0.82 1.00  
AVG 0.02 -0.01 0.01 -0.01 -0.01 -0.01 1.00 
 

b) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 1 

 RM CDP TW CFTC HAS ABS AVG 
RM 1.00       
CDP 0.90 1.00      
TW 0.67 0.52 1.00     
CFTC 0.65 0.61 0.79 1.00    
HAS 0.84 0.76 0.77 0.66 1.00   
ABS 0.70 0.63 0.92 0.75 0.89 1.00  
AVG -0.05 -0.06 -0.03 0.00 -0.03 -0.02 1.00 
 

c) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 1.5 

 RM CDP TW CFTC HAS ABS AVG 
RM 1.00       
CDP 0.95 1.00      
TW 0.50 0.41 1.00     
CFTC 0.56 0.53 0.80 1.00    
HAS 0.93 0.88 0.55 0.57 1.00   
ABS 0.63 0.59 0.94 0.79 0.70 1.00  
AVG 0.03 0.04 -0.01 0.04 0.03 -0.01 1.00 
 
Notes: RM (Roll) and CDP (Chu, Ding, and Pyun) are serial covariance estimators, TW (Thompson and Waller) 
and CFTC (Commodity Futures Trading Commission) are mean absolute price change estimators, HAS 
(Hasbrouck), ABS and AVG are estimators using the Gibbs sampler. All estimations come from k = 1,000 
simulations using T = 500 simulated prices with pbuy = 0.5, and n = 1,000 iterations for the Gibbs sampler. 
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Table 5: Estimates of the pbuy using simulated data 

 
a) Parameters of the simulated data: c = 1 and σu = 0.5 

 pbuy = 0.3  pbuy = 0.5 pbuy = 0.7 
  E[ ˆbuyp ] SD  E[ ˆbuyp ] SD E[ ˆbuyp ] SD 

CDP  δ̂ = 0.54 0.02  δ̂ = 0.47 0.02 δ̂ = 0.54 0.02 
HAS  0.37 0.05  0.50 0.02 0.63 0.05 
ABS  0.35 0.04  0.50 0.02 0.65 0.04 
AVG  0.35 0.04  0.50 0.02 0.65 0.04 
  
b) Parameters of the simulated data: c = 1 and σu = 1 

 pbuy = 0.3  pbuy = 0.5 pbuy = 0.7 
  E[ ˆbuyp ] SD  E[ ˆbuyp ] SD E[ ˆbuyp ] SD 

CDP δ̂ = 0.36 0.03  δ̂ = 0.35 0.03 δ̂ = 0.36 0.03 
HAS  0.49 0.00  0.50 0.00 0.51 0.00 
ABS 0.48 0.01  0.50 0.01 0.52 0.01 
AVG  0.48 0.01  0.50 0.01 0.52 0.01 
  
c) Parameters of the simulated data: c = 1 and σu = 1.5 

 pbuy = 0.3  pbuy = 0.5 pbuy = 0.7 
  E[ ˆbuyp ] SD  E[ ˆbuyp ] SD E[ ˆbuyp ] SD 

CDP δ̂ = 0.28 0.04  δ̂ = 0.29 0.03 δ̂ = 0.28 0.04 
HAS  0.50 0.00  0.50 0.00 0.50 0.00 
ABS  0.49 0.00  0.50 0.00 0.51 0.00 
AVG  0.49 0.00  0.50 0.00 0.51 0.00 
  
Notes: δ is the probability that a transaction at time t is of the same type than the transaction 
at t-1. pbuy is the probability of qt = 1. CDP (Chu, Ding, and Pyun) is a serial covariance 
estimator, HAS (Hasbrouck), ABS and AVG are Gibbs sampler estimators. All estimations 
come from k = 1,000 simulations using T = 500 simulated prices, and n = 1,000 iterations for 
the Gibbs sampler. 
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Table 6: Estimates of c using data generated with different levels of correlation of ut 

a) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 0.5 

 ρ = 0 ρ = -0.2 ρ = -0.4 
 ˆ[ ]E c  MSE ˆ[ ]E ρ ˆ[ ]E c  MSE ˆ[ ]E ρ  ˆ[ ]E c  MSE ˆ[ ]E ρ  

RM 1.00 0.00  1.02 0.00   1.05 0.01   
CDP 0.89 0.01  0.90 0.01   0.91 0.01   
TW 1.20 0.04  1.20 0.04   1.20 0.04   
CFTC 1.36 0.13  1.36 0.13   1.35 0.13   
HAS 0.98 0.00 -0.10 0.98 0.00 -0.25 0.98 0.00 -0.38 
ABS 0.98 0.00 -0.11 0.98 0.00 -0.25 0.98 0.00 -0.38 
AVG 0.98 0.00 -0.10 0.99 0.00 -0.25 0.99 0.00 -0.38 
  
b) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 1 

 ρ = 0 ρ = -0.2 ρ = -0.4 
 ˆ[ ]E c  MSE ˆ[ ]E ρ ˆ[ ]E c  MSE ˆ[ ]E ρ  ˆ[ ]E c  MSE ˆ[ ]E ρ  

RM 1.00 0.01  1.10 0.01   1.18 0.04   
CDP 0.81 0.04  0.89 0.01   0.97 0.00   
TW 1.41 0.17  1.41 0.17   1.41 0.17   
CFTC 1.54 0.29  1.56 0.32   1.58 0.34   
HAS 0.72 0.08 -0.19 0.77 0.05 -0.25 0.81 0.04 -0.32 
ABS 0.86 0.02 -0.20 0.88 0.02 -0.26 0.89 0.01 -0.33 
AVG 0.86 0.02 -0.20 0.84 0.03 -0.26 0.82 0.03 -0.33 
 
c) Parameters of the simulated data: c = 1, pbuy = 0.5, and σu = 1.5 

 ρ = 0 ρ = -0.2 ρ = -0.4 
 ˆ[ ]E c  MSE ˆ[ ]E ρ ˆ[ ]E c  MSE ˆ[ ]E ρ  ˆ[ ]E c  MSE ˆ[ ]E ρ  

RM 1.00 0.01  1.20 0.05   1.38 0.15   
CDP 0.79 0.05  0.97 0.01   1.12 0.02   
TW 1.66 0.44  1.66 0.44   1.66 0.44   
CFTC 1.78 0.61  1.82 0.68   1.86 0.74   
HAS 0.68 0.11 -0.13 0.80 0.04 -0.21 0.88 0.02 -0.29 
ABS 0.97 0.00 -0.13 0.99 0.00 -0.21 1.01 0.00 -0.30 
AVG 0.97 0.00 -0.13 0.99 0.00 -0.21 1.01 0.00 -0.30 
 
Notes: ρ is the coefficient of correlation of the error term in the Roll model (ut). RM (Roll) and CDP (Chu, 
Ding, and Pyun) are serial covariance estimators, TW (Thompson and Waller) and CFTC (Commodity Futures 
Trading Commission) are mean absolute price change estimators, HAS (Hasbrouck), ABS and AVG are Gibbs 
sampler estimators. All estimations come from k = 1,000 simulations using T = 500 simulated prices, and n = 
1,000 iterations for the Gibbs sampler. 
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Figure 1: Distribution of the half spread when no restriction is imposed 
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Figure 2: Price series when pt-1 ≈ pt+1 
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Figure 3: Bid-Ask spread estimates for the last 50 days of two contracts 

a) April contract for live cattle 
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b) October contract for lean hogs 
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RM (Roll) and is a serial covariance estimator, TW (Thompson and Waller) is a mean absolute price change 
estimator, and HAS (Hasbrouck) is a Gibbs sampler estimator using a truncated distribution of c and ABS is a 
Gibbs sampler estimator using absolute values of c.  
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Figure 4: ABS bid-ask spread estimates for one nearby and two distant contracts  
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b) Lean Hogs 
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Appendix 

 
The Roll model states: 
 
Δpt = ut + cΔqt ut ~ iid N(0, σ2

u) 

qt={-1 for a sell, +1 for a buy} qt ~ Bernoulli(1/2) 

Then, the possible values for Δqt are: 
 

qt-1 qt Δqt P(Δqt) = P(qt) P(qt-1)
-1 -1 0 ¼ 
-1 +1 2 ¼ 
+1 -1 -2 ¼ 
+1 +1 0 ¼ 

 
Therefore, P(Δqt=-2) = P(Δqt=2) = ¼ and P(Δqt=0) = ½  
 
Let c>0 and f∆p(p) be the pdf for ∆p 
f∆p(p) = f∆p/∆q=-2(p) P(∆q=-2) + f∆p/∆q=0(p) P(∆q=0) + f∆p/∆q=2(p) P(∆q=2) 
 = ¼ f∆p/∆q=-2(p) + ½ f∆p/∆q=0(p) P(∆q=0) + ¼ f∆p/∆q=2(p) P(∆q=2) 
 
Based on the Roll model,  
If Δq = 0 ⇒ Δp = u ⇒ f∆p/∆q=0 ~ N(0, σ2

u) 
If Δq = -2 ⇒ Δp = u – 2c ⇒ f∆p/∆q=-2 ~ N(-2c, σ2

u) 
If Δq = 2 ⇒ Δp = u + 2c ⇒ f∆p/∆q=2 ~ N(2c, σ2

u) 
 
Therefore, 
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Note that f∆p(p) is symmetric around p=0 and f⎪∆p⎪(p) is twice f∆p(p) for p>0,  
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The mean value of f⎪∆p⎪(p) is: 
 

0

 ( ) pE p p f p dp
∞

Δ⎡ Δ ⎤ =⎣ ⎦ ∫  

 
2 2

2 2
4 4

2 21 12 (1 (2 )) 2 (1 ( 2 ))
2 22 2 2

u u

c c

u u ue c F c e c F cσ σσ σ σ
π π π
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where F is the normal cumulative distribution function with mean zero and variance 2
uσ  

 
 


