Political And Economic Factors Affecting Agricultural PAC Contribution Strategies

by

Dana L. Hoag, Elizabeth Hornbrook, and Terry D. Van Doren*

Submitted for consideration for presentation at the 1997 WAEA Meeting, July 13-16.

* Dana Hoag and Elizabeth Hornbrook are Professor and Research Assistant, Department of Agricultural and Resource Economics, Terry VanDoren is a Research Assistant, Department of Animal Science Colorado State University, Fort Collins.
Abstract

Some expect the political power of agriculture to decrease with declining agricultural populations. However, the last three farm bills adopted supportive policies. Public choice theory may explain this, asserting there is a market for political favors. Our objectives are to measure political influence from contributions to members of Congress.
Political And Economic Factors Affecting Agricultural PAC Contribution Strategies

With less than two percent of our nation’s population in production agriculture, some would expect the political power of agriculture to decline. However, policies adopted in the 1985 farm bill resulted in a $26 billion price tag in 1986, ten times higher than 1980. And the support continued in the subsequent 1990 and 1996 farm bills.

Perhaps this behavior can be explained by public choice theory which asserts that there is a market for political favors (Becker; Gardner, 1995; Peltzman). In a study of the 1981 and 1985 farm bills, Stratmann (1995) found that without campaign contributions agricultural interests would have lost five out of every seven votes originally won.

Payments for favors can take many forms, but one of the most visible and contentious of these are contributions from political action committees (PACs). Elected officials received 42 percent of their funds from PACs in 1986 compared to 25.6 percent in 1976, and PACs grew from 608 in 1974 to over 1,700 in 1988.

Researchers have measured the impact of PAC money on congressional roll calls with mixed results. While many found that legislative voting can be bought through contributions, about an equal number found that PAC contributions have little effect on

\[\text{Orden, Paarlberg and Roe concluded that farm supporters got what they wanted in 1996, even though programs were dismantled, because they were able to increase production in the face of favorable market conditions while also receiving transition payments.}\]

\[\text{Ben-Zion and Eyton; Bental and Ben-Zion; Silberman and Durden; Chappel, 1981; Peltzman; Coughlin; Frenreis and Waterman; Denzau and Munger; Schroedel; Wilhite and Theilmann; Masters and Zardkoohi; Wilhite and Paul; Langbein and Lotwis; Langbein; and Stratmann, 1995}\]
legislators’ voting decisions. One explanation for these mixed results is that political favors cannot be characterized as a single variable in favorable voting decisions.

The objective of this study is to characterize the political marketplace for the agricultural industry in the Senate. Demand for political favors, agricultural PAC contributions, is a function of legislator attributes identified to be important in previous studies, such as constituents, ideology, party, experience, committee appointments, and leadership position. While many researchers have examined PAC giving, few (Abler; Gardner, 1995; Stratmann, 1991) have concentrated on agriculture, and only Gardner used PAC contributions as a dependent variable. Gardner (1995) only examined the agriculture committee in the House and the Senate, and he used linear regression. Abler and Stratmann focused on narrow issues such as vote trading and farm bill amendments. We build on their research by adopting improvements suggested in nonagricultural studies to investigate the characteristics of agricultural PAC contributions in the Senate. Improvements are made in the data and statistical analyses. Our data spans a six-year election cycle that accounts for timing issues not addressed by Gardner’s two years of data. In addition, we use a TOBIT analysis to address the large number of zero observations that occur in PAC data (Grier and Munger, 1986, 1991, 1993).

Literature and Independent Variable Specification

Previous scholarly work has pointed to a number of different factors that affect PAC contribution strategies. Those consistently found to be significant (on voting roll calls as

3 Kingdon; Chappel, 1982; Welch, 1981, 1982; Kau and Rubin; Wright, 1985, 1990; Banthin and Stelzer; Maitland; Evans, 1986, 1988; Alexander, 1987, 1988; Keim and Zardkoochi; Wilhite; and Grenzke
well as PAC contributions) are included as independent variables for this study. They include: state’s dependence on agriculture (constituency interests), electoral security, key committee membership, seniority, political party, and ideology.

Agricultural PACs target funds to where they have the highest payoffs. Legislators with sympathetic or indifferent *constituencies* receive more contributions from respective interest groups than those with hostile constituencies (Grier and Munger, 1991). In contrast, Congress members with *electoral security* from constituents receive reduced levels of PAC contributions (Grier and Munger, 1986, 1991; Gopoian; Evans, 1988). *Committee membership* and *seniority* impact a legislator’s influence over his or her colleagues

Party (Grier and Munger, 1986, 1993; Gopoian; Gardner, 1995) and *ideology* (Gopoian; Wright, 1985; Grier and Munger, 1986, 1991, 1993; Evans, 1988; Gardner, 1995) also impact PAC funding. “A legislator’s party affiliation may carry information about his voters’ preferences and his access to the leadership that affects legislative productivity,” noted Grier and Munger (1986, p. 354). His or her ideology influences PACs that associate conservatism or liberalism with voting behavior.

Methodology and Data

The general hypothesis being tested is whether PAC contributions are significantly affected by the independent variables discussed in the previous section. Using PAC contribution data as a dependent variable presents an interesting challenge. Since PAC contributions cannot be negative values, PAC contribution data is necessarily truncated at zero. Furthermore, since PAC money is a finite resource, an agricultural sector cannot afford to give money to every senator.
Past statistical research (Tobin, 1958) and PAC contribution research (Grier and Munger, 1986, 1991, 1993) point to TOBIT as the appropriate procedure for analysis. The TOBIT-procedure estimates a non-linear, maximum likelihood probability and then generates linear regression coefficients. Specifically, PAC contributions for PAC_i are related to independent variables as follows:

$$
PAC_i = \alpha_i + \beta_1 \text{PARTY} + \beta_2 \text{IDEOLOGY} + \beta_3 \text{IDEOLOGY}^2 + \beta_4 \text{SENIORITY} + \beta_5 \text{SENIORITY}^2 + \beta_6 \text{STFarmP} + \beta_7 \text{AGCOM} + \beta_8 \text{SENAGC} + \beta_9 \text{AGAPPR} + \beta_{10i} \text{FNCE} + \beta_{11i} \text{ENVPW} + \beta_{12i} \text{CMMRCE} + \beta_{13i} \text{LABOR} + \beta_{14i} \text{MARGIN}
$$

A TOBIT analysis was estimated for each PAC using all independent variables. Insignificant independent variables were deleted from each regression using a conditional omitted variable technique for balancing bias and efficiency.

Data and Variables

Agricultural PAC contribution data was obtained from the Center for Responsive Politics, Washington, D.C.. Many PAC studies have utilized only two years of data but these studies have neglected to recognize the ebbs and flows that occur in senatorial fundraising. For example, our data shows that incumbent senators received approximately 81 percent of their agricultural PAC funding in the two years prior to their election races. For this reason, years 1989 through 1994 of contribution data were utilized for this study.

There are 26 agricultural PAC aggregates utilized for this study. Data for twenty-one relevant agriculture PACs are labeled PAC_{6-26}. These PACs were aggregated into one category called Total Agriculture (PAC_1), which was subdivided into production agriculture (PAC_3) and agribusiness (PAC_2). The production agriculture category was further divided into two sub-categories: livestock (PAC_4) and crops (PAC_3).
Hypotheses

What legislative assets are valued by agricultural groups? To address this question, the following hypotheses were formed:

Hypothesis 1: Agricultural PACs will contribute more to Republicans (Expected beta coefficient sign on party: +).

Hypothesis 2: Agricultural PACs will contribute more to conservative senators (Expected sign on IDEOLOGY: +).

Hypothesis 3: Agricultural PACs will contribute more to senators from states that are highly dependent on agriculture (Expected sign on STFarmP: +).

Hypothesis 4: Agricultural PACs will contribute more to senators on key committees such as the agriculture, nutrition and forestry committee; the agriculture appropriations subcommittee; the finance committee; the environment and public works committee; the commerce, science and transportation committee; and the labor and human resources committee (Expected sign on committee variables: +).

Hypothesis 5: Agricultural PACs will target senators who face a tight re-election race (Expected sign on MARGIN: -).

Hypothesis 6: Agricultural PACs will give more support to “seasoned” senators (Expected sign on SENIORITY: +).

Results: Factors Affecting Agricultural PAC Strategies

The results of all TOBIT estimations for the 26 PAC categories are presented in Table 1. Beta coefficients are the expected change in annual contributions for a one unit change in the independent variable. Shading indicates significant p-values at the 15% level or better based on chi-square values. A goodness of fit measure, a pseudo R^2, was
calculated for each regression and range from 0.602 to 0.170, with a median value of 0.408. These values are comparable to values derived in past research and considered acceptable for cross sectional and time series data.

The results of all 26 regressions are discussed concurrently, addressing each independent variable separately in the following discussion.

Hypothesis 1: Party

Party affiliation was found to be a significant and fairly consistent predictor of agricultural PAC contributions. This variable was significant in 16 of 26 regressions. These results are consistent with the research of Gopoian, Wright (1985) and Grier and Munger (1986, 1991, 1993). Gopoian found that three of the four types of PACs studied exhibited partisan behavior in their PAC-giving strategies.

While the entire agricultural industry (AGTOT) on average preferred Democrats, four agribusiness sub-sectors contributed disproportionately to Republicans. In contrast, all production agricultural sectors contributed more money to Democrats than Republicans. Attempting to explain this, Vernon Ruttan (1990, p. 14) noted: “The agribusiness sector, however, has generally opposed farm programs that have been responsible for surplus accumulation. They have been more favorable to programs that partially or fully delink’ commodity prices and payments to farmers.” The choice of someagribusinesses to target Republicans may be based on the belief about the proper role of government.

Note: The agribusinesses that provide inputs and services to the production agricultural industry tend to be thoseagribusinesses that preferred Republicans. Thesagribusinesses that specialize in processing and marketing agricultural products did not target Republicans. No theory purports to explain this division. However, it could be that agricultural processors and marketers benefit from the stability of agricultural commodity prices provided by agricultural price supports.
Gardner (1995, p. 234) found a more definitive link between Republican party affiliation and agricultural PAC behavior. In contrast, this study found that the agricultural industry had a higher affinity for Democrats than Republicans during the six year period of this study (1989-1994). This does not necessarily point to Democrats as the party of choice for the agricultural industry, rather, it may mean that agricultural interests were targeting members of the majority party. Grier and Munger (1993) demonstrated that majority party members received more contributions than those of the minority party.

Hypothesis 2: Ideology

Beta coefficients are the expected annual change in agricultural PAC contributions if a senator’s conservative coalition score (0-100) was to increase by one percent. Each percentage increase in conservative coalition score earns a legislator an additional $222.99 annually. Ideology appears to be one of the strongest and most consistent predictors of agricultural PAC behavior. These results are consistent with the findings of Gopoian, Wright (1985) and Grier and Munger (1986, 1991, 1993).

The square of the ideology index was added to test if the correlation between contributions and ideology was nonlinear. This quadratic variable was based on the notion that agricultural interest groups will contribute less money to very conservative or very liberal candidates because they are more difficult to sway (figure 1). The quadratic term was significant in seven PACs. The notion is that “extreme” legislators receive less campaign contributions compared to those in the middle of the ideological scale (Denzau and Munger; Grier and Munger, 1991, 1993).
Hypothesis 3: Constituent Interests

Percentage of state considered farmland, was found to be the most consistent predictor of agricultural PAC contributions. Beta coefficients represent the expected amount of annual PAC contributions from agricultural groups per state farmland percentage point. Farmland percentage was found to be a significant and positive predictor of agricultural PAC giving in 21 of the 26 regressions. In this context, agricultural PACs give less to legislators from nonagricultural states because they are less likely to vote pro-agriculture due to constituency concerns.

Hypothesis 4: Committee Membership

This study’s results demonstrate the importance of the Senate Agriculture, Nutrition, and Forestry committee and to a lesser degree the agriculture appropriations subcommittee, which is consistent with research. For example, membership on the agriculture committee equates to an additional $76,334 of agricultural PAC money (total agricultural PAC contributions) per re-election bid and, as an example, cotton interest groups contribute approximately $721.92 more annually to agricultural appropriations subcommittee members than they contribute to nonmembers. Additionally, the combined
results of the agriculture committee variable, the agriculture committee/seniority interaction and the agriculture appropriations subcommittee indicate that, only one agricultural sub-sector (tobacco and tobacco products) would not have targeted at least one committee.

Hypothesis 5: Electoral Margin

An expectation was that agricultural PACs would increase their investments in close election races (i.e. as margin increases, contributions would decrease). All 15 regressions with significant margin coefficients support this hypothesis. Coefficients indicate expected change in annual agricultural PAC contributions if electoral margin increases by one percent. A senator who won in the last election by a 55 to 45 margin would be expected to receive $7,367 for each re-election bid more than a senator who won by a 60 to 40 margin, holding all else constant.

These results are in disagreement with the conclusions of Gopoian and Grier and Munger (1993), but consistent with Wright (1985), Grier and Munger (1986, 1991) and Evans (1988). Grier and Munger (1986, 1991) contended this phenomenon occurs because a legislator in a close race devotes more resources to soliciting interest groups for funds.

Hypothesis 6: Seniority

Our final hypothesis was that agricultural PACs would target senior legislators. However, the empirical analysis reveals the opposite. With only a linear variable for seniority, it appears that agricultural groups valued inexperienced senators more than experienced policy makers. These findings disagree with the results of Grier and Munger (1991). In their study of the House, the researchers discovered a positive correlation between corporation and trade association contributions and seniority. A possible
explanation for the differences in these studies is that there is a nonlinear relationship which rewards freshmen and those with significant experience.

The significance of a seniority quadratic term is that freshman legislators receive large amounts of PAC money; which decreases during subsequent legislative terms and later begins to increase as seniority increases. The seniority quadratic was found to be significant in eight of the 26 regressions. The nonlinear relationship between seniority and agricultural PAC contributions is portrayed in Figure 2.

Figure 2: Farm Organization and Cooperative PAC Contributions as a Function of Seniority

![Graph showing the relationship between years of service and annual PAC contributions.](image)

These results are consistent with Grier and Munger (1991, 1993). “The coefficient on seniority implies that it takes six terms in office before seniority raises contributions back up to the level the typical freshman enjoys,” contended Grier and Munger (1993, p. 629). Considering only seniority, the results of this study reveal that it takes 40 years of service before farm organization and cooperative PAC annual contributions would surpass those of the average freshman’s annual contributions from this subsector. Bearing in mind that the
most senior senator in this study had only 38 years of service, regaining contributions at the freshman level is a daunting task.

Summary and Conclusions

Research efforts to measure political influence from contributions to members of Congress have been met with limited success. The multiplicity of political favors, and simultaneity in the supply and demand for favors have hampered statistical analyses, yielding tenuous results at best. Even less analyses have been done in the agricultural arena. Therefore, we applied methods learned by researchers that were looking at other industries to improve the few studies that have looked at the market for political favors in agriculture.

The empirical analysis reveals agricultural industries targeted contributions toward: non-senior, conservative, Democrats from agriculturally dependent states who were expecting close election races and who served either on the agriculture committee or the agriculture appropriations subcommittee.

However, all agricultural interests do not value the same attributes equally. A formal comparison is beyond the scope of this article, but the data do exhibit notable differences in PAC targets.

The world of politics is an idiosyncratic process, and the remaining portion of agricultural PAC contributions may be unquantifiable. The contribution of this article is the analysis of the PAC contribution strategies for agriculture, the better understanding of the activities of these agricultural PACs, and the expansion of the scholarly information available in the area of PAC research.
References

Table 1: Tobit Results for Agricultural PAC Contributions, 1989-1994 (shading indicates significant at 15% level)

<table>
<thead>
<tr>
<th>PAC or Aggregate</th>
<th>Party</th>
<th>Ideology</th>
<th>Seniority</th>
<th>State Farm Percent</th>
<th>Agriculture Committee</th>
<th>Agriculture Appropriations</th>
<th>Environment & Public Works</th>
<th>Finance</th>
<th>Commerce</th>
<th>Labor and Human Resources</th>
<th>Electoral Margin</th>
<th>Ideology^2</th>
<th>Seniority^2</th>
<th>Seniority^* Agriculture Committee Interaction</th>
<th>Pseudo R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGTOT</td>
<td>-5230</td>
<td>223</td>
<td>-250</td>
<td>124</td>
<td>12722</td>
<td>4216</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-123</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.601804</td>
</tr>
<tr>
<td>AGBUS</td>
<td>--</td>
<td>71</td>
<td>-268</td>
<td>58</td>
<td>6693</td>
<td>2163</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-123</td>
<td>--</td>
<td>6</td>
<td>--</td>
<td>0.588872</td>
</tr>
<tr>
<td>CROP</td>
<td>-4340</td>
<td>124</td>
<td>-106</td>
<td>40</td>
<td>3452</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-43</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.506303</td>
</tr>
<tr>
<td>STOCK</td>
<td>-1505</td>
<td>47</td>
<td>-55</td>
<td>36</td>
<td>2782</td>
<td>1574</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-33</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.503277</td>
</tr>
<tr>
<td>PROD</td>
<td>-5972</td>
<td>162</td>
<td>-158</td>
<td>74</td>
<td>6220</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-75</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.533645</td>
</tr>
<tr>
<td>STOCK</td>
<td>-780</td>
<td>53</td>
<td>-45</td>
<td>18</td>
<td>892</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-22</td>
<td>-0.36</td>
<td>--</td>
<td>70</td>
<td>0.311576</td>
</tr>
<tr>
<td>Milk & Dairy Producers</td>
<td>-698</td>
<td>20</td>
<td>--</td>
<td>7</td>
<td>1044</td>
<td>365</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-6</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>0.501207</td>
</tr>
<tr>
<td>Poultry & Eggs</td>
<td>--</td>
<td>18</td>
<td>-27</td>
<td>12</td>
<td>643</td>
<td>347</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-6</td>
<td>--</td>
<td>--</td>
<td>52</td>
<td>0.525089</td>
</tr>
<tr>
<td>Beef, Pork & Horse Interests</td>
<td>--</td>
<td>5</td>
<td>488</td>
<td>--</td>
<td>25</td>
<td>0.251201</td>
</tr>
<tr>
<td>Sheep & Wool Producers</td>
<td>--</td>
<td>13</td>
<td>6</td>
<td>524</td>
<td>273</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-4</td>
<td>--</td>
<td>--</td>
<td>39</td>
<td>0.339936</td>
</tr>
<tr>
<td>Feedlots</td>
<td>--</td>
<td>34</td>
<td>35</td>
<td>9</td>
<td>319</td>
<td>324</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.27</td>
<td>1</td>
<td>25</td>
<td>32</td>
<td>0.323943</td>
</tr>
<tr>
<td>CROP</td>
<td>-919</td>
<td>24</td>
<td>-19</td>
<td>--</td>
<td>722</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.32</td>
<td>1</td>
<td>154</td>
<td>--</td>
<td>0.453597</td>
</tr>
<tr>
<td>Cotton</td>
<td>-735</td>
<td>--</td>
<td>-182</td>
<td>27</td>
<td>1617</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.286032</td>
</tr>
<tr>
<td>Sugar Cane & Sugar Beets</td>
<td>--</td>
<td>31</td>
<td>-38</td>
<td>9</td>
<td>317</td>
<td>329</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.21</td>
<td>1</td>
<td>20</td>
<td>--</td>
<td>0.434466</td>
</tr>
<tr>
<td>Cash Grain</td>
<td>-1319</td>
<td>25</td>
<td>--</td>
<td>--</td>
<td>1078</td>
<td>--</td>
<td>-417</td>
<td>-366</td>
<td>--</td>
<td>--</td>
<td>-0.56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.4418</td>
</tr>
<tr>
<td>Tobacco</td>
<td>-1609</td>
<td>89</td>
<td>--</td>
<td>22</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.368728</td>
</tr>
<tr>
<td>AG BUSINESS</td>
<td>341</td>
<td>35</td>
<td>-50</td>
<td>9</td>
<td>319</td>
<td>324</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.27</td>
<td>1</td>
<td>25</td>
<td>--</td>
<td>0.323943</td>
</tr>
<tr>
<td>Animal Feed & Health Products</td>
<td>-424</td>
<td>45</td>
<td>-15</td>
<td>12</td>
<td>1288</td>
<td>1095</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-12</td>
<td>-0.32</td>
<td>--</td>
<td>--</td>
<td>0.543597</td>
</tr>
<tr>
<td>Agric. Services</td>
<td>--</td>
<td>13</td>
<td>--</td>
<td>9</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-9</td>
<td>--</td>
<td>--</td>
<td>52</td>
<td>0.525799</td>
</tr>
<tr>
<td>Agric. Chemicals</td>
<td>--</td>
<td>18</td>
<td>-6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-9</td>
<td>--</td>
<td>--</td>
<td>13</td>
<td>0.183861</td>
</tr>
<tr>
<td>Veterinarians</td>
<td>812</td>
<td>44</td>
<td>8</td>
<td>--</td>
<td>--</td>
<td>466</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.29</td>
<td>--</td>
<td>41</td>
<td>--</td>
<td>0.232035</td>
</tr>
<tr>
<td>Farm Equipment</td>
<td>--</td>
<td>16</td>
<td>600</td>
<td>--</td>
<td>0.398388</td>
</tr>
<tr>
<td>Grain Traders</td>
<td>-712</td>
<td>12</td>
<td>-78</td>
<td>13</td>
<td>--</td>
<td>773</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>--</td>
<td>55</td>
<td>--</td>
<td>0.417316</td>
</tr>
<tr>
<td>Farm Organizations & Cooperatives</td>
<td>--</td>
<td>--</td>
<td>-53</td>
<td>--</td>
<td>531</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.328272</td>
</tr>
<tr>
<td>Food & Beverage Products & Serv.</td>
<td>715</td>
<td>--</td>
<td>-53</td>
<td>--</td>
<td>531</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.460987</td>
</tr>
<tr>
<td>Food & Kindred Prod. Manufacturing</td>
<td>918</td>
<td>32</td>
<td>-41</td>
<td>--</td>
<td>2332</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-26</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.311777</td>
</tr>
<tr>
<td>Meat Processing</td>
<td>--</td>
<td>10</td>
<td>-10</td>
<td>6</td>
<td>246</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>245</td>
<td>-6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.311777</td>
</tr>
</tbody>
</table>