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A Note on the
Box-Cox Transformation

Under Heteroskedasticity

James Blaylock, Larry Salathe and Richard Green

The Box-Cox transformation (BCT) has been frequently used as both a flexible
functional form and as a decision device to distinguish among alternative model
specifications. Most researchers have failed to recognize that the BCT when applied to
the dependent variable can compensate for heteroskedasticity. This paper investigates a
new procedure which estimates both the BCT parameters and the analytic form of
heteroskedasticity. Results from the new procedure are compared to estimates obtained
from the traditional method of estimating BCT models. Comparisons indicate that
proper specification of the error variance can influence the magnitude of BCT
parameters and alter the results of hypothesis testing.

The monotonic transformation introduced
by Box and Cox has been employed in a
number of econometric applications, includ-
ing those in monetary economics [Zarembka,
1968], production theory [Appelbaum], and
demand analysis [Chang, Kulshreshtha], for
added flexibility in model specification. For
example, application of the Box-Cox transfor-
mation (BCT) to both the dependent and
independent variables of a regression model
defines a general class of functional forms
which includes the linear and double-
logarithmic functions as special cases. This
feature of the BCT model allows the data
added flexibility in determining the degree of
nonlinearity in a relationship and provides a
unified structure for statistically distin-
guishing among alternative functional specifi-
cations. However, Box and Cox have also
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pointed out that transformation of the depen-
dent variable is a convenient device to ren-
der the density of an equation error term
more normal-like. Consequently, application
of the BCT to the dependent variable of an
equation affects the distributional properties
of the residual errors as well as the functional
form of the relationship.

Most empirical applications have ignored
the influence of the BCT on the structure of
the error term. In particular, the relationship
between the BCT and heteroskedasticity of
the error variance is neglected. This is de-
spite Zarembka's [1974] contention that the
estimation process will bias the BCT parame-
ter on the dependent variable to compensate
for any heteroskedasticity. Thus, for any
particular application, it is important to as-
certain the robustness of the BCT parameters
to heteroskedasticity to achieve unbiased
parameter estimates and for proper statistical
testing.

In light of the foregoing, the objective of
this paper is twofold. The first is to investi-
gate the impact of heteroskedasticity on the
estimated values of the BCT parameters and
on the conclusions of subsequent hypothesis
tests. The second objective is to analyze the
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analytical form of heteroskedasticity as it
pertains to BCT models.

To examine the question of potential bias,
a method proposed by Gaudry and Dagenais
is employed. This technique simultaneously
estimates the BCT parameters and the analy-
tical form of heteroskedasticity. In addition,
this procedure allows separate statistical test-
ing to be performed on the nonstochastic and
stochastic parts of the model. Zarembka's
procedure [1974] for obtaining "approximate-
ly consistent" estimates of the BCT parame-
ters under heteroskedasticity is also ex-
amined. These methods are compared to the
traditionally estimated BCT model which
postulates a homoskedastic error variance.

The above methods are employed to esti-
mate models, using cross-section data, which
express per capita expenditure on a commod-
ity as a function of per capita income. The
typical Engel relationship was chosen for its
simplicity and widespread use. The various
methods are compared and analyzed to de-
lineate the role proper heteroskedastic
specification of the error variance plays in the
estimation of BCT parameters and in hy-
pothesis testing.

Basic Models

The Box-Cox transformation for any posi-
tive non-Boolean variable W is defined as

(XAw) w
(1) W = (W - 1)/kw, X = 0

= ln(W) X =

with the corresponding inverse function

(Xy) K (Xxk)
(3) Y = 2 PkXki + ui,i = 1,...,Q

k=l

where

(4) ui~N(O,r2), for the traditional model

and,

(5) ui = [f(Zi,...,ZMi)] /2Vi

for the heteroskedastic case. The variables
ZM explain heteroskedasticity and may be
different from the explanatory variables Xk.
In addition, using matrix notation and assum-
ing Z and v to be independent yields

(6) E(v) = 0 and E(vv') = P 21

where 0 represents the null vector, I is a (Q
by Q) identity matrix, E denotes the expecta-
tion operator, and T is a constant. Also, in
matrix notation

(7) E(u) = 0 and E(uu')= i

where u is the (Q by 1) vector of ui elements
and fl is a (Q by Q) matrix. A representative
diagonal element of ft will be denoted by

(8) )ii = T2 f(Zli,... ,ZMi).

All off-diagonal elements of f are zero.
Following Gaudry and Dagenais, it is

assumed that in equation (8) any given
diagonal element of fl can be expressed as

M (Xam) 1/Xv

(9) Wii = p2 {Xv[8 0 + 8 ZZmi ]+ 1}
m=l

(Xw)
(2)W=[X\W +1]

1/Xw

(Xw)
= exp(W )

where wX is a parameter to be
The Box-Cox model written

notation for each observation is

, kw : 0 in which a Box-Cox transformation (ham) has
been applied to the Zm variables and an
inverse transformation (Xv) is applied to the

, w = 0 expression in squared parenthesis. The con-
stant 80 is necessary to preserve the in-

estimated. variance of the transformation parameters to
in the usual the units of measurement of Z

3i ~ [Schlesselmann].
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Several interesting specifications of the
analytic form of the heteroskedasticity are
possible by first setting Xv equal to zero.
Other values of X, are permissible but they
can produce negative elements in fl.

By setting Xv = 0 in equation (9) and using
the definition of the inverse transformation
given in equation (2) yields

M (xam)
(10) oii = T 2 exp(8o+ amZmi )

m=l

M (xam)

a 2[exp( mZmi )]
m=l

where oc2 = Tt2exp(8o). Equation (10) reduces
to the multivariate model

(11)
M 8m

) ii 
2 HI Zmi

m=l

when each Xam = 0. It reduces to the classical
multivariable form

(12)
M 2

oii = 0o2 H Zmi
m=l

when each 8m is set equal to 2 and each Xam is
set equal to zero. The homoskedastic case is
obtained from equation (10) by setting each
8m equal to zero. Furthermore, Park's
specification is derived by setting all 8m but
one equal to zero in equation (10) and by
setting the \am of the remaining variable
equal to zero. Hence, a number of traditional
specifications are obtainable depending on
the values of 'am and 8m.

The likelihood function corresponding to
the traditional Box-Cox model (i.e. ex-
pressions (3) and (4)) is

Q
(13) L= n [1/(2rr 2)1/2]

i=l

(xy) K (Xxk)
exp - (1/2u 2 )(Yi. - k Pkki )2 }IJI

k=l

where IJI denotes the Jacobian of the trans-
(Xy)

formation from Yi to the observed Yi

(0y) Q by-1
(14) IJI = Idet(aX /aYi)l = n Y,

i=l

Likewise, the likelihood function corre-
sponding to the heteroskedastic case (i.e.
expressions (3), (7), and (10)) is

Q Xy-1 1/2
(15) L= n [Yi /(2iT' 2)

i=l

(Xam)
exp{ E BmZmi }]

m

(Xy) (Xxk)
exp[- (Y - EPkXki )2 /2a 2

k

(Xam)

exp{ SmZmi }]
m

from which estimates of 8m, Xam, Pk, Xxk, Xy,
and c2 can be obtained.

Zarembka's [1974] procedure for obtaining
"approximately consistent" estimates of the
transformation parameters under heteros-
kedasticity involves finding those values of
the parameters (Xy and Xxk) such that the
following equation holds

a LL (1 - y, - h)(Q)[var(lnY)]
(16) -

ahy [1/2 + (1-y- h)2 var(lnY)]

where dLL/dAy is the first derivative of the
log of the likelihood function (equation 13)
with respect to Xy and h is chosen a priori to
reflect the nature of the heteroskedasticity.

The crucial role that error specification
brings to bear on the estimates of the
parameters is indicated by the following. If h
is set equal to one, relation (16) implies that
the transformation parameters will be es-
timated under the assumption the variance of
Yi increases with the square of its expected
value. If the values of Xy and Xxk obtained by
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maximizing equation (13) are significantly
different from those values derived from
relation (16), given h is equal to one, the
estimates from (13) are not reflecting non-
linearities but rather Ky is being biased in the
estimation process to compensate for
heteroskedasticity. On the other hand, if the
values of Ky are essentially equal for the two
procedures then either heteroskedasticity is
unimportant and Ky is reflecting non-
linearities or the estimated value of Xy while
now reflecting nonlinearities is also the value
of Ky which stabilizes the error variance.

Three points should be clarified at this
time. First, Zarembka's procedure requires a
priori specification of the analytic form of the
heteroskedasticity and, therefore, is a restric-
tive method. Secondly, a consistent estimate
of Ky is a sufficient condition for consistent
estimation of the other parameters and third-
ly, since Zarembka's method provides only
"approximately consistent" estimates the use
of likelihood ratio tests is not valid.

Empirical Results

The above methods, represented by equa-
tions (13), (15), and (16), are applied to a
model which postulates that per capita ex-
penditure on a commodity is a function of per
capita income. Separate analyses are per-
formed for poultry, pork, and eggs. The data
base used is a random sample of 100 house-
holds drawn from the urban section of the
Northeast region contained in the USDA
Household Food Consumption Survey of
1965. The sample was uniformly selected to
be mean and standard deviation preserving.

The traditional BCT model (equation 13)
will assume there is one explanatory variable
(income), an error term with a constant
variance, and that the same transformation
parameter is applied to both the dependent
and independent variables, i.e.,

(Ky) (Xxk)
(17) Yi = PkXki + ui

k

(Xy)
+ P3Xi + u, ui, (0,oT2)
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where ac is a constant.
The heteroskedastic model assumes:

(KY) (Kxk)
(18) Y ) = mkXk +Yj Y-yi .PkXki +Ui

k

(Xy)
= a+X1 ii +Ui, Ui - N(0, f)

where a typical diagonal
given by

element of If is

(Kam) (ka)
0ii = ar2[exp(8mZmi )] = r2 [exp(X ii)]

m

and all off-diagonal elements of fI are zero. In
other words, the same BCT parameter is
applied to both dependent and independent
variables and the variable which explains
heteroskedasticity (Zm) will be income (X).

The Zarembka procedure is predicated on
the assumption that h is equal to one in
equation (16).

The regression equations given in models
(17) and (18) are Box-Cox representations of
typical Engel curves. Other variables, e.g.
race, could be included in the model but for
the purpose of this paper the specifications
are kept as simple as possible. The depen-
dent and independent variables are subject
to the same transformation parameter to
simplify estimation and permit the use of
simple t-ratios. The assumption that KX is
equal to zero in the heteroskedastic model is
not very restrictive as the analytic form of the
heteroskedasticity is still quite general.
While, the above assumptions do not affect
the objectives of this analysis, the estimated
elasticities should be interpreted with these
assumptions in mind.

The Fletcher-Powell algorithm is used for
the maximization of the log-likelihood func-
tions, concentrated on a2 and P, correspond-
ing to equations (13) and (15). The Newton-
Raphson routine [Henrici] was used to find
the value of Ky for which equation (16)
obtains. Consistent estimates of the asymp-
totic standard errors of the parameters were
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obtained from the negative of the inverse
matrix of second partial derivatives of the
appropriate likelihood function. Asymptotic
tests can then be performed via the asymp-
totic normality of the parameters or by
conventional likelihood ratio methods.

Estimation of the heteroskedastic BCT
model is accomplished in the following man-
ner. First, a starting value of Xy for use in
estimating the homoskedastic BCT model is
found by employing a search routine over the
parameter interval (7, -7). The maximum
likelihood value of Xy, estimated from the
homoskedastic model, was used as a starting
value for the heteroskedastic model with 8
started at zero (to begin with the homoske-
dastic specification). Convergence of the
likelihood functions was accomplished within
15-20 iterations. Other starting values for Xy
and 8 were tried with the algorithm always
converging to the same parameter estimates.
Both expenditures and income were divided
by 1,000 to eliminate the possibility of num-
erical problems in the estimation process.

The parameter estimates for the traditional
homoskedastic model (equation 17), Zaremb-
ka's procedure (equation 16), and the
heteroskedastic model (equation 18) are pre-
sented in Table 1.

The asymptotic standard error for the
transformation parameter (Xy) in the eggs
model, as estimated from the traditional
specification, indicates that Xy is not different
from zero at the 0.05 level of significance.
Zarembka [1974] indicates that the BCT
parameter on the dependent is biased toward
zero if the error variance increases with the
expected value of the dependent variable.
Thus in the egg model an indication is given
that heteroskedasticity could be exercising
influence in the estimation of Xy.

The standard approach has been to ignore
this potential problem and instead indicate
that a double-logarithmic function appears to
be the best fitting of the "classical" functional
forms. That the double-log function fits the
data best under heteroskedasticity is not
surprising as it is well-known that logarithmi-
cally transforming the dependent variable of

a model will compensate for heteroskedastic-
ity when the error variance is proportional to
the square of the expected value of the
dependent variable.

The transformation parameters associated
with the poultry and pork models appear to
be significantly different from both zero and
one. In summary, using the traditional
method for estimating the BCT model would
lead to the acceptance of the double-log
functional form for eggs. Both the linear and
double-log specifications are rejected for
poultry and pork.

Zarembka's method, conditioned on the
assumption that h is equal to one in equation
(16), shows a major difference in the mag-
nitude of the transformation parameters for
the poultry and egg models vis-a-vis the
traditional estimates. Although t-tests indi-
cate that Xy is significantly different from zero
for poultry in the traditional model the
parameter does not appear to be robust to
heteroskedasticity, i.e. the unstable error
variance is adversely influencing the estima-
tion of Xy, Heteroskedasticity has also in-
fluenced the estimated value of the BCT
parameter in the egg model. Oh the other
hand, the transformation parameter as-
sociated with the pork equation does appear
to be robust under the nature of the hetero-
skedasticity as outlined above. The BCT
parameters associated with the three com-
modities are significantly different from both
zero and one. Hence, the linear and double-
log functions are rejected for the three com-
modities. This is in contrast to the homoske-
dastic BCT model which accepted the dou-
ble-log form for eggs.

The generalized method, where the analy-
tical form of the heteroskedasticity and the
BCT parameters are estimated simultaneous-
ly, produces results that are substantially
different from those obtained using the tradi-
tional and Zarembka methods, except for
pork. For example in the case of eggs, Xy
ranged from -0.0241 using the traditional
estimation process to -0.1148 with the
Zarembka procedure to -0.2443 using the
heteroskedastic specification. The asymptotic
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TABLE 1. Estimated Parameter Values

Poultry
Method Xa LL

Ota __ y 8 ~a 8E1 _ LL2

Traditional 0.6785 0.3207 0.0043 0.0 - 0.3214 216.83
(0.0946) 3 (0.0020)

Zarembka's 0.6661 0.3087 0.1407 - - 0.3318 209.414
(0.0872) (0.0530)

Heteroskedastic 0.6541 0.3097 0.1987 0.1374 0.9656 0.3429 229.88
(0.1001) (0.0826) (0.0584) (0.2963)

Pork
Method

Oa Xs y 8 ha E LL

Traditional 0.6948 0.2375 0.1818 0.0 - 0.2735 294.57
(0.0595) (0.0353)

Zarembka's 0.6908 0.2327 0.1919 - 0.2701 293.24
(0.0628) (0.0444)

Heteroskedastic 0.6775 0.2446 0.1924 0.0027 0.0026 0.2841 295.08
(0.0695) (0.0656) (0.0131) (0.0010)

Eggs
Method

oa X .y hXa E LL

Traditional 0.8524 0.1816 -0.0241 0.0 - 0.1739 324.65
(0.0454) (0.0290)

Zarembka's 0.9512 0.2224 -0.1148 - - 0.1810 318.79
(0.0702) (0.0415)

Heteroskedastic 1.1085 0.3004 -0.2443 0.4378 0.0942 0.1938 341.40
(0.0538) (0.0975) (0.2182) (0.3603)

1Refers to the expenditure elasticity evaluated
2Value of the Log-likelihood function.
3Estimated standard error.

at the sample means.

4Value of the log-likelihood function declines using the Zarembka method because of the restricted assumption
concerning the form of the heteroskedasticity.

standard errors associated with the BCT
parameters for all three commodities indicate
rejection of the linear and double-log hypoth-
eses. This is in agreement with the results
obtained from the Zarembka method but
different from the result for eggs in the
traditional BCT model.

The analytic form of the heteroskedasticity
conformed to Park's specification in the egg
model as the value of \a is not significantly
different from zero and the value of 8 is
significantly different from zero. The form of
the heteroskedasticity did not conform to any
of the traditional specifications in the poultry
model. The pork model is homoskedastic as 8
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is not significantly different from zero. The
importance of proper heteroskedastic specifi-
cation is illustrated by the change in the BCT
parameters for the poultry and egg models
going from Zarembka's restrictive assump-
tion on the error variance to the general
method.

The values of the log-likelihood functions
for the heteroskedastic egg and poultry mod-
els are a significant improvement over the
values of the log-likelihoods obtained from
the traditional method. Likelihood ratio tests
can be used to compare the heteroskedastic
and traditional BCT models as the traditional
model is a special case of the general model
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when 8 is restricted to zero. The values of the
log-likelihood functions for pork were virtual-
ly identical. This is expected as the pork
model was shown to be homoskedastic.
Zarembka's procedure actually produced a
decline in the values of the log-likelihood
functions vis-a-vis the traditional method.
This is also expected as the Zarembka
method uses a very restricted analytic form of
heteroskedasticity.

The elasticities estimated from the various
procedures are almost identical. Hence, for
policy considerations the traditional model
may suffice due to the small change in
elasticities when evaluated at the sample
means. But, for structural issues, hypothesis
testing, and for elasticities evaluated at
points other than the means, one must
correct for heteroskedasticity to achieve reli-
able results.

Conclusions

This note has attempted to demonstrate
that the proper specification of both the
nature of the error term and the analytical
form of heteroskedasticity is of critical impor-
tance for the correct estimation and, hence,
interpretation of results generated from BCT
models. Whether the data base is of a cross-
sectional or time series nature the problem of
heteroskedasticity must be broached.

Empirical analyses which utilize the trans-
formation of variables technique should be
regarded with skepticism unless homoske-
dasticity of the error variance is established
through procedures as outlined in this paper.

In conclusion, it appears that while the
BCT is a powerful device for selecting among
alternative functional forms and as a tech-
nique to introduce flexibility into a model
specification, its random application without
regard to heteroskedasticity renders ineffec-
tual conclusions.
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