IMPLICATIONS OF CAPITAL-INTENSIVE DEVELOPMENT INTERVENTIONS FOR COMMUNAL RESOURCE OWNERS: THE CASE OF COMMUNAL FARMERS IN ECUADOR

María José Castillo and Richard Beilock
Food and Resource Economics Department, University of Florida

CONTACT:
Richard Beilock
University of Florida
PO Box 110240
Gainesville FL 32611-0240
tel: (352) 392-1881, ext. 317
fax: (352) 392-9898
e-mail: rpbeilock@ifas.ufl.edu
mjcastillo@ifas.ufl.edu

Selected Paper prepared for presentation at the Southern Agricultural Economics Association Annual Meeting, Tulsa, Oklahoma, February 14-18, 2004

Copyright 2004 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
ABSTRACT

The introduction in Ecuador of a primary irrigation infrastructure into a communal setting where land users did not fully control the land and had effectively no access to credit, produced a sell off of nearly all irrigable lands. The change in land reservation prices between buyers and sellers is analyzed.

Keywords: communal land, dispossession risk, land reservation prices, capital-intensive interventions.

JEL Classifications: D23; O17; Q15
1. INTRODUCTION

West of Guayaquil, Ecuador is the Santa Elena Peninsula (PSE), an area of 6,050 km2 (see Figure 1). Until the middle of the 20th Century, PSE was a breadbasket, supplying vegetables, animal products, and timber (Alvarez). Due to excessive resource exploitation and climatic changes, the PSE was transformed into an almost treeless, semi-arid landscape (Alvarez). Many migrated from the land to urban areas, primarily Guayaquil (Alvarez). From a population over a million, only 256,000 (ESPOL) people remain on the Peninsula, with the large majority deriving livelihoods from the tourism (beaches) and the shrimp industry. Until very recently, virtually all agricultural land was organized into communal land holdings, known as comunas. With almost no exceptions, the approximately 70,000 (ESPOL) comuneros in the PSE live in poverty. Per capita consumption by comuneros is $401,$ less than a fourth than for the country as a whole and barely above the $1.00 per day international standard commonly employed as the dividing line between poverty and abject poverty.

With the expressed goals of assisting the comuneros and reviving the productivity of the PSE, in the 1980s the Government of Ecuador began a US$580 million irrigation project (ESPOL). This project takes part into a regional program (Guayas River Basin and Peninsula of Santa Elena) with multiple purposes involving water level regulation and utilization. The purpose related to this project is the transference of water from surplus to deficit areas. That way, water for the Peninsula would be pumped from two pumping stations (one in the Daule River and the other in the Chongón Reservoir) into a
120-kilometer system of primary canals and five reservoirs. It was estimated that, with construction by landowners of secondary systems, 50,000 hectares could be irrigated (ESPOL). The large majority of the canals (around 100 km) were completed and filled with water as much as a decade ago and the last portions of the system (one more reservoir and three canals) are still in plan of being completed. With the works finished so far, over 20,000 hectares could be irrigated (ESPOL), however only 6,000 hectares are currently under irrigation from the canals (ESPOL). At least as troubling, virtually all of this production is by large growers who acquired their lands from the comunas. Indeed, the comunas have sold approximately 91% of potentially irrigable lands to such growers and land speculators. According to available anecdotal information, these sales were at prices well below the most conservative estimates of the present value of potential production. The majority of the prices for irrigable lands were between US$40 and $400 per hectare (Castillo, 2003b). In other words, the comunas sold their best lands at bargain basement prices.

The goal of the analyses presented in this paper was to investigate what happened. Did the economically powerful use political influence and even armed force to wrest lands from the comuneros? Did comuneros sell their lands due to poor information about market opportunities for the products the canals made possible to produce and, by extension, the fair market value of their lands? Were the comuneros motivated by poverty or hedonism to surrender longer term gains in favor of small, but immediate compensation? Was there corruption? In some instances and to some degree, no doubt all of this happened. But we will argue that the main cause was that the combination of the type of investment made by the Ecuadorian Government and the communal structure
of the land holdings increased the valuation (i.e., the reservation price) of the land for those outside the comunas while, at the same time, lowering those valuations for the comuneros. The resulting gap in valuations was greater the more suitable the lands for irrigation. It was this effect, primarily, which led the comuneros to the economically rational, though seemingly perverse, decisions to liquidate their best lands, even at low prices.

Beyond explaining past events, these finding have relevance for the northwestern part of the PSE, where the final phase irrigation project is under construction and, more generally, for development projects worldwide where the intended beneficiaries hold resources communally.

2. THE ANALYSIS

A. Overview of Feder and Feeny Model

The point of departure for our analysis is a simple, but rich and flexible model developed by Gershon Feder and David Feeny to explain investment, production, and land acquisition/retention decisions by peasants. Their model depicts a rural economy where there are private land holdings, but land rights are subject to risk. A farmer is assumed to maximize expected utility, which is separable in two arguments: current consumption and the next period’s wealth. The maximization process involves allocating his/her initial endowment and borrowed funds among three uses: current consumption, land acquisition, and investment in physical capital.

Some of the basic components and assumptions of the model follow:

- There is a two-period planning horizon. Both periods are of indeterminate length.
• Land acquisition/retention, consumption, and investment decisions made in the first period determine production in the second period.

• Capital is completely used up in the process of production, i.e., by the end of Period 2. While we will not deviate from this assumption, its restrictive nature should be recognized. In particular, the requirement that capital be exhausted denies the possibility of applying capital, in part, to increase the value of the land in anticipation of future sales.

• The utility function is linear in terminal wealth

• Risk to property rights is represented by a non-zero probability \(\phi \) that the current farmer will lose both the Period 2 output and the land.

• The possibility of obtaining land through actions different from purchases is viewed as an exogenous probabilistic event.

Notation of the model:

\(T \) = quantity demanded of land

\(P \) = price of land

\(k \) = capital-land ratio Note: Capital is a numeraire variable. That is, Capital is $1 per unit. As such, \(k \) becomes the number of dollars of Capital used per unit of land.

\(C_o \) = first period consumption

\(W_o \) = initial wealth

\(\phi \) = probability of ownership and output loss in the second period.

\(U, U_o \) = total utility and Period 1 utility, respectively.

\(y \) = monetary value of output per unit of land

\(r \) = interest rate.
In Period 1, land and capital are obtained (and/or retained) to produce the next period’s output. The production function exhibits constant returns to scale in land and capital. The per hectare output is described in Equation 1:

\[y = y(k); \ y'(k)>0; \ y''(k)<0 \]

The utility of current consumption is a concave function with decreasing marginal utility, see equation 2:

\[U_o = U_o(C_o); \ U_o'(C_o)>0; \ U_o''(C_o)<0 \]

The amount of credit, \(S \), available to a farmer is limited by the value of his/her land holdings (the only acceptable collateral) and by the degree of risk of losing the land, see equation 3:

\[S = s(\phi)PT, \]

The proportion of land value lending institutions are willing to give as loans is \(s \), \(0 \leq s \leq 1 \). As would be expected, \(s \) is a function of the risk of land loss with \(s'<0 \).

The farmer selects \(C_o, T, \) and \(k \) so as to maximize total utility, see equation 4:

\[
\text{Max } U = U_o(C_o) + [1-\phi] T [y(k)+P] - [1 + r]s(\phi)PT \\
\]

\(\{U_o(C_o)\} \) is the utility of current consumption and \(\{[1-\phi]T[y(k)+P] -[1 + r]s(\phi)PT\} \) is the expected terminal wealth, that is, output plus land value times the probability that they will still be possessed at the end of period 2, minus debt repayment\(^{viii} \). This maximization is subject to a budget constraint whereby expenditures for land acquisition, capital investment, and current consumption cannot exceed initial wealth plus borrowed funds, see equation 5:
Solving for C_o in equation 5 (i.e., $C_o = W_o + s(\phi)PT - kT - PT$) and substituting into the right-hand side of equation 4, the resulting maximization equation is presented in equation 6:

$$\text{Max } U = U(W_o - PT[1-s] - kT) + [1-\phi] T [y(k)+P] - [1+r]s(\phi)PT$$

The solution of the first and second order conditions to solve for the optimum values of T and k is presented in the Appendix. Three important, though unsurprising, results which will be used in the following discussion are that heightened risk of dispossession (ϕ) reduces:

The quantity demanded of land, i.e., $\frac{dT}{d\phi} < 0$;

Per hectare capital usage, i.e., $\frac{dk}{d\phi} < 0$ and

The equilibrium price of land, i.e., $\frac{dP}{d\phi} < 0$

Again, these results apply to an economy where credit is available to everybody using [and owning] land, and credit is related to land value and to security of land rights. We will now present modifications to the theoretical model to capture better conditions on PSE.

B. Modifying the model to conditions on the Peninsula of Santa Elena

Feder and Feeny modeled a situation in which there were essentially homogeneous agriculturalists determining the amounts of land, capital, and credit they would obtain, all subject to similar levels of risk and operating under similar incentive systems. The situation on PSE was, and remains, quite different. There are two distinct
types of land users: the comuneros and the commercial farmers/land speculators or, more generally, non-comuneros.

Comuneros: Traditionally and by Ecuadorian law, virtually all rural land in PSE is held communally. Around 70 comunas are spread across PSE, all of them having legal property over large extensions of land. They elect representatives and assign land usage rights to their members upon request. Land is usually exploited individually being benefits kept by the individual. Due to resource degradation and climatic changes resulting in near-desertification of much of the land, as well as the lure of job opportunities in urban areas, many comuneros migrated. For the remaining comuneros, while the land was not very productive, at least it was not in short supply. Indeed, there were areas in many comunas that were either entirely unused or only used sporadically and/or at very low levels of intensity. With effectively a zero market price on lands, individual comuneros were virtually assured of secure usage rights on plots previously allocated to them by the comuna.

Credit Market: Because comuneros had usage, but not individual ownership rights, ‘their’ land could not be employed as collateral. As such, Comuneros had effectively no access to credit. In terms of the Feder and Feeny model, \(s = 0 \) and hence also \(S=0 \).

Land Market: Individual comuneros are not permitted to sell communal lands. This, combined with no access to credit markets, effectively precludes individual comuneros from the land markets. However, acting as a community, usage rights can be altered and comuna lands may be sold to other parties or additional lands purchased. Unlike the farmers envisioned by Feder and Feeny, the amount of
land, T, is not a decision variable nor is land part of a comunero’s wealth, W_o, i.e., for the individual comunero TP=0. As such, the comunero is reduced to one decision variable, k, because he/she has control over land use, but not over decisions to retain or sell the land. Therefore, the comunero faces a maximization problem as follows:

\[
\text{(7) Max } U = U_o(W_o - kT) + [1-\phi] T y(k); \quad \text{with } \frac{dk}{d\phi} < 0
\]

Direct impact of the canals: The primary constraint to increased agricultural productivity on the PSE is the low and irregular availability of water (Alvarez). The canals were intended to alleviate this problem. However, to utilize this water effectively requires investment in secondary irrigation systems (i.e., pumps, pipes and/or secondary canals, sprinklers, drip irrigation systems, etc.). In terms of the model, the canals increased y’(k), the marginal impact of capital on yields (i.e., the slope of the yields curve), but this increase only applied beyond threshold levels necessary to provide the means for bringing water from the canals to the fields (see Figure 2). With no significant attachable assets, reaching these thresholds was beyond the means of the comuneros and, as such, the canals were of minimal value, at best, for agricultural production.

Non-comuneros: Non-comuneros include those interested in entering the PSE land market either to engage in agricultural production or for speculation. Relative to comuneros, these are individuals with considerable financial means and political influence. Ironically, the Feder and Feeny model presented above, which was intended to describe peasants, can be employed without modification for this group.
Credit Market: This group clearly has access to credit markets both because, in
general, these individuals already owned attachable assets not on PSE and could
also use lands purchased on PSE for collateral.xii To the extent lands can be used
for collateral, non-comuneros would derive a collateral premiumxiii.

Land Markets: Due to tradition and vagaries in Ecuadorian law, there has been
some question regarding the legality of individuals purchasing communal lands,
even with community approval. Despite of this, since initiation of the irrigation
project sales have become common.xiv As such, non-comuneros have effective
access to land markets in PSE.

Direct impacts of the canals: Unlike the comuneros, the non-comuneros had
access to the sufficient capital to use the canals to increase agricultural yields.

C. Explaining the sales of irrigable lands

As described in the introduction, the building of the canals did not bring an
agricultural and economic renaissance to the comunas, but rather the sale of almost all
potentially irrigable lands to non-comuneros. These events may be readily explained
employing the Feder and Feeny model, with the just-described modifications for the
comuneros. A schematic of the following discussion is presented in Figure 3.

Prior to the development of the canals, non-comuneros had little interest in land
held by the comunas, due to its low productivity. Moreover, as there was a large supply
relative to the population, individual comuneros had secure usage rights. The primary
canals increased the productive potential of the land if and only if sufficient, i.e.,
threshold level of, capital was applied to facilitate delivery of water from the canals to the
fields (see Figure 2). As the land was held communally, regardless of the productive
potential of the lands they used, comuneros could not secure sufficient credit to acquire
threshold levels of capital needed to exploit the canals. But non-comuneros could.
Therefore, due to the enhanced productive potential of the land, the canals precipitated an
outward shift of the demand for land, with all of that increase being from the non-
comuneros.

Because of the communal nature of the land tenure, non-comuneros had to
negotiate with comunas, as a whole, for land parcels, rather than with the individual
comuneros who had usage rights to the land. If proper procedures were followed,
decisions to sell were based on community-wide voting or objective deliberations by
legitimate representatives of the community. If there was corruption, as has been alleged
in some cases, individuals holding authority in a community might have approved sales
for personal gain, rather than purely from considerations of public welfare. Either way,
individual comuneros holding rights over irrigable lands did not fully control the process.
As such, these individuals were at risk of dispossession, a risk that effectively did not
exist before the canals were built.

Due to this increased risk of dispossession, incentives to make capital investments
over the land were further diminished, i.e., \((dk/d\phi) < 0 \). Comunero demands for these lands
would have fallen due to the combination of 1. heightened risk of dispossession, i.e.,
\((dT/d\phi) < 0 \);\(^{xv} \) 2. reduced incentives to make land investments, and 3. that property values
are not part of the wealth of individual comuneros using the lands, i.e., \(TP = 0 \).

With the coming of the canals, the demand for irrigable lands rose for non-
comuneros. As the supply of these lands was fixed, the maximum prices they were
willing to pay for their purchase rose, as well as their willingness to incur in transaction
costs involved in negotiating with comuneros (several times bribing comuna representatives). At the same time and as a result of this rise in demand on the part of non-comuneros (which increased dispossession risk) demands fell for comuneros, i.e., the minimums they were willing to accept as compensation for losing use of the lands fell. Reservation price gaps developed, with potential buyers willing to pay more than the minimum acceptable to potential sellers. These reservation price gaps would have been wider (and incentives for sales greater) the more suitable the lands for irrigation and the greater the resulting yield enhancements. The expected result of this process is consistent with what actually occurred, systematic selling by comunas of the lands having the greatest potentials through exploitation of the canals.

D. Comment on low sale prices

Reservation price gaps between non-comuneros and comuneros explain the land sales, but not sale prices as low as $40.00 per hectare for irrigable lands (see Castillo, 2003b). Why haven’t the comuneros been better negotiators? It seems likely that the communal structure of the landownership contributed to this outcome. As the voluminous transactions cost literature attests, negotiating is not free. Any individual comunero devoting resources to negotiate a better price would have shared the fruits of that activity with all comuneros, the classic positive externality/free rider problem. Moreover, in most cases only a portion of comuna land was potentially irrigable. Comuneros with usage rights on non-irrigable portions had little or nothing to lose from sales of irrigable lands and, indeed, could only benefit from those lands if there were sales. For these individuals, reservation prices may have been exceedingly low.
That the communal structure may have contributed to very poor realized sales terms is only the icing on this dismal cake. The sales were due to the reservation price gaps. The reservation price gaps were due primarily to the enhancement of returns from capital brought about by the canals and comunero credit constraints [as land and any improvements could not be attached] and secondarily to dispossession risk to the users of those landsxvii. As long as these conditions existed, the sales were probably inevitable.

3. IMPLICATIONS FOR DEVELOPMENT POLICY

The analysis of PSE has highlighted three aspects of communal asset ownership systems, that:

1. Users of communal assets cannot consider the market value to be part of their own wealth.
2. Users of communal assets normally face severe credit constraints as they are unable to employ the assets they use as collateral. As a result, feasible levels of capital improvements tend to be low.
3. Sales of portions of communal assets are decided by the entire community, through either direct vote or representatives, and not solely by those individuals using those portions of the assets. As such, when purchase offers are made to the community, individual users are at risk of involuntary dispossession.

In PSE these factors led to near-complete divestiture by the comunas of lands potentially irrigable from the primary canals. The canals enhanced returns from [above threshold] applications of capital on irrigable lands. Because of the canals, those able to acquire capital, i.e., non-comuneros, had an advantage in the use of those lands relative to comuneros. Given this, sales of irrigable lands to non-comuneros were rational.
There are two main implications of this work for development policy. The first is consistent with the broad consensus views of development literature and practitioners, that private ownership is usually superior to communal systems. In the case of PSE, we do not assert that had the land been privately owned there would not have been sales to outsiders. Rather, if the lands had been privately owned, an owner would have had:

1. Greater scope for exploiting the canals, as he/she could have used the land for collateral.
2. More incentives to invest in the land due to lower dispossession risk and the ability to capture the value of improvements (through earnings stream enhancements or higher land values).
3. Stronger negotiating positions, as well as greater incentives to secure the best terms, if they elected to sell the land.

As a general rule, communal asset holders should be encouraged to privatize or, at least, develop institutions that facilitate improved management along the lines of cooperative or corporate structures.

The second implication is that when assets are communally held, development programs that can be best exploited by clients through applications of capital may trigger divestiture of those assets. This suggests that a bias in favor of labor-intensive development may be particularly appropriate when there are communal holdings. Alternatively, safeguards may be necessary when interventions favor the use of capital. These may include oversight of asset transfers and/or lending programs to facilitate credit access.
Comunero consumption estimate from Castillo, 2003b. Ecuadorian consumption average from World Bank.

Another goal of the project was to supply water for residential and industrial purposes.

The purposes of such program cover irrigation, water distribution, water level control, water quality control, and the generation of electricity. This program is considered of great importance for the country because of the Organization of American States’ qualification of the Guayas River Basin as the “South American most important hydrographic region”. Comisión de Estudios para el Desarrollo de la Cuenca del Río Guayas, 1996. The semiarid conditions of the Peninsula of Santa Elena, its potential agricultural productivity, and the fact that it borders the Guayas River Basin, encouraged the Government to include it into the program.

Interview with Jaime Proaño from CEDEGE, 2000. Also Castillo (2003b), studying four comunas where the canals had been built, found that virtually all irrigable lands had been sold, accounting for nearly two thirds of all lands formerly held by these Comunas.

Note that we are talking about reservation prices, not market value.

In their discussion, Feder and Feeny begin period 1 with the farmer having no land and an initial amount of wealth, W_0. However, by a trivial extension of the model, a portion of W_0 can be specified as being land.

As an aside, this formulation suggests risk neutrality, that is unless the ϕ assumed by a farmer is biased upwards (risk averseness) or downward (risk loving).

There are just a few exceptions where comunas are still in process of legalization.

In addition, as long as the productive potential of the lands was low, their value as collateral would, likewise, have been low or even nil.

Through informal channels and some NGOs, comuneros actually have access to credit, but loan amounts are typically very small, see Castillo (2003a). Moreover, the Government did not provide special credit programs to facilitate exploitation of the canals by comuneros.

In practice, prior to building the canals, comunas almost never bought or sold land.

It should be noted that this group bears a non-zero, though probably small, risk of dispossession (ϕ) from potential challenges to the legality of some of the purchases of communal lands.
Feder and Feeny define collateral premium as “the result of the owner’s ability to obtain additional and cheaper credit by pledging the land as collateral.” p248

If and the extent to which this resulted from appropriate and inappropriate uses of political and economic influence remains an open question.

This change in T due to a higher risk (ϕ) applies to the community as a whole as T is not a decision variable for the individual comunero.

As that negotiator would have received his/her share of sales revenue.

Carter and Salgado also suggest this result when asserting that “capital-constrained” individuals have a smaller shadow price of the land than unconstrained individuals, which makes their demand for land lower. When high risk of losing land is added, they conclude, “the competitiveness dampening effects of credit constraints are likely to be enhanced.” (p256), further reducing demands for land.
APPENDIX 1:

OPTIMIZATION SOLUTION FOR THE FEDER AND FEENY MODEL

The solution for determining optimum values of k and T, as well as the impacts of changes in selected parameters are presented in this Appendix. Equation 6, from the text, is repeated below.

\[
\text{(6) Max } U = U(W_o - PT[1-s] - kT) + [1-\phi] T[y(k)+P] - [1+r]s(\phi)PT
\]

At the optimal values of T and k, the first-order derivatives have to equal zero. The expression above is hereafter referred to as F. For the first order conditions, see equations 1a and 2a:

\[
\begin{align*}
\text{(1a) } \frac{\partial F}{\partial T} &= [1-\phi] [y + P] - U' \{P[1-s] + k\} - [1 + r] s(\phi)P = 0 \\
\text{(2a) } \frac{\partial F}{\partial k} &= [1-\phi]Ty' - TU' = 0
\end{align*}
\]

To verify that the choice of T and k maximizes the utility function, the first element (first row, first column) of the Hessian needs to be negative and the determinant of the matrix positive (see equation 3a).

\[
\text{(3a) } [H] = \begin{pmatrix}
U'' \{P[1-s]+k\}^2 & U'' \{P[1-s]+k\}T \\
U'' \{P[1-s]+k\}T & T[1-\phi]y'' + T^2U''
\end{pmatrix}
\]

The first element is: \(U'' \{P[1-s]+k\}^2 < 0 \).

The determinant is: \(\Delta = T[1-\phi] U'' \{P[1-s] + k\}^2 y'' > 0 \)

Once the second-order conditions are satisfied, the model can be used to analyze how the optimal choice functions react to changes in the parameter P. Differentiating the
first-order conditions with respect to P and arranging the terms into matrix form, yields equation 4a:

$$\begin{array}{c}
(4a) \\
\begin{bmatrix}
\frac{dT}{dP} \\
\frac{dk}{dP}
\end{bmatrix} = \\
\begin{bmatrix}
[1 - \phi] \frac{y - y'k}{P} - U'' [1 - s] P + k [1 - s] T \\
-T' U'' [1 - s]
\end{bmatrix}
\end{array}$$

Using Cramer’s rule yields equations 5a and 6a:

$$\begin{array}{c}
(5a) \quad \frac{dT}{dP} = \frac{1}{\Delta} \{[1 - \phi] \frac{y - ky'}{P} [T + \phi + T] U'' - U''([1 - s] P + k) T [1 - s] [1 - \phi] y''\} < 0 \\
(6a) \quad \frac{dk}{dP} = \frac{1}{\Delta} \{[-1 - \phi] \frac{y - y'k}{P} U'' [1 - s] P + k \} T > 0
\end{array}$$

Equation 5a indicates that the quantity demanded of T is negatively related to price, i.e., a downward sloping demand curve for land. Equation 6a demonstrates that the capital-land ratio, k, is positively related to the price of land as farmers substitute capital for land.

The model can also be employed to show that the optimal choice of T is negatively affected by an increase in the risk to ownership if land prices are held fixed, see equations 7a and 8a:

$$\begin{array}{c}
(7a) \\
\begin{bmatrix}
\frac{dT}{d\phi} \\
\frac{dk}{d\phi}
\end{bmatrix} = \\
\begin{bmatrix}
y + P - ([1 - \phi] y' - [1 + r]) P s' + T U'' [1 - s] P + k \} P s' \\
Ty' + T U'' P s'
\end{bmatrix}
\end{array}$$
The expression \((1 - \phi) \cdot y' - (1 + r) \) is greater than zero because the credit constraint is assumed to be binding. This means that the expected marginal productivity of the land has to be greater than the cost of capital for the individual to be willing to ask for credit.

Because the demand for land is downward sloping, and given that the supply of land is fixed, there is an equilibrium price for land that depends on \(\phi \), the probability of losing land. In other words, if the demand for land is reduced after an increase in \(\phi \), the equilibrium price of land declines, see equation 9a.

\[
(9a) \quad \frac{dP}{d\phi} = - \frac{dT}{d\phi} < 0
\]

Through its negative effect on the price of land, the capital-land ratio, \(k \), also is negatively affected by an increase in the risk to ownership, see equation 10a.

\[
(10a) \quad \frac{dk}{d\phi} = \frac{dk}{dP} \frac{dP}{d\phi} = \frac{dT}{d\phi} \frac{dT}{dP} = \{ Ty' [1 - \phi] y' y' k / P + T2U'' [1 - s] \} \{ Py' [1 - s] + y' k - y \} \frac{dT}{dP} d\phi \quad dP \quad d\phi \quad dP \quad d\phi \quad dP \quad dT/dP \quad - P \{ +TU'' [r + \phi] s' \} / [dT/dP] \Delta < 0
\]
REFERENCES

Figure 1: Peninsula of Santa Elena

Figure 2: The impact of capital on yields before and after building of primary irrigation canals

Threshold investment to bring water from primary canal to field.
Figure 3: Schematic of impacts of canals on comunero and non-comunero demands for lands potentially irrigable from primary canals

- Primary canal construction
 - Increased potential productivity for irrigable lands for non-comuneros
 - Increased demand for irrigable land by non-comuneros
 - Increased market price for irrigable land
 - Pressure on comunas to sell irrigable lands

- No increase in potential productivity for irrigable lands for Comuneros
 - Increased willingness of comuneros to vote in favor of comunà sales of irrigable lands
 - Reduced reservation prices
 - Reduced demand for irrigable land by individual comuneros
 - Increased risk to individual comuneros of losing land usage rights
 - Reduced demand for capital per hectare for irrigable land by individual comuneros