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Linear Response Stochastic Plateau Functions 
 

Abstract 

A method of estimating a linear response stochastic plateau function is developed and used to 

determine optimal levels of nitrogen fertilization for wheat.  Under the stochastic plateau model, 

optimizing behavior implies different nitrogen levels than the linear plateau model, depending on the 

output/input price ratio relative to a threshold level. 

Key Words:  stochastic plateau, von Liebig response, wheat, nitrogen, fertilizer 

 

Introduction 

 
Estimating crop yield response to fertilizer and determining economically optimal levels of 

fertilizer has been of interest for many decades.  Early efforts to estimate crop yield response functions 

recognized the intuitive appeal of plateau type functional forms (Spillman; Johnson; Heady and Pesek; 

Heady, Pesek, and Brown).  Spillman developed and applied what has come to be known as the Spillman 

functional form to reflect the von Liebig law of the minimum.  Heady and Dillon wrote that  “… most 

production functions probably have a von Liebig point…” (Heady and Dillon, p. 10).  Heady and his 

associates used Spillman (plateau) functional forms in some of their multiple region models (Nicol, 

Heady, and Madsen, p. 216).  

 Waugh, Cate, and Nelson developed a graphical procedure for estimating a linear response and 

plateau model (LRP).  Perrin and Lanzer and Paris both concluded that the LRP functional form 

performed as well or better than polynomial specifications.  Grimm, Paris, and Williams concluded that 

the LRP explained crop response to fertilizer at least as well as if not better than polynomial forms.   

Data obtained in a 1952 experiment and published by Heady, Pesek, and Brown have been used 

by a number of researchers who conclude that a plateau function is a more appropriate fit than polynomial 

specifications (Paris; Frank, Beattie, and Embleton; Chambers and Lichtenberg).  Polynomial 
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specifications that have been used in traditional farm management textbooks do not exhibit a plateau and 

generally result in nitrogen recommendations greater than a plateau model.  

 While a consensus may have developed regarding the existence of a plateau and the need to use 

plateau specifications to make nitrogen application recommendations, one important issue remains to be 

resolved.  That has to do with variability of crop response to nitrogen and why farmers apply too much or 

too little nitrogen.   

Johnson recognized the importance of variable weather and reported both a “good” weather and a 

“bad” weather response function.  Ryan and Perrin concluded that Peruvian farmers were applying too 

little nitrogen.  In their discussion of factors that might inhibit fertilizer use they include “…risks 

perceived by producers and their reactions to these risks…” (Ryan and Perrin, p. 343).  de Janvry also 

recognized the importance of “noncontrolable climatic events” (de Janvry, p. 1).  He concluded that risk 

aversion could reduce the level of fertilizer application.  On the other hand, Babcock writes that “…It 

seems …that typical U.S. farmers apply more nitrogen…than would be warranted by the equation of 

marginal product and factor costs …” (Babcock, p. 271).  Babcock used simulation to show that the 

uncertainty about future growing conditions causes farmers to apply more nitrogen on corn than if 

growing conditions were known.  

 Much of the previous work on estimation of plateau response functions makes two major 

simplifications.  First, the year effect is either treated as a fixed effect and specified with year dummy 

variables (e.g. Sumelius) or ignored completely.  Second, the plateau is assumed to be nonrandom, in 

spite of its determinants being stochastic (Ackello-Ogutu, Paris and Williams; Llewelyn and 

Featherstone; Paris and Knapp; Cerrato and Blackmer; Cox, 1992; Cox, 1996).  

Assuming each of the inputs, including the plateau, has a normal random element, Berck and 

Helfand and Paris (BHP) estimated switching regression versions of the LRP using an extension of 

Maddala and Nelson’s approach.  Babcock’s framework is closer to ours than that of Berck and Helfand, 

but Babcock assumes the response is stochastic rather than the plateau.  Further, Babcock presents no 

empirical estimates. 
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 In this article, an LRP function with a stochastic plateau is estimated by directly maximizing its 

marginal log-likelihood function.  With this approach, it is not necessary for the function to be cast in a 

switching regression format and it is straight forward to include year as a random effect and to let the 

plateau shift only by year.  The BHP model and our model are estimated under vastly different 

assumptions regarding the error terms and while they may appear similar, they actually are quite different, 

with neither model being a special case of the other.   

The linear response stochastic plateau function is used to determine economically optimal levels 

of nitrogen fertilization for wheat.  The conditions for maximizing expected returns when the objective 

function includes a response function with a stochastic plateau are derived.  BHP derived no conditions 

for determining optimal levels.  Pautsch, Babcock, and Breidt derived the optimality conditions for a 

stochastic response with a linear plateau, which is a very different problem than the stochastic plateau 

considered here.  Wheat grain yield response to nitrogen is estimated using data from a long-term 

experiment.  The dataset is both larger and considerably more recent than the 1952 dataset used in 

previous research. 

A Linear Response Stochastic Plateau Model 
 

 In general a univariate LRP function may be expressed as 
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
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where y is the response variable (in this case, yield), x is the level of the limiting input, ε is a random error 

term, and  is the maximum yield, also referred to as the plateau yield.  The parameters  and  are 

intercept and slope, respectively.  To ensure continuity at the threshold, maximum yield is often defined 

as 

my 0β 1β

(2) , mm xy 10 ββ +=

where  is the level of the input necessary to reach the plateau.  Thus, we can define (  as the 

knot point at which the response and plateau portions are splined.   

mx )mm yx  ,
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In the traditional LRP function,  and  are treated as parameters.  The implicit assumption 

in this formulation is that all the factors that define the plateau are fixed and completely controllable.  

While this assumption is helpful in simplifying the problem, it is often too simplistic.  In reality, most of 

the extraneous factors tend to vary randomly.  Observations of weather conditions at any point in time, for 

example, constitute only a random sample from a population of all possible outcomes.  Similarly, soil 

nutrient composition in a field tends to vary stochastically from site to site.  Even management 

parameters, which are under deliberate control, are subject to measurement error, human error, and 

several other sources of variation.  Therefore, it seems more realistic to visualize the knot as an 

expectation that is conditioned on realized values of these random factors. 

mx my

In a linear response stochastic plateau model the plateau itself becomes a random variable. So 

while (1) and (2) still hold, we have that ( )2
10 ),(~ mmm xEy σββ + . 

Since  and  are linearly related, if one is random, so is the other.  With  assumed 

stochastic, for example, it can be shown, by rewriting equation (2) as 

my mx my
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Figure 1 provides a visual demonstration of the behavior of equation (1) under conditions of a 

linear response stochastic plateau function.  Suppose the knot is initially at ( mm yx  , ) .  Any changes that 

make the extraneous factors more limiting, such as unfavorable weather, will exert downward pressure on 

the maximum yield, say to .  This will, in turn, make x less limiting, with the effect of pushing the 

critical level downward, in this case to .  Favorable changes in environmental conditions, such as the 

/
my

/
mx
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occurrence of good weather, will have an opposite effect, as is demonstrated by the shifting of the knot to 

( )//
m

// y ,mx

*

ym 0β +>

. 

In addition to affecting the position of the knot the stochastic factors may also affect the overall 

response relationship.  Weather conditions, for example, will affect the incidence of disease, pests, weeds, 

and other physical and phenotypic determinants of yield (e.g. hail).  These effects can be reflected in the 

random error term of the relationship.  Thus, the error term in equation (1) can be defined as  

(4) , *εε += u

where ε  is an independently and identically distributed random error term with mean zero and constant 

variance σ  and u, the year random effect, has mean zero and variance σ .  In empirical specification, 

independence is assumed between the two variance components, σ  and σ .  Under this assumption, 

the variance of the overall error term, , is σ + .   

2
*ε

2
u

2
*ε

*

2
u

)Var(ε 222
εε σσ= u

Determining Profit-Maximizing Level of the Input 

Figure 1 shows that a LRP function will exhibit constant positive marginal product when 

.  Under the usual assumption of a nonstochastic plateau, this implies that only the input-

output price ratio will matter in choosing the optimum level of the input.  If the value of the marginal 

product (VMP) is equal to or less than marginal factor cost (MFC), the decision-maker would optimally 

apply no input (i.e. x = 0).  However, if VMP > MFC, it is beneficial to continue increasing the level of 

the input until the maximum yield is attained.  Increasing x beyond  will generate negative marginal 

returns, equal in absolute terms to the price of the input.  Therefore, with the nonstochastic linear response 

plateau function, there are only two possibilities with respect to optimum input level.  That is  

x1β

mx

(5)  


 >

=
otherwise.,0

MFC,VMP if,mx
x

Thus, if the plateau, , and the level of the input at the threshold, , are treated as parameters, 

determining the optimum input level is a trivial problem.   

my mx
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The problem is not so straightforward if the plateau is treated as a random variable, such as is the 

case in Figure (1).  In this case, the farmer’s decision will be influenced by his/her expectations about  

and the distribution of  is central in representing this decision process.  Derivation of a technique for 

determining the optimum input level under the assumption of a stochastic plateau follows. 

my

my

Keeping equation (2) in mind and assuming a stochastic plateau, equation (1) can be expressed as 

(6) ( ) ( )[ ] ( ){ } εββ ββββ ++−+= +∞−+∞− )()(1
1010  , ,10 mxmmx yIyyIxy , 

where  is an indicator function, defined as ( ) )(
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Taking expectations of equation (6) yields  

(8) ( ) ( )( ) ( )( ){ })()(1)|(
1010  , ,10 mxmmx yIyEyIExxyE ββββββ +∞−+∞− +−+=  

where  is the expectations operator.  By definition,  )(⋅E

(9) ( )( ) )Prob(y)( 10 , 10
xyIE mmx ββββ +≤=+∞− , 

where  is the probability that , which is the cumulative 

distribution function (cdf) of  evaluated at , or .  By substitution, equation (8) 

can, thus, be expressed as 

)(Prob 10 xym ββ +≤

y

xym 10 ββ +≤

x1β ( 0F β +m 0β + )1xβ

(10) , ( )[ ] mm

x
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where  is the probability density function (pdf) of . Note that the last right hand side term is 

. 

)( myf

ym/ ≤

my

( )xyE m 10 ββ +

Suppose the decision-maker is risk neutral and that his/her behavior can be adequately described 

by expected profit-maximization.  Such a decision-maker’s objective function can be expressed as 

(11) , rxypExE −= )()|(π
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where p and r are output and input price, respectively, and  is expected profit.  Substituting (10) 

into (11) yields 

)(πE

(12)  ( )[ ] rxdyyfyxFxpxE mm

x

m −

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
 ++−+= ∫
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)()(1)|( 10 

 1010
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Equation (12) describes the profit-maximizing decision-maker’s utility function under conditions of a 

linear response stochastic plateau function. 

The first-order condition for profit maximization can be obtained by differentiating (12) with 

respect to x.  That is, 

(13) 
( )( )

0)()(1)|( 10 
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By the chain rule, the first term in the parenthesis reduces to 
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The second term in the parenthesis of  (13) requires a special rule for differentiating under the 

integral sign.  For any differentiable function G , defined as G , 

a generalization of the Liebnitz integral rule states that 
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where  is some continuous function of  and ,  and θ  are lower and upper limits of 

the integral, as continuous functions of , and  and θ  are their respective first derivatives 

(Khuri, p. 302, Theorem 7.10.2).  By using (15) and defining G as , where 

 and θ , it can be shown that 
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Substituting (14) and (16) into (13) and simplifying produces 
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(17) { } 0)(1)|(
101 =−∗+−=
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. 

According to (17), the decision-maker determines the level of input to apply by equating the value of 

marginal expected product, , to the input price, r.  Notice that, at the solution, the 

second-order condition,  

{ )(1 101 xFp βββ +− }

(18) 0)()|(
10

2
12

2
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∂ xfp
x

xE
βββ

π
, 

is satisfied for expected profit maximization.  This implies that imposing a stochastic knot on a LRP 

function transforms it into a strictly concave function.  Berck and Helfand drew a similar conclusion in 

regard to their model. 

 Rearranging terms in (17) produces 

(19) 
1

10 1)(
β

ββ
p
rxF −=∗+ . 

Because ,  (19) applies only if the condition 1)(0 10 ≤∗+≤ xF ββ

(20) 
p
r

≥1β  

is satisfied.  From (19), the optimum level of the input can be expressed as 
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where  is the inverse of the cdf.  To complete the computation, r and p can be replaced with data 

from input and output markets, and the parameters,  and , can be replaced by their statistical 

estimates.  Because x cannot be negative and , equation (21) is valid only if 

)(1 ⋅−F

0β

0

1β

1 ≥β

(22) 01 0
1

1 ≥−







−− β

βp
rF . 
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Thus, both conditions (20) and (22) need to hold for a nonnegative level of the input to be applied.  

Pautsch, Babcock and Breidt’s (p.349) solution is not the same because they assume the response to be 

stochastic due to uncertainty about carry over nitrogen while our model assumes the plateau is stochastic 

due primarily to differences in weather across years. 

Under what circumstances will the optimum nitrogen level be equal for both, the stochastic and 

non-stochastic model?  In other words, when will x* equal the deterministic parameter xm, which 

corresponds to E(xm) in the stochastic case?  First note that (21) is similar to  (3).  From comparing these 

equations it is clear that if 







−−

1

1 1
βp
rF  were equal to E(ym), then x* would equal E(xm).  So, now again 

we can rephrase the question to say, when will the inverse CDF of ym equal its expected value?  In the 

case of a symmetric distribution where mean and median coincide, this will occur when 
1βp

r
−1  equals 

0.5. For values below this level, i.e., when , the optimum level of nitrogen under the 

stochastic plateau model will be lower than the one obtained with a non-stochastic plateau model.  

Conversely, if r  our model predicts that there will be a tendency to apply more nitrogen than 

what the non-stochastic plateau model dictates.  And this is in fact what has been observed.  Given the 

current output/input price ratios, farmers as expected, apply more nitrogen than what the certainty case 

predicts. 

5.0/ 1 >βpr

5.0/ 1 <βp

From equation (21), the optimum level of the input can be determined analytically if a unique 

inverse exists for the prescribed cdf.  This is true for distributions such as the exponential and uniform.  

For many other distributions, however, the distribution function cannot be expressed in an easily 

invertible form.  Examples include normal, gamma, and beta distributions.  For these distributions, tables 

matching probabilities and random variables are available based on numerical integration techniques 

(Wackerly, Mendenhall and Scheaffer).   
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If ( )2 ,~ mmm Ny σµ

)|( xxyE mm =

, for example, standard normal probability tables available in standard 

statistics and econometrics textbooks can be used to approximate the inverse in (21).  This can be done by 

converting  into a standard normal variate .  That is,  αZ

(23) 
m

mx
Z

σ
µββ

α

−+
= 10 ,  

where α  is the observed probability in the right-hand tail of the N(0, 1) 

distribution and , the cdf of  evaluated at , is as defined in (19).  The optimum 

input level can then be determined by rearranging terms in   

110 /)(1 βββ prxF =+−=

)( 10 xF ββ + my x10 ββ +

(24)  ( )1
=x , 0

1

βσµ
β α −+ mm Z

indicating, among other things, that the optimum input level increases in variance.  Notice that (24) is 

really  (21) with mm Z
p
rF σµ
β α+≈







−− 11 .  Alternatively, for most continuous distributions, an 

 approximation can be obtained directly by using functions available in spreadsheet software.   )(1 ⋅−F

Estimation 

Estimation of equation (1) has been a focus of discussion and empirical work by production 

economists and agronomists for several decades.  Many have implemented the model under various 

assumptions about the behavior of the plateau but few have had success with the more logically consistent 

stochastic-plateau specifications.     

This section gives an overview of an alternative and straightforward procedure that involves 

maximizing the marginal log-likelihood function directly using the theory of nonlinear mixed effects 

models (SAS Institute Inc, 2000; Wolfinger, 1993; Wolfinger, 1999).  First, a brief overview is given of 

procedures used to estimate other more restrictive versions of plateau specifications common in the 

literature.  With cross-section time-series data and  multiple inputs, the model to be estimated can be 

written as 
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(25)  1 1 1min{ ( ,  ),..., ( , ),  }n nt njt jt mt jty h h yβ β= +x x ε

ε

)

where  is a (  vector of parameters and  is a 

 vector of predictors, ∀ i = 1, 2, …, n factors.  Subscripts t and j index the year and the cross-

sectional unit for each factor i.  In general, the function  can take any form and can be linear or 

nonlinear in the parameters.  An LRP such as equation (1) is a special case where  is linear in 

the parameters, i.e. h , ∀ i.  Thus, the equation estimated is: 

=β i

1x  )1

( )/10  ..., , , iKii βββ

iijti βx ) ,(

1x  )1+K

ijtx

( )/1  ..., , ,1 ijtKijtijt xx=x

) ,( iijtih βx

( +K

) ,( iijtih βx

iβ′=

(26)  1min{ ,..., , }′ ′= +β βx xijt njtjt n mt jty y

Equation (26) possesses several features that will make ordinary least squares inappropriate as an 

estimation technique.  With year random effects constituting part of the error term, the need to estimate 

the variance components jointly with  calls for a maximum likelihood-based mixed effects 

procedure.  However, estimation of (26) is further complicated by the assumptions made about plateau 

yield.  That is, choice of an appropriate estimation procedure will depend on whether the plateau is treated 

as a known parameter, an unknown parameter, or a stochastic variable.   

( /
1  ...,, nβββ =

Estimation When the Plateau is Known 

If the researcher uses prior knowledge from literature and/or expert opinion to place a numerical 

value, my , on the plateau, then mmt yy = , ∀ , and equation (26) reduces to   t

(27) 1 1min{ ,..., , }′ ′= +β x β xjt jt n njt m jty y ε  

where the minimum of β , once estimated, can be joined to the known plateau, ijtix′ my

xβ−

.  If the 

disturbances, ε , are spherical and there is no interest in estimating the year random effect, equation (27) 

can be estimated with standard multiple linear regression or ordinary least squares using those data points 

that fall below the plateau.  Otherwise, the estimation can be done more efficiently with maximum 

likelihood techniques.  Estimated generalized least squares, β , presents a viable 

jt

)(ˆ)(ˆ̂ 1/ Vxβ−= − yy
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option if ε  is normally distributed, but poses the challenge of finding a reasonable estimate of the 

covariance matrix,  (Littell et al.).   

jt

V

(  ,0 σ

Estimation When the Plateau is an Unknown Parameter 

If the plateau is assumed to be an unknown parameter, the need to estimate  jointly with the 

other model parameters renders equation (26) intrinsically nonlinear in the parameters.  Because the 

normal equations (first-order derivatives) are also likely to be nonlinear, an iterative solution technique is 

required to complete the estimation process.  Kennedy argues that running ordinary least squares (OLS) 

on a nonlinear function would lead to biased and meaningless parameter estimates.  Either nonlinear least 

squares (NLS) or maximum likelihood (ML) estimation can provide consistent estimates (Judge et al.).   

my

Because maximum likelihood estimators have several desirable statistical properties (Wackerly, 

Mendenhall and Scheaffer), such as consistency and asymptotic efficiency, they are often preferred to 

nonlinear least squares estimates.  Most past estimates of nonstochastic plateau models also assume 

)INjt
2~ εε  which means there is no year random effect (eg. Llewelyn and Featherstone; Cox, 1992; 

Cox, 1996; Cerrato and Blackmer; Bock and Sikora; Bullock and Bullock).   

In general, however, the OLS desirable properties will not carry over to nonlinear least squares.  

Also, if the year random effect is of interest and needs to be estimated, the model with an unknown 

plateau becomes a nonlinear mixed effects model with fixed effects entering nonlinearly and random 

effects (year) entering linearly.  Asymptotically efficient estimates can be obtained with maximum 

likelihood-based nonlinear mixed effects techniques.   

Estimation When the Plateau is a Stochastic Variable 

A stochastic plateau can be expressed as , where  is the mean and  is the 

random effect associated with the plateau.  Under this assumption, equation (26) becomes a nonlinear 

mixed-effects model and can be more generally expressed as 

tmmt vy += µ mµ tv

(28)  njt1 mmin{ ,..., ,  µ }′ ′= +β βx xijtjt n t jty v + ε
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Let φ  represent a vector of fixed-effects parameters, i.e. φ .  Unlike the case of an unknown 

nonstochastic plateau with year random effects, equation (28) has both fixed effects ( ) and a random 

effect, , entering nonlinearly.  Due to this nonlinearity in the random effect, there is no closed form 

solution for the marginal distribution of y.  Thus, while more realistic in its assumptions about the 

behavior of plateau yield, this model poses real empirical challenges.  The assumptions for the error terms 

are quite different than those used by Berck and Helfand and Paris. 

( / , mµβ= )

φ

tv

A common approach would be to linearize the function about an estimate of , φ , and 

 (Beal and Sheiner) or about φ  and , where  is the posterior mode equivalent to the best 

linear unbiased predictor (BLUP) in the linear case (Lindstrom and Bates).  Vonesh and Carter propose an 

estimated generalized least squares estimation on the linearized model.  These first- and second-order 

linearizations based on a finite number of moments (usually no more than two) may represent a 

symmetric distribution well but will not be adequate for most other situations.  According to Davidian and 

Gallant, features such as multimodality and asymmetry will not be detected from first and second 

moments.  Recent developments involve estimating both fixed and random effects jointly by maximizing 

the log of an approximate marginal likelihood function of y. 

φ ˆ

0)( =vE ˆ v̂ v̂

The marginal probability density function, on which the marginal likelihood function is based, is 

formed by integrating the joint density function with respect to all the random effects variables.  Let 

 and  denote the conditional pdf of y and pdf of v, respectively, where 

 is an n(k + 1) x 1 vector of all factors.  Then the joint probability density function is 

) , , ,|( 2
tjtjty vyf εσφx

)...,,( 1 njtjtjt   xxx =

)|( 2
vtv vf σ
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2
jttjt vfv   yf   v yf σσσσ εε φxφx =

where , σ ,  and σ  are the unknown parameters, and v  is assumed to have mean zero and variance 

.  The marginal likelihood function of y is obtained by integrating equation (29) with respect to  and 

taking the product over t and j 

φ 2
ε

2
v t
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where a and b are the limits of integration for the distribution of  t is the number of years under 

consideration, and Jt is the number of cross-sectional observations in year t.   

,tv

Theoretically, (30) is the function whose logarithmic transformation is supposed to be maximized 

in a maximum likelihood estimation.  However, because v  enters nonlinearly, (30) has no closed form 

and can only be approximated numerically.  Several approaches are available for approximating such 

non-tractable integrals, including Monte Carlo integration and Gaussian quadrature.  Of all the numerical 

integration techniques, Gaussian quadrature is believed to offer the highest degree of accuracy (Liu; 

Ghomi and Hashemin; Stiegert and Hertel).  

t

For nonlinear mixed effects models, such as the one in equation (30), the SAS NLMIXED 

procedure uses a special type of Gaussian quadrature called adaptive Gaussian quadrature.  Adaptive 

Gaussian quadrature uses the Gauss-Hermite abscissas and probability weights in the approximation 

while centering the integral over the empirical Bayes estimate of v  (SAS Institute Inc., 2000).  Pinheiro 

and Bates argue that adaptive Gaussian quadrature gives one of best approximations to the marginal 

likelihood function. 

t

If the year random effect needs to be estimated, then equation (30) extends to  

(31) , =) , |( yl xθ )|()|(),,,|( 22
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where c and d are the limits of the distribution of u,  is the pdf of u, and  is conditioned on 

both v and u.  The symbol θ  represents a vector of the unknown parameters, defined as 

.   

)(⋅uf )(⋅yf

/222
* ) , , ,( vu σσσ εφθ =

Data and Empirical Procedures 
 

Data were obtained from a long-term experiment conducted at the North Central Oklahoma 

research station near Lahoma.  The study was established in 1970 to investigate winter wheat grain yield 
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response to fertilizer application, using a randomized complete block design (Raun et al.; Westerman et 

al.).  The treatments include a control (no nitrogen) and five levels of nitrogen (20, 40, 60, 80, and 100), 

in pounds per acre per year.  Each treatment was replicated four times.  Data from 28 years (1971-1998) 

were used for estimation.   

Both a stochastic and nonstochastic LRP are estimated with the wheat yield response data.  In 

both cases, the year effect is assumed to be random.  Both the model parameters and the variance 

components were estimated jointly with the SAS NLMIXED procedure, using the adaptive Gaussian 

quadrature approximation of equations (30) and (31), respectively.  The random effects are assumed to be 

normally distributed.  As with any nonlinear optimization, convergence is not assured.  The problem had 

to be carefully scaled to obtain convergence. 

Results 
 

A summary of the estimation results for the stochastic and nonstochastic response functions is 

reported in table 1.  All parameters and variance components are significant at the one percent level.  The 

restriction of a nonstochastic plateau is soundly rejected.  The expected plateau wheat grain yield is about 

41 bushels per acre for both models.  The threshold level of nitrogen is 64 pounds per acre for the LRP, 

but only 50 pounds per acre for the linear response stochastic plateau function.  One key difference is that 

the estimated marginal productivity of nitrogen is higher with the stochastic model. 

The optimum level of nitrogen when the plateau is nonstochastic is either zero or 64 pounds per 

acre.  With wheat price assumed to be $3.00/bu, the VMP of nitrogen is $0.70/lb.  The optimal choice of 

nitrogen remains at 64 pounds per acre as long as the price of nitrogen is above zero and is less than the 

VMP of $0.70/lb. 

For the linear response stochastic plateau function, the optimal level of nitrogen changes with the 

price of nitrogen.  Figure 2 contains the optimal level of nitrogen for three price ratios for both the linear 

response stochastic plateau and the conventional LRP (nitrogen prices of $0.01, $0.10, and $0.60 per 

pound and a wheat price of  $3.00 per bushel).  The optimal level of nitrogen at these three prices is 67, 

58, and 47 pounds per acre. 
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Notice that when r = $0.10/lb, which is close to current prices, the optimal level of nitrogen is 

less under the linear response stochastic plateau than it is under the conventional LRP.  The major reason 

for this difference is the greater marginal productivity of nitrogen with the linear response stochastic 

plateau.  As Figure 2 demonstrates, fertilizer recommendations with the linear response stochastic plateau 

can be either less than or greater than recommendations with the nonstochastic plateau depending on 

relative prices.  The seemingly contradictory empirical observations, with some authors arguing that 

farmers applied less nitrogen than recommended (de Janvry; Ryan and Perrin) and others arguing 

otherwise (Babcock), are perfectly consistent with expected profit maximization and may not have much 

to do with risk aversion.  Also, Babcock’s model is derived from assumptions, and it does not have the 

stochastic plateau with a higher marginal productivity of nitrogen. 

Table 2 shows expected profits for each of the cases depicted in figure 2.  Again, profits will vary 

according to the value of the output/input price ratio.  The losses from using a nonoptimal level of 

nitrogen are small.  Thus, it should not be a surprise to observe successful farmers using a range of 

nitrogen levels. 

Current recommendations from OSU’s agronomy department are to apply two pounds of nitrogen 

for each bushel of yield goal.  With a yield goal of 41 bu./acre, the advice would be to apply 82 lbs./acre.  

Thus, current recommendations are higher than those with either plateau model. 

Conclusions 
 

Determination of optimal fertilizer levels has been studied for many decades.  A number of 

researchers have found that crop-response-to-nitrogen functions that include a yield plateau are more 

appropriate than functions that do not include a plateau.  In prior work, the plateau has usually been 

assumed nonrandom.  However, the determinants of the plateau are stochastic.  BHP used the switching 

regression technique to estimate an alternative form of a stochastic plateau.  The linear response 

stochastic plateau function developed here is not nested with the BHP model.  The linear response 

stochastic plateau model is estimated with data obtained from a long-term wheat grain yield response to 
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nitrogen experiment.  With current prices, the optimal level of nitrogen was lower with the stochastic 

plateau than with the nonstochastic one. 

The use of the LRP with stochastic plateau provides insight into why farmers may apply more or 

less nitrogen than would appear optimal.  The optimum level of nitrogen for a linear response stochastic 

plateau can be lower or higher than that of an LRP depending on output/input price ratio.  Thus, the 

seemingly contradictory empirical observations, with some authors arguing that farmers applied less 

nitrogen than recommended (de Janvry; Ryan and Perrin) and others arguing otherwise (Babcock).  Also, 

the expected profit function is relatively flat with current prices and so the optimal level is likely difficult 

for farmers to determine. 
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Table 1.  Summary of regression results for wheat yield response functions 

 
  Estimates and standard errors by type of response 

functiona 
  Stochastic      

Statistic Symbol linear plateau   Linear plateau   
        

Intercept 
0β  25.3621   26.1954   

  (1.2926)   (1.3590)   

Level of nitrogen (lbs) 
1β  0.3075   0.2322   

  (0.0172)   (0.0142)   
Expected plateau yield (bu) 

mµ  40.5938   41.1260   
  (1.3241)   (1.3290)   

Nitrogen at expected plateau (lbs) 
mx  49.5340   64.3126   

  (7.5096)   (3.1638)   

Variance of plateau yield 2
vσ  5.3324      

  (0.8491)      

Variance of year random effect 2
uσ  39.3126   42.2476   

  (11.1531)   (11.9921)   

Variance of error term 2
*εσ  29.9353   43.5248   

  (2.1326)   (2.4701)   
Log likelihoodb  -2122.8   -2185.1   
aStandard errors are in parentheses. 
bThe null hypothesis that the nonstochastic plateau is the correct model (ie.  is rejected at any 
conventional level of significance based on a likelihood ratio test.  The calculated value of the likelihood 
ratio statistic is 124.6 which is considerably above the  critical value of 6.63. 

2
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Table 2: Expected Profit by Price of Nitrogen, Assuming the Linear Response Stochastic Plateau Is 
the Correct Model and p=$3.00/bu. 
 

Profit by price of nitrogen (r) Function $0.01/lb $0.10/lb $0.60/lb 
    
LRSPa 121.09 115.54 89.50 
LRPb 121.07 115.29 83.13 
Difference (SLRP-LRP)                      0.02            0.25      6.37 
    
 

a For a linear response stochastic plateau, the optimal quantity of nitrogen is 66.77lb/acre, 58.81lb/acre 
and 46.63lb/acre when r is equal to $0.01/lb, $0.10/lb and $0.60, respectively.  This translates into an 
expected yield, E(y|x), of 40.58 bu, 40.47 bu and 39.16 bu, respectively. 
b For an LRP, because MVP>MFC at all three prices, x = xm= 64.31 lb/acre, which translates into E(y|x) = 
40.57. 
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Figure 1.  Univariate stochastic linear plateau response function 
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 Figure 2.  Expected profit maximizing levels of nitrogen derived 
the stochastic linear plateau and linear plateau functions for var
price ratios (price of wheat constant at $3 per bushel).  
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