Migration and Employment Change: Some New Evidence and New Considerations

Joe B. Stevens and Linda P. Owen

As an explanation of regional economic growth, do "people follow jobs" or do "jobs follow people"? The current wisdom in the regional economics literature is that migration and employment change are jointly determined, but that the "jobs follow people" effect is the stronger of the two. Our evidence for selected counties in the Pacific Northwest from 1965 to 1970 does not support that argument. The problem may become increasingly difficult to model if the desire for non-market goods, rather than income gain, continues to evolve as a major reason for migration.

The desirability of economic expansion has been hotly debated in recent years, especially in environmentally-attractive communities in the West. On one hand, some people claim that new industry will attract far too many new residents. Others claim that these people will move in anyway, so they might as well be provided with a job. Elements of positive economics are obviously at issue, the central one being the relationship between migration and local employment change. That is, do people follow jobs or do jobs follow people? Our purpose here is to offer some new empirical evidence on this topic, evidence that is contrary to what appears to be evolving as received wisdom. At the same time, we point out that much existing empirical work is suspect because of data problems and because the role of expectations has not been considered. Finally, we suggest that the nature of research on this issue will need to be different in the future.

Past Research

The evolution of the relevant literature can be rather succinctly summarized. The first stage of conventional wisdom, that people follow jobs, evolved directly from economic base theory. Changes in export demand have been seen by Lowry and Blanco, for example, to cause wage changes and thus influence migration. In 1964, however, Borts and Stein developed the jobs follow people position by emphasizing shifts in labor supply via migration as the critical causal factor in regional economic growth.

Subsequent to the Borts and Stein work, several attempts have been made to estimate systems of simultaneous equations which treat both migration and employment change (among other factors) as endogenously determined. In a frequently cited work, Muth argued that both product and labor demand functions can often be viewed as perfectly elastic, at least as faced by a city or small region:

"... At first glance it would seem quite unlikely that a city's labor demand schedule would be perfectly elastic. Borts and Stein, though, have provided a convincing rationale for such a demand schedule.

Assume that a city has firms producing and selling products for a national or even world-
wide market. Also, let the fraction of the output coming into this market which is produced by the firms in the city in question be so small that the demand schedule for their products has an arbitrarily high elasticity. Finally, let the prices paid by these firms for all other productive inputs — call these capital — be fixed for analogous reasons and let the production functions of these firms be homogeneous of degree one. Then the capital/labor ratio for these export firms is uniquely determined by the ratio of the delivered price of capital services to the f.o.b. price of output, both of which are fixed exogenously to the city. The capital/labor ratio, in turn, determines the ratio of the wage paid labor by these export firms to their f.o.b. price of output, and, the latter being given, the wage rate itself" (p. 296).

Muth's empirical conclusions, for selected large SMSA's over the 1950-60 period, were that:

"... in-migration appears to induce an increase in employment almost proportionate to its expected increase in the city's labor force. Just as clearly, employment growth tends to induce in-migration, though the latter effect is quantitatively smaller" (p. 295).

This conclusion is, of course, consistent with a perfectly elastic demand for labor in those SMSA's. To again cite Muth:

"Indeed, one of the strongest bits of evidence for the Borts-Stein hypothesis is that, despite relatively large differential migration regionally, regional wage differentials have shown remarkably little change over time" (p. 297).

Further empirical support for simultaneity has come from Greenwood (1973, 1975) and Olvey, although neither went as far as Muth in arguing for perfectly elastic demand curves or for the empirical dominance of migration as a determinant of regional growth.

Despite Mazek and Chang's rather harsh criticism of the Muth article on both theoretical and empirical grounds, the latter appears to be emerging as the standard work on this topic [Edwards and Hansen]. Moreover, a subsequent article by Steinnes offered a statistical test for causality which further argued the dominance of migration, rather than export demand, as the critical factor in regional growth.

Thus, a simple answer to the "chicken and egg" question seems to be evolving, i.e., that new in-migrants can and will be absorbed by the local economy. This clearly runs counter to the export-base orientation of most readers of this Journal. Several factors (other than predisposition) would seem to augur against acceptance of the existing work. For one, only limited attention has been given the topic, and then mostly during the 1960's and early 1970's. Second, as pointed out by Steinnes, static models (even those which recognize simultaneity) of dynamic processes are often inadequate. Although the need for a time-related or recursive model is usually recognized, the lack of yearly data on key variables, especially gross and/or net migration, forces the use of cross-sectional data with variables usually defined as changes over a five or ten-year interval. Third, most of the models (including Muth's) have been inadequately specified with respect to the role of exogenous changes in export demand, a task made difficult by the use of SMSA's as units of observation.

In short, inadequate data have generally been used to fit a few incompletely specified models. We are not arguing that our results are more powerful than past research. We do contend, on the other hand, that since our results are contrary to received wisdom, the latter needs to be reexamined.

Model and Statistical Analysis

In general, our analysis incorporates the best features of existing simultaneous models and suffers from the same data constraints, but it does attempt to improve on model specification [Owen]. The primary initial modification, done to more adequately specify the role of export demand and thus reduce specification bias, was the selection of a set of counties which rely on one key source of export demand, the wood products indus-
try.1 Thirty-seven counties in Western Oregon and Western Washington were ranked in terms of timber dependence.2 From this group, the seventeen most dependent were selected for the initial analysis, reflecting a compromise between sample size considerations, on one hand, and degree of single-industry dependence and ability to specify an export demand variable, on the other hand.3 Following this, an analysis was made of all thirty-seven counties, replacing the timber export variable with a zero-one proxy variable for SMSA/non-SMSA counties. This obviously sacrificed some degree of robustness in model specification, since a zero-one variable does not identify sources of export growth. The expanded analysis does, however, allow a broader range of economic circumstances to be considered.

The model itself consists of five equations with five endogenous variables — in-migration (RIM), out-migration (ROM), employment change (DEMP), wage change (DWAG) and change in the unemployment rate (DUNR).4 Primary reliance was placed on data from the Census of Population and from Employment Divisions in the two states. The time period was 1965-1970, with variables defined either as ratios (1970 ÷ 1965) or as base year (1965) levels. Two-stage least squares was used to estimate the coefficients since all equations were over-identified. Linear estimation was made after conversion to natural logarithms; the regression coefficients can thus be interpreted as elasticities.

The five equations follow: endogenous variables are to the left of the double slash, lagged endogenous and exogenous variables are to the right. In the analysis of the thirty-seven counties, the (zero-one) SMSA proxy replaces DLOGS as an exogenous variable. (Table 1 contains variable definitions and data sources.)

\begin{align}
(1) \quad & RIM = f_1(\text{DEMP, DWAG, DUNR/EMP, WAG, UNR}) \\
(2) \quad & ROM = f_2(\text{DEMP, DWAG, DUNR/EMP, WAG, UNR, AGE, EDU}) \\
(3) \quad & DEMP = f_3(\text{RIM, ROM, DUNR/EMP, DEDU, NATINC, DLOGS, DINT}) \\
(4) \quad & DWAG = f_4(\text{RIM, ROM, WAG, DEDU, NATINC, DLOGS, DINT}) \\
(5) \quad & DUNR = f_5(\text{RIM, ROM, DEMP //DEDU, NATINC, DLOGS, DINT})
\end{align}

As to expectations of the model, local wage (DWAG), employment (DEMP), and unemployment (DUNR) levels were postulated to be partially determined by exogenous forces, especially timber harvest (DLOGS) or the zero-one (SMSA) variable, and also by changes in local educational levels (DEDU), natural increase in the population (NATINC), and by inter-governmental trans-

1Due to lack of superior alternatives, data on log harvest (public and private) were used as a proxy for export demand.

2Timber dependence was defined as wood products employment (SIC's 2411, 242, and 2432) as a percent of the total basic employment, which was defined as SIC's 1, 7-10, 12-14, 19-39, 42, 44, 55, 58, 70, 91, and 92. This list includes manufacturing, mining, some transportation, state and federal government, lodging, and selected retail services. For further detail, see Owen.

3The degree of dependence on timber for these seventeen counties ranged from 38 to 80 percent, with a median dependence of 51 percent. Input-output models for six Oregon counties were used to compare this measure of timber dependence with a more rigorous measure, i.e., wood product exports as a percent of all exports from the county. The mean difference between the two measures was 10.4 percent; the difference was less than 3 percent for the two most timber-dependent counties. For the two least timber-dependent counties, our measure substantially understated the role of wood products as revealed by input-output models.

4Both migration variables were defined in relative terms (i.e., migration totals were divided by total covered employment) in order to reduce multicollinearity.
TABLE 1. Definition of Variables and Data Sources.

<table>
<thead>
<tr>
<th>Endogenous</th>
<th>Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM = out-migration, 1965 to 1970, divided by covered employment, 1965 (see RIM).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMP = change in total covered employment, April, 1965 to April, 1970 (State Employment Division).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWAG = change in average (deflated) wage, 1965 to 1970, computed as covered second quarter payrolls divided by covered (April) employment (see DEMP).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUNR = change in covered unemployment rate, April, 1965 to April, 1970 (see DEMP).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagged Endogenous (1965 values)</th>
<th>Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP = total covered employment (see DEMP).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAG = average (deflated) wage (see DWAG).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNR = unemployment rate (see DUNR).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDU = median education (see AGE).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exogenous</th>
<th>Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDU = change in median education, 1965 to 1970.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATINC = natural increase in population, births in excess of deaths, 1965 to 1970 (Census and state data).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLOGS = change in public and private log harvest, 1965 to 1970, as adjusted for cross-hauling of logs between counties prior to processing (U.S. Forest Service data).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DINT = change in (deflated) inter-governmental revenues to local governments (cities, counties, school districts) from higher levels of government, 1965 to 1970 (Census of Governments, 1962 and 1967).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMSA = in standard metropolitan statistical area (yes = 1, no = 0).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All of the above (except NATINC) would cause rightward shifts in the demand for labor, driving wages and employment up and lowering unemployment rates. These same endogenous variables (DWAG, DEMP, DUNR), however, should also be responsive to in- and out-migration (RIM, ROM) over the 1965-1970 period. That is, increased in-migration should lower wage rates (unless the demand for labor were perfectly elastic), increase employment, and/or decrease unemployment rates. In- and out-migration, in turn, were expected to be responsive to changes in local wages (DWAG), employment levels (DEMP), and unemployment rates (DUNR) as well as to a variety of lagged endogenous variables or base year conditions. In-migration between 1965 and 1970, for example, should have been positively related to 1965 wage levels and negatively related to 1965 unemployment levels.

Results

As shown in Table 2, the results for the seventeen timber-dependent counties clearly support the notion that employment change and in-migration are mutually determined. Moreover, the elasticity of (relative) in-migration with respect to a one percent change in employment (1.62) is considerably greater than the elasticity of employment change with respect to in-migration (.24). In these counties, it appears that the “people follow jobs” effect is much stronger than the “jobs follow people” effect. When the analysis is extended to the thirty-seven counties in the region, including SMSA's (Table 3), this differential persists and in fact becomes more limited.

\(^5\)Two of these variables, DEDU and DINT, could be regarded as endogenous since (1) local educational expenditures may depend on local economic growth, and (2) inter-governmental revenues may depend on local population growth and economic growth. Pragmatically, however, these are less centrally endogenous than the other five, especially when degrees of freedom are limited.
TABLE 2. Two-stage Least Squares: Timber-dependent Counties (n = 17).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Endogenous</th>
<th>Lagged Endogenous</th>
<th>Exogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIM</td>
<td>ROM</td>
<td>DEMP</td>
</tr>
<tr>
<td>RIM</td>
<td></td>
<td></td>
<td>1.619</td>
</tr>
<tr>
<td>(0.891)</td>
<td>(.799)</td>
<td>(-.914)</td>
<td>(.232)</td>
</tr>
<tr>
<td>(0.983)</td>
<td>(1.108)</td>
<td>(6.309)</td>
<td>(1.262)</td>
</tr>
<tr>
<td>DEMP</td>
<td>.243</td>
<td>.177</td>
<td>.029</td>
</tr>
<tr>
<td>(0.660)</td>
<td>(.111)</td>
<td>(.136)</td>
<td>(.042)</td>
</tr>
<tr>
<td>DWAG</td>
<td>.034</td>
<td>.142</td>
<td>-.192</td>
</tr>
<tr>
<td>(0.369)</td>
<td>(.098)</td>
<td>(.090)</td>
<td>(2.29)</td>
</tr>
<tr>
<td>DUNR</td>
<td>.001</td>
<td>-.351</td>
<td>.807</td>
</tr>
<tr>
<td>(0.905)</td>
<td>(.093)</td>
<td>(.076)</td>
<td>(.222)</td>
</tr>
</tbody>
</table>

*Standard errors are in parentheses. Variables are defined in Table 1. Adjusted R² values are in left column.

TABLE 3. Two-stage Least Squares: Western Oregon and Washington (n = 37).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Endogenous</th>
<th>Lagged Endogenous</th>
<th>Exogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIM</td>
<td>ROM</td>
<td>DEMP</td>
</tr>
<tr>
<td>RIM</td>
<td></td>
<td></td>
<td>2.283</td>
</tr>
<tr>
<td>(0.952)</td>
<td>(.223)</td>
<td>(.409)</td>
<td>(.168)</td>
</tr>
<tr>
<td>ROM</td>
<td></td>
<td></td>
<td>2.248</td>
</tr>
<tr>
<td>(0.988)</td>
<td>(.120)</td>
<td>(.745)</td>
<td>(.064)</td>
</tr>
<tr>
<td>DEMP</td>
<td>-.081</td>
<td>.125</td>
<td>.089</td>
</tr>
<tr>
<td>(0.784)</td>
<td>(.092)</td>
<td>(.102)</td>
<td>(.020)</td>
</tr>
<tr>
<td>DWAG</td>
<td>-.172</td>
<td>.170</td>
<td></td>
</tr>
<tr>
<td>(0.408)</td>
<td>(.075)</td>
<td>(.060)</td>
<td>(.106)</td>
</tr>
<tr>
<td>DUNR</td>
<td>.053</td>
<td>-.175</td>
<td>.132</td>
</tr>
<tr>
<td>(0.702)</td>
<td>(.123)</td>
<td>(.139)</td>
<td>(.190)</td>
</tr>
</tbody>
</table>

*Standard errors are in parentheses. Variables are defined in Table 1. Adjusted R² values are in left column.
pronounced. There, the elasticity of in-
migration with respect to employment
change is 2.28 while the reverse relationship
is not significantly different from zero.

The case would be stronger, of course, if
all coefficients in the ten equations were
significant with expected sign. Flaws do ex-
ist; the out-migration equations, for example,
have nearly singular matrices and no conclu-
sions should be drawn. Sprinkled throughout
are apparent “wrong” signs, as for example,
the inhibiting effects on in-migration of high
base period wages and rising wage levels.
Other apparent “wrong” signs are perhaps
explainable; natural increase in population
can also shift the demand for (as well as the
supply of) labor, for example, to serve the
needs of a more youthful age structure.

Nevertheless, a majority of those coeffi-
cients which have magnitudes in excess of
their standard errors do have the expected
sign; thus, an argument can be made for the
plausibility of the overall model. Indeed, a
number of expected relationships can be ob-
served. Wages in the thirty-seven counties
fell with increased in-migration and rose with
increased educational levels, out-migration
and SMSA-status. Unemployment rates in
the seventeen timber-dependent counties
decreased with out-migration, with increased
intergovernmental transfers, and with in-
creased educational levels. In these same
counties, in-migration varied inversely with
unemployment rates, both base period and
over the 1965-1970 interval, as well as rising
with local employment growth. The sets of
equations, then, seem to have sufficient ex-
planatory power to allow conclusions to be
drawn about the particular inter-
relationships of interests, i.e., employment
change and in-migration, especially given the
significance of the latter coefficients.

Despite our attempt to specify an impor-
tant source of export demand for the timber-
dependent counties, the DLOGS variable
was only weakly related to local employment
change. A variety of explanations can be of-
fered. One is poor quality data, especially
with respect to cross-hauling of logs (i.e.,
harvested in one county, processed in
another). A second is that substantial time
lags can occur between logging (our data) and
processing (which generates more jobs than
does logging). Third and perhaps more in-
suctive to future efforts, is the possibility
that non-timber sources of employment were
more important than we thought them to be
and should have been measured.

Conclusions

Above, we found that the effect of employ-
gment growth on in-migration between 1965
and 1970 was substantially greater than the
reverse effect in a set of counties including
but not limited to timber-dependent coun-
ties in Western Oregon and Western
Washington. These results, rather than being
definitive, may serve primarily to cast further
doubt on the argument that the “jobs follow
people” effect is dominant in regional
economic growth.

In reality, our results and others may be
missing the mark because of data constraints
and the use of static models to portray time-
related processes. Pragmatically, a limit ex-
ists on the extent to which static economic
models can reveal the nature of the migra-
tion-employment change phenomenon. Nei-
ther the expectations of capital suppliers nor
those of labor suppliers are taken into ac-
count in existing analyses. These seem to be
powerful forces which must be considered.
Job-creation through investment may well
occur in the expectation that an appropriate
labor force will materialize. In-migration may
well be triggered by parallel expectations.
Much different data would be needed to
explore these possibilities.

In retrospect, continued efforts to resolve
the “chicken and egg” question may be less
important than gaining a better under-
standing of the role of non-market goods in
peoples’ decision to migrate. Indeed, there is
much evidence to indicate that the strength
of the traditional income incentive to migrate
weakened during the past decade (Brown
and Wardwell, Stevens). In the population
turnaround, first documented by Beale, non-
metro areas grew faster than metro areas even without a precipitating reduction in the wage differential between the two. One explanation is that more people have recently been migrating to seek non-market goods, even at the expense of considerably money income. Although the current recession has no doubt raised the “price” of these non-market goods above that which most in-migrants are willing to pay, suspension of the turnaround may well be temporary rather than permanent.

If the income incentive to migrate is in fact weakening in a long-run sense, one implication is that policies to create jobs for local people may help slow the flow of in-migrants who are often younger, better educated, and more skilled. Future research on effects of economic development policies should identify who gets the jobs as well as how many jobs are created. Similarly, policies of controlled growth may lead to a distribution of income which was neither foreseen by local decision makers nor subject to control because of freedom of population movement.

References

6In a random sample of in-migrants to non-metro southern Oregon in 1977, Stevens found that three-fourths of those households with heads in the labor market had sacrificed income in order to move. The mean sacrifice for this group was about $11,000 yearly. Self-reported income sacrifice (of unknown magnitude) was also reported by 50 percent of the households in Ploch’s statewide sample in Maine and by 49.7 percent of the households in Voss and Fuguit’s sample in high-growth counties in the Upper Great Lakes Region.

7Net in-migration to Oregon, for example, peaked at about 55,000 in 1977; net out-migration in 1982 appears to be about 8,000.
