

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# Managing Risk by Coordinating Investment, Marketing, and Production Strategies 

Dr. Don Johnson and Dr. Michael D. Boehlje


#### Abstract

This study of the farm firm integrates long run investment and financial decisions, and short-run production and marketing decisions into a single decision framework that includes both time and risk. The results suggest that the use of various strategies for managing market risks allow the entrepreneur to accept more risk in investing and producing; and that an integrated analysis of production, marketing and investment-financing alternatives is essential to make accurate recommendations about risk management strategies.


Risk management is receiving much more attention in the literature. Most studies focus on short-run production or marketing decisions; exceptions are studies of risk in farm growth models by Barry and Willman, Kaiser and Boehlje, Batterham, and Chen. This study adds long-run investment and financial decisions to broaden the scope of risk analysis. Specific problems analyzed are:

1. How big should the farm be? How much land, machinery, and feedlot should be added?
2. What should be produced? How much should a farmer diversify?
3 . How should production be marketed? Can diversified marketing allow riskier investment or production?

No model can fully simulate the complex decision set facing farmers. But incorporating investment, production, and marketing options in one model yields further insights as to interactions among these decisions when risk is present. Model

[^0]results show that considering a broader array of decision options allows more efficient risk management.

## Theoretical Development

Objectives of the study required a theoretical decision model that combined risk and long-term planning. Review of the literature led to using a multiperiod quadratic program. The objective function maximized the expected utility of net worth by minimizing net worth variances for different expected net worth values. Key theoretical considerations will be briefly reviewed.

## Risk

Risk refers to situations where several different outcomes are possible. Moreover, most definitions imply that a decision maker can assign probabilities to each possible outcome (Johnson). This study assumes farmers form personal probabilities (Friedman, Markowitz)-they act as if they know the actual probabilities. It is not important whether personal probabilities closely approximate actual values; what matters is that probabilities guide actions.

TABLE 1. Cattle Marketing Strategies. ${ }^{\text {a }}$

|  | Month <br> Hedge <br> Placed | Month <br> Hedge <br> Lifted |
| :---: | :--- | :--- |
| Production activities | February | July |
| February-July Feeder | February | June |
| Steers and | April | July |
| February-July Feeder | April | June |
| Heifers | August | January |
| August-January Feeder | August | December |
| Steers and | October | January |
| August-January Feeder | October | December |
| Heifers | October | July |
| October-July Feeder | October | June |
| Steer Calves | February | July |
|  | February | June |

${ }^{\text {a }}$ For the production activities, the first month notes when cattle are purchased; the second month when sold. Hedging is done with the contract whose maturity date is closest to the cash selling date, i.e., an August futures contract was used for February-June and February-July contracts. Hedges are always held for a time span less than or the same as the time span cattle are held.

Many decision criteria have been developed to evaluate risk (see Chen or Johnson for reviews); one that is widely used is maximizing expected utility (Luce and Raiffa). A decision maker assigns utility values to random events and selects the strategy with the highest expected utility (utility multiplied by probability and summed over all possible outcomes).

Empirical studies usually do not try to directly calculate expected utilities. Rather, expected utility problems are transformed into mean-variance or E-V analyses (Markowitz, Johnson). While such transformations are heavily criticized (Borch), E-V procedures are often used in agricultural studies based on assumptions of quadratic utility functions (at least over a range), normally distributed random events, or that mean-variance accurately approximates expected utility (Lin et al., Officer and Halter).

A study assumption is that expected utility can be approximated by using mean-variance analysis. This allowed using quadratic programming (QP) to solve numerical problems.

## Multiperiod Decision Making

Most investment studies use a multiperiod model to determine investment or disinvestment decisions (Boehlje and White). One problem with using this approach in risk models is that technical coefficients are fixed. For example, period to period transfers, say of cash, occur as if their expected values are realized. In reality, cash transfers would vary as crop yields or prices varied. Or the firm could go bankrupt during the first year.

Chance-constrained and recursive programming (Chien) are two possible alternatives. But both are cumbersome computationally and have other theoretical problems. ${ }^{1}$ A multiperiod QP seemed most acceptable, with the understanding that model solutions are only first approximations to long-range planning. This follows Modigliani and Cohen's approach in which the primary objective of multiperiod planning is to get the best first year plan.

## The Objective Function

Many multiperiod growth models maximize present values as an objective (Cocks and Carter). Alternatively, Lutz and Lutz suggest maximizing the return on owned capital to maximize ending capital. This model uses a net worth objective. More specifically, to incorporate risk, this model maximizes the expected utility of ending net worth. Net worth is measured at current market values to reflect the value of capital appreciation (Plaxico and Kletke), but possible tax liabilities arising from liquidation are ignored (Reid, Musser, and Martin). This approach recognizes that changes in asset value as well as annual income are both important economic outcomes of management decisions.

[^1]TABLE 2. Net Worth Contribution and Variability of Net Worth Contribution of Selected Activities.

|  |  |  | Standard <br> Deviation as <br> a Percent of <br> First Year <br> Net Worth |
| :--- | ---: | ---: | ---: |
| Activity | Expected Net Worth <br> Contribution |  | Variance |

## Model Details

The farms modeled were representative of those in northwestern Iowa, although not all possible events could be included. The QP code was solved entirely in computer memory, which severely limited the model's size. Consequently, some features initially considered were delet-ed-interest rate variability was excluded, only a four year horizon was used (adding a fifth year did not change the first year solution much), and some production activities (e.g., raising hogs or alfalfa) were not considered.

Firms studied were ongoing cash grain operations. ${ }^{2}$ Half the initially owned land was mortgage free; the other half was purchased 10 years earlier, so the mortgage was half paid. At that time, land cost only about one fourth of current market value.

[^2]Additionally, grain farmers have relatively low operating debt at the start of the planning period, February 1. So, the initial debt to asset ratio (based on market value of assets) was 8 percent. This seems unrealistically low, but was not unreasonable compared to actual farms being simulated. Moreover, a recent Census survey reports that more than 40 percent of U.S. farm operators had no debt at year-end 1979 (1979 Farm Finance Survey). The low ratio also allowed more flexibility to adjust credit to differing risk preferences.

The QP model resembles a LP model, except a variance-covariance matrix is added. A brief discussion of the structure follows; more detail is in Johnson.

## Resource Restrictions

Resource limits resemble those in most linear programming models. Structural equations specify initial land, machinery, labor, cash, and crop inventories. Asset restrictions have the most complex structure. Initial land and machinery holdings are model determined, depending on risk preference. A key study assumption was
TABLE 3. Abbreviated Covariance Matrix.

|  | Cash Grain Complex |  |  |  |  |  | Livestock Complex |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Buy Land | Buy <br> Machinery | Grow Corn | Grow Soybeans | Sell Corn | Sell Soybeans | Sell Feb. Steers |  | Sell August Heifers | Build Feedlot | Grow Silage |
| Cash Grain Complex |  |  |  |  |  |  |  |  |  |  |  |
| Buy Land | 3652.35 | . 81 | -135.95 | 39.90 | 9.47 | 17.82 | 391.92 | 221.68 | 140.25 | 486.57 | -131.09 |
| Buy Machinery | . 81 | . 0006 | -. 19 | -. 06 | . 006 | . 007 | . 50 | . 39 | . 16 | . 16 | -. 18 |
| Grow Corn | -135.95 | -. 19 | 317.31 | 182.86 | - 4.81 | -9.21 | 101.54 | 79.90 | 6.07 | -66.84 | 239.99 |
| Grow Soybeans | 39.90 | -. 06 | 182.86 | 116.05 | -2.50 | -5.17 | 93.12 | 70.92 | 23.22 | -23.19 | 136.43 |
| Sell Corn | 9.47 | . 006 | -4.81 | -2.50 | . 11 | . 20 | 1.32 | 1.18 | -. 14 | 2.06 | -3.81 |
| Sell Soybeans | 17.82 | . 007 | -9.21 | -5.17 | . 20 | . 42 | -3.63 | -2.72 | -1.67 | 4.33 | -6.69 |
| Livestock Complex |  |  |  |  |  |  |  |  |  |  |  |
| Sell February Steers | 391.92 | . 50 | 101.54 | 93.12 | 1.32 | -3.63 | 992.72 | 818.19 | 201.42 | 9.62 | -. 71 |
| Sell February Heifers | 221.68 | . 39 | 79.90 | 70.92 | 1.18 | -2.72 | 818.19 | 688.52 | 155.06 | -13.05 | -6.67 |
| Sell August Heifers | 140.25 | . 16 | 6.07 | 23.22 | -. 14 | -1.67 | 201.42 | 155.06 | 141.25 | 29.69 | - 12.72 |
| Build Feedlot | 486.57 | . 16 | -66.84 | -23.19 | 2.06 | 4.33 | 9.62 | -13.05 | 29.69 | 127.77 | -38.04 |
| Grow Silage | -131.09 | -. 18 | 239.99 | 136.43 | $-3.81$ | -6.69 | -. 71 | -6.67 | -12.72 | -38.04 | 196.28 |

[^3]

Figure 1. Efficiency Frontier for the Basic Model $\left(E F_{\mathrm{B}}\right)$ and the Marketing Model $\left(E F_{\mathrm{m}}\right)$.
that farmers with different risk preferences might start with different asset structures. The model also allows subsequent land, machinery, and feedlot investment.

Cash can be transferred forward; crops are sold or fed to cattle in the next year. Grown crops are not fed until the following year to limit model size. Debt equations limit total borrowing (short, intermediate, and long-term) to no more than 50 percent of a firm's equity in land, machinery, and feedlot facilities. Borrowing activities are specified to finance land, machinery, or feedlot facilities.

## Activities

Initial size activities determine the beginning machinery and farmland owned (and debt), with acreage ranging from zero to 320 acres. Activities for investment, fi-
nancing, production, marketing, input supply (including land rental), and accounting are specified in each period. Investment activities are used to purchase land, buy machinery, add feedlot space, and invest off-farm. Costs of capital purchases increase each year, reflecting historical cost increases during the 1966 to 1977 period.

Financial activities include short-term, intermediate-term, and long-term borrowing. Short term funds augment cash flow and can finance down payments on asset purchases. Intermediate-term credit finances 75 percent of farm machinery purchases and feedlot capacity costs. Repayment is completed in four years for machinery and seven years for feedlots. Long-term credit finances 80 percent of land purchase costs; repayment is completed in 20 years.

Crop production activities include corn,

TABLE 4. Four Year Investment Plan for the Basic Model.

|  | Solutions |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) |
| Terminal Net Worth (\$) | 502,684 | 1,244,741 | 1,278,718 | 1,332,641 |
| Initial Net Worth (\$) | 310,782 | 707,684 | 712,452 | 712,452 |
| Change in Net Worth (\$) | 191,902 | 537,057 | 566,266 | 620,189 |
| Net Worth Change Due to Price Appreciation (\$) | 172,951 | 426,455 | 442,554 | 497,350 |
| Percent Change Due to Price Appreciation (\%) | 90 | 79 | 78 | 80 |
| Standard Deviation of Terminal Net Worth (\$) | 9,960 | 24,559 | 25,370 | 27,183 |
| Standard Deviation as Percent of Net Worth Change (\%) | 5.2 | 4.6 | 4.5 | 4.4 |
| Land (Acres) |  |  |  |  |
| Initial Owned Land | 130 | 320 | 320 | 320 |
| Farm Size-Year 1 | 130 | 320 | 320 | 320 |
| Farm Size-Year 2 | 130 | 320 | 384 | 389 |
| Farm Size-Year 3 | 130 | 320 | 382 | 445 |
| Farm Size-Year 4 | 130 | 320 | 334 | 397 |
| Land Rented-Year 1 | 0 | 0 | 0 | 0 |
| Land Rented-Year 2 | 0 | 0 | 56 | 15 |
| Land Rented-Year 3 | 0 | 0 | 48 | 48 |
| Land Rented-Year 4 | 0 | 0 | 0 | 0 |
| Land Purchased-Year 1 | 0 | 0 | 0 | 0 |
| Land Purchased-Year 2 | 0 | 0 | 8 | 54 |
| Land Purchased-Year 3 | 0 | 0 | 5 | 23 |
| Land Purchased-Year 4 | 0 | 0 | 0 | 0 |
| Total Land Purchased | 0 | 0 | 13 | 77 |
| Feedlot Investment (head-capacity added) |  |  |  |  |
| Year 1 | 0 | 0 | 0 | 0 |
| Year 2 | 113 | 279 | 270 | 280 |
| Year 3 | 0 | 0 | 0 | 0 |
| Year 4 | 0 | 0 | 0 | 0 |
| Total Capacity Added | 113 | 279 | 270 | 280 |
| Debt Utilization (\$) |  |  |  |  |
| New Borrowings-Year 1 | 17,541 | 27,328 | 27,487 | 27,480 |
| New Borrowings-Year 2 | 43,635 | 156,480 | 164,744 | 291,808 |
| New Borrowings--Year 3 | 44,783 | 91,509 | 53,966 | 181,790 |
| New Borrowings-Year 4 | 23,856 | 53,708 | 50,953 | 117,998 |

corn silage and soybeans, with separate activities for corn and soybeans on rented land. Crop coefficients came from Northwest Iowa planning budgets (McGrann et al.). Yield and price variability are included in crop production activities.

Cattle feeding activities include yearling steers (purchased at 650 pounds and fed 150 days to 1150 pounds) and heifers (purchased at 550 pounds and fed ap-
proximately 150 days to 950 pounds); and steer calves (purchased at 450 pounds and fed 180 days to 1150 pounds) which are placed in October. Yearling steers and heifers are placed in February or August.

Initially, the model required sales of all crops or livestock on cash markets, but additional marketing activities were added later. For grains, these included storage with cash or hedged sales and hedging

TABLE 4. (Continued).

| Solutions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (5) | (6) | (7) | (8) | (9) | (10) |
| 1,370,873 | 1,414,035 | 1,458,269 | 1,480,966 | 1,491,127 | 1,496,999 |
| 712,452 | 712,452 | 712,452 | 712,452 | 712,452 | 712,453 |
| 658,421 | 701,583 | 745,817 | 768,514 | 778,674 | 784,546 |
| 524,024 | 540,329 | 576,475 | 572,767 | 544,427 | 518,787 |
| 80 | 77 | 77 | 75 | 70 | 66 |
| 28,870 | 31,854 | 36,221 | 40,181 | 43,428 | 50,470 |
| 4.4 | 4.5 | 4.9 | 5.2 | 5.6 | 6.4 |
| 320 | 320 | 320 | 320 | 320 | 320 |
| 320 | 562 | 589 | 628 | 730 | 729 |
| 521 | 539 | 541 | 580 | 682 | 681 |
| 474 | 491 | 493 | 532 | 634 | 633 |
| 426 | 443 | 445 | 484 | 586 | 585 |
| 0 | 237 | 190 | 225 | 341 | 341 |
| 124 | 133 | 96 | 136 | 252 | 277 |
| 48 | 48 | 48 | 88 | 204 | 229 |
| 0 | 0 | 0 | 40 | 156 | 181 |
| 0 | 5 | 78 | 83 | 68 | 68 |
| 77 | 81 | 47 | 41 | 42 | 17 |
| 29 | 37 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 106 | 123 | 125 | 124 | 110 | 85 |
| 34 | 83 | 137 | 164 | 167 | 168 |
| 235 | 235 | 203 | 209 | 206 | 347 |
| 23 | 0 | 0 | 58 | 186 | 287 |
| 0 | 0 | 0 | 0 | 0 | 11 |
| 292 | 318 | 340 | 431 | 559 | 813 |
| 39,964 | 67,159 | 175,897 | 310,506 | 310,560 | 310,573 |
| 363,660 | 351,643 | 319,597 | 314,332 | 313,583 | 313,787 |
| 214,734 | 233,304 | 158,857 | 207,847 | 323,619 | 374,060 |
| 150,175 | 161,405 | 169,013 | 229,808 | 312,995 | 479,432 |

growing crops. Cattle marketing strategies are identified in Table 1.

Net cash sale prices are extensions (for 1978-81) from 1966 through 1977 linear trends. So expected prices changed with time. For hedging strategies, the price was the cash selling price plus profits or losses on futures transactions (i.e., cash selling price plus futures selling price less futures buying price less commissions). Again trends were used to compute expected values. Similar procedures were used to obtain expected gross margins for cattle feeding activities.

Input purchasing activities are used to rent land and buy labor services and feed supplies (both stochastic activities). Finally, accounting activities provide for consumption and the payment of income taxes.

## Variance-Covariance Matrix

Personal probabilities (entered as variances and covariances in the model) for prices and yields were estimated using deviations from historical trends. This assumes farmers based probabilities on past

TABLE 5. The First Year Production Plan for the Basic Model.

|  | Solutions |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| Total Crop Acres | 132 | 300 | 300 | 300 | 300 | 527 | 553 | 588 | 684 | 684 |
| Total Cattle Fed | 0 | 0 | 0 | 0 | 34 | 166 | 274 | 329 | 335 | 336 |
| Crop Plantings (\% of Total Acres) |  |  |  |  |  |  |  |  |  |  |
| Corn Grain | 56 | 56 | 56 | 56 | 55 | 55 | 57 | 48 | 43 | 49 |
| Corn Silage ${ }^{\text {a }}$ | 14 | 14 | 14 | 14 | 14 | 10 | 9 | 8 | 7 | 8 |
| Soybeans | 30 | 30 | 30 | 30 | 31 | 35 | 34 | 44 | 50 | 43 |
| Cattle Programs (\% of Cattle Fed) |  |  |  |  |  |  |  |  |  |  |
| Yearling Steers-February ${ }^{\text {b }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 50 | 50 |
| Yearling Steers-August ${ }^{\text {b }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Yearling Heifers--February ${ }^{\text {b }}$ | 0 | 0 | 0 | 0 | 0 | 50 | 50 | 0 | 0 | 0 |
| Steer Calves-October ${ }^{\text {b }}$ | 0 | 0 | 0 | 0 | 100 | 50 | 50 | 50 | 50 | 50 |

${ }^{\text {a }}$ Corn silage is fed the following year; hence it shows up in solutions when no cattle are fed in the first period. Table 3 shows that feedlot capacity is added in the second year in all solutions.
${ }^{b}$ The month indicates the time of placement.
history-the same trends used to compute expected prices and yields. An autoregressive vector model (Johnson) was first used; this allowed variances to change over time just as prices did. But some variances exploded-that on growing corn increased from $\$ 27.65$ in the first year to $\$ 433.08$ in the second. And expected values were volatile.

While theoretically correct, the autoregressive vector model didn't seem practical. Farmers would not likely expect variances (and covariances) to increase dramatically over time. A simpler approach was to compute a covariance matrix based on historical deviations from trend. ${ }^{3}$ This covariance matrix was used in each planning year; that is, variances and covariances did not increase with time.

Using deviations from trend led to much smaller variances than calculating variances on the raw data. For example, the regression on Northwest Iowa land prices removed 99 percent of the original vari-

[^4]ability. In raw terms, land prices have such a high variance because they increased so fast. But, if decision makers knew land prices increased rapidly and expected that to continue, that source of variation should be removed. In reality, absolute variances are not particularly important; rather, relative comparisons are more critical.

The following random variables were included in the model: asset purchase prices (land, machinery, and feedlot), crop production (yield variabilities), and marketing activities (prices). A matrix of time series deviations for all variables was developed and matrix manipulation gave the variance-covariance matrix used in the QP.

Table 2 gives standard deviations as percents of first year expected values (the coefficient of variation); the higher the percent, the riskier the activity. While cattle feeding has large variances, its coefficients of variation are similar to those for selling crops. However, this ignores diversification possibilities arising from covariance relationships. Table 3 shows an abbreviated covariance matrix for key activities. Ways of diversifying to lower risk are hard to identify by inspection; however, some possibilities are suggested.

For example, land has a relatively low variance and a negative correlation with growing corn. In low risk solutions, one might expect emphasis on corn production, either for sale or feeding in the next period. Another observation is that building feedlots and feeding cattle are positively correlated. So cattle feeding is riskier than its variance alone would indicate.

In summary, each random activity had a net worth value in the objective function and variances and covariances for the appropriate periods. Each activity's solution level determined its contribution to the expected value and variance of ending net worth. Variances and covariances were calculated for all activities directly affecting net worth, except for the financial activities. The extreme interest rate movements since early 1980 suggest these should also be included in any future modeling.

## Empirical Results

The parametric quadratic program calculated risk efficient solutions for each basis change. Results are summarized below.

## The Basic Model

First, the basic model (with cash sales only) was solved to generate efficiency frontier $E F_{B}$ in Figure 1. This frontier is linear until point (2), since solutions differ only in initial machinery and landholdings. Consequently, expected net worth and its standard deviation increase proportionally.

As commonly assumed in risk studies, solutions higher on the frontier represent plans chosen by less risk averse decision makers. Solution (1) is the lowest risk; solution (10), the highest risk. In moving from solution (1) to solution (5), ending net worth increases 173 percent while standard deviation increases 190 percent; significant net worth gains are made with nearly proportionate risk increases. Be-

TABLE 6. Comparisons of Selected Marketing Strategies with Cash Selling Alternatives.

|  | Expected <br> Net Worth <br> Contribution | Variance |  |
| :--- | ---: | ---: | ---: |
| Corn (Bushel): |  |  |  |
| Sell Cash at Harvest | $\$ 1.29$ | $\$$ | .11 |
| June-March Hedge | 1.11 | .04 |  |
| August-June | 1.35 | .13 |  |
| Soybeans (bushel): |  |  |  |
| $\quad$ Sell Cash at Harvest | 3.20 | .42 |  |
| June-March Hedge | 3.08 | .12 |  |
| $\quad$ Sell Cash in June | 3.83 | .71 |  |
| February Yearling Steers (Head) |  |  |  |
| $\quad$ Cash | 114.36 | 992.18 |  |
| April-June Hedge | 119.43 | 520.12 |  |
| April-July Hedge | 116.70 | 574.87 |  |

tween solutions (5) and (10), net worth increases 9 percent but standard deviation increases 75 percent. Thus, at higher risk solutions, a decision maker must accept increasingly greater risk for only limited gains in expected net worth.

The four year investment plan. Table 4 presents detailed data for the ten solutions enumerated in Figure 1. These solutions indicate risk efficient investment plans, given present knowledge of the future. In reality, second through fourth year investments may not occur because a farmer might revise his investment plan based on first year results and other new information. Nonetheless, the four-year solutions show the initial expansion plan.

Clearly, risk attitudes are reflected in farm size. In the lowest risk solution, (1), only 130 acres are farmed which is well below the maximum allowed, and no expansion occurs. Thus, staying small is one way to reduce risk. For solutions (2) through (10), initial firm size is the same, but annual production and expansion plans differ considerably. As one moves from solutions (2) through (10), first year acreage increases from 320 to 729 , new borrowings increase from $\$ 27,328$ to

TABLE 7. Four Year Investment Plans for the Marketing Model.a ${ }^{\text {a }}$

|  | Solutions |  |  |
| :---: | :---: | :---: | :---: |
|  | (2) | (3) | (4) |
| Terminal Net Worth (\$) | 1,312,018 | 1,354,458 | 1,430,021 |
| Initial Net Worth (\$) | 705,035 | 712,452 | 712,452 |
| Change in Net Worth (\$) | 606,983 | 642,006 | 717,569 |
| Net Worth Change Due to Price Appreciation (\$) | 489,018 | 514,597 | 544,045 |
| Percent Change Due to Price Appreciation (\%) | 81 | 80 | 76 |
| Standard Deviation of Terminal Net Worth (\$) | 21,092 | 21,894 | 24,845 |
| Standard Deviation as Percent of Net Worth Change (\%) | 3.5 | 3.4 | 3.5 |
| Land (Acres) |  |  |  |
| Initial owned land | 320 | 320 | 320 |
| Farm Size-Year 1 | 320 | 432 | 478 |
| Farm Size-Year 2 | 403 | 513 | 539 |
| Farm Size-Year 3 | 430 | 465 | 491 |
| Farm Size-Year 4 | 394 | 417 | 443 |
| Land Rented-Year 1 | 0 | 112 | 158 |
| Land Rented-Year 2 | 28 | 126 | 112 |
| Land Rented-Year 3 | 36 | 48 | 48 |
| Land Rented-Year 4 | 0 | 0 | 0 |
| Land Purchased-Year 1 | 0 | 0 | 0 |
| Land Purchased-Year 2 | 55 | 67 | 107 |
| Land Purchased-Year 3 | 19 | 30 | 16 |
| Land Purchased-Year 4 | 0 | 0 | 0 |
| Total Land Purchased | 74 | 97 | 123 |
| Feedlot Investment (Head-Capacity Added) |  |  |  |
| Year 1 | 251 | 247 | 318 |
| Year 2 | 0 | 0 | 0 |
| Year 3 | 22 | 36 | 49 |
| Year 4 | 0 | 0 | 0 |
| Total Capacity Added | 273 | 283 | 367 |
| Debt Utilization (\$) |  |  |  |
| New Borrowings-Year 1 | 142,222 | 147,340 | 206,167 |
| New Borrowings-Year 2 | 218,369 | 234,322 | 347,820 |
| New Borrowings-Year 3 | 158,587 | 175,988 | 222,738 |
| New Borrowings-Year 4 | 161,491 | 168,496 | 184,975 |

${ }^{\text {a }}$ Solution (1) data are excluded since results cannot be compared.
$\$ 310,573$, and feedlot capacity increases from zero to 168 head.

Cattle feeding is relatively risky; moreover, the gains from diversifying cattle feeding with other activities were somewhat limited due to covariance relationships shown in Tables 2 and 3. In this model, cattle are not fed in the first year until solution (5), but cattle feeding facilities are constructed and used in the second year for all solutions. At higher risk solutions (5) through (7), small feedlots
with less than a 150 head capacity are added in the first year.
Firm expansion in most solutions is generally diversified between rented land, purchased land, and feedlot capacity throughout the planning horizon. In most solutions, purchased land is substituted for share-leased land over time. Purchased land is more profitable, but it uses more capital and adds more variability. Hence, total acres farmed generally decline over time. Feedlot investment is also riskier, but

TABLE 7. (Continued).

| Solutions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (5) | (6) | (7) | (8) | (9) | (10) |
| 1,466,476 | 1,497,103 | 1,529,572 | 1,543,958 | 1,553,694 | 1,560,772 |
| 712,452 | 712,452 | 712,452 | 712,452 | 712,452 | 712,452 |
| 754,024 | 784,651 | 817,120 | 831,506 | 841,242 | 848,320 |
| 557,868 | 560,264 | 557,967 | 564,697 | 565,950 | 556,581 |
| 74 | 71 | 68 | 68 | 67 | 66 |
| 27,357 | 30,466 | 35,303 | 38,666 | 42,690 | 48,881 |
| 3.6 | 3.9 | 4.3 | 4.7 | 5.1 | 5.8 |
| 320 | 320 | 320 | 320 | 320 | 320 |
| 597 | 706 | 723 | 722 | 721 | 731 |
| 549 | 658 | 773 | 775 | 781 | 793 |
| 501 | 610 | 725 | 727 | 733 | 745 |
| 453 | 562 | 677 | 679 | 685 | 697 |
| 265 | 341 | 341 | 341 | 341 | 341 |
| 115 | 220 | 341 | 341 | 341 | 341 |
| 48 | 155 | 263 | 256 | 261 | 293 |
| 0 | 107 | 215 | 208 | 213 | 245 |
| 12 | 45 | 62 | 61 | 60 | 70 |
| 102 | 73 | 50 | 53 | 60 | 62 |
| 19 | 17 | 31 | 37 | 32 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 133 | 135 | 143 | 151 | 152 | 132 |
| 326 | 216 | 179 | 184 | 186 | 163 |
| 0 | 107 | 150 | 125 | 109 | 86 |
| 90 | 112 | 133 | 159 | 185 | 294 |
| 0 | 0 | 0 | 0 | 26 | 150 |
| 416 | 435 | 462 | 468 | 506 | 693 |
| 290,932 | 312,985 | 311,586 | 311,593 | 311,601 | 310,480 |
| 335,672 | 321,754 | 315,890 | 316,228 | 316,573 | 313,102 |
| 275,793 | 292,628 | 339,293 | 361,830 | 359,029 | 357,662 |
| 197,613 | 212,944 | 232,288 | 235,842 | 284,683 | 470,322 |

more profitable, so it replaces some land purchases at higher risk solutions.

Land prices increase rapidly in the model, significantly affecting results. First, most of the net worth gain is asset appreciation (largely land) - 90 percent in solution (1), 66 percent in solution (10). Second, appreciating land prices expanded borrowing capacity, which favored further land purchases. Even when borrowing ability was enhanced by land appreciation, credit was fully utilized in the first two years of solutions (7) through (10). When model specifications were changed so that asset appreciation did not affect
net worth or borrowing capacity, no land is purchased; expansion is confined to feedlot facilities and land rental. This approach, however, ignores the value of asset appreciation in increasing borrowing ability.

Relatively small ratios of standard deviation to net worth changes (less than 7 percent) reflect using deviations from trend which removed much of the original variation, especially on land. When the model was rerun with asset appreciation excluded from net worth, these ratios were much higher, ranging from 7 to 29 percent.

TABLE 8. The First Year Production and Marketing Plan for the Marketing Model.a

|  | Solutions |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
| Total Crop Acres | 300 | 405 | 448 | 560 | 662 | 678 | 677 | 676 | 686 |
| Total Cattle Fed | 351 | 372 | 506 | 597 | 430 | 331 | 353 | 377 | 326 |
| Crop Plantings <br> (\% of Total Acres Planted) |  |  |  |  |  |  |  |  |  |
| Corn Grain | 89 | 92 | 57 | 54 | 43 | 43 | 43 | 44 | 45 |
| Corn Silage | 11 | 8 | 10 | 9 | 7 | 7 | 7 | 6 | 5 |
| Soybeans | 0 | 0 | 33 | 37 | 50 | 50 | 50 | 50 | 50 |
| Disposition of Corn (\% of Total Bushels Raised) |  |  |  |  |  |  |  |  |  |
| Fed to Cattle | 26 | 26 | 100 | 100 | 100 | 100 | 100 | 78 | 59 |
| Sold June-March Hedge | 74 | 74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sold August-June Hedge | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 41 |
| Disposition of Soybeans (\% of Total Bushels) |  |  |  |  |  |  |  |  |  |
| Sold June-March Hedge | 0 | 0 | 100 | 100 | 82 | 9 | 0 | 0 | 0 |
| Sold in June-Cash | 0 | 0 | 0 | 0 | 18 | 91 | 100 | 100 | 100 |
| Cattle (\% of Total Fed) |  |  |  |  |  |  |  |  |  |
| Yearling Steers-February ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| Sold April-June Hedge | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
| Sold April-July Hedge | 0 | 0 | 0 | 16 | 50 | 54 | 52 | 50 | 0 |
| Yearling Steers--August ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| Sold October-December Hedge | 28 | 34 | 37 | 45 | 50 | 40 | 32 | 24 | 0 |
| Yearling Heifers-February ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| Sold April-July Hedge | 72 | 66 | 63 | 39 | 0 | 0 | 0 | 0 | 0 |
| Steer Calves-October ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| Sold Cash | 0 | 0 | 0 | 0 | 0 | 6 | 16 | 26 | 50 |

a Solution (1) data are excluded since results cannot be compared.
${ }^{\circ}$ The month indicates the time of placement.

The first year production plan. Table 5 presents first year cropping and livestock production plans for the solutions in Table 4. Corn and corn silage are produced primarily to feed cattle in the next period. At low risk solutions (1) through (4), soybeans (the riskier crop) are only 30 percent of acreage planted, which is well below the 50 percent maximum. Between solutions (5) and (9), soybeans increase to the 50 percent maximum. Without the upper limit, which reflected a rotation plan to control disease and limit erosion, soybean acreage probably would be higher. But complete, continuous soybean pro-
duction does not seem technically feasible for Northwestern Iowa farms. Soybeans decline in solution (10) to increase corn grain production for more cattle feeding in the second period.

Cattle feeding occurs only in the riskier solutions. At medium risk solutions, yearling heifers placed in February (which have a lower variance than steers) are fed in conjunction with the riskier calf program. This keeps the feedlot filled all year. At higher risk solutions (8) through (10), February yearling steers replace heifers because they are more profitable. Because the covariances among feeding programs
were positive, the model utilized the following strategy: emphasize corn production in low risk solutions, and add more soybeans and start cattle feeding as risk aversion decreases.

## The Marketing Model

Figure 1 also shows the marketing model $\left(E F_{\mathrm{M}}\right)$ efficiency frontier. This model adds storage and hedging options for grains, and hedging for cattle (refer to Table 1). A farmer who would prefer solution (5), for example, on $\mathrm{EF}_{\mathrm{B}}$ would prefer solution (5) on $\mathrm{EF}_{\mathrm{M}}{ }^{4} \mathrm{EF}_{\mathrm{M}}$ rotates outward from $E F_{B}$ indicating it provides a more risk efficient set of farm plans. Expected values and variances for marketing strategies were calculated in the same manner as for cash selling strategies. Table 6 shows that these marketing strategies increase expected returns, lower variances, or both, relative to cash sales.

The four year investment plan. Table 7 presents data for the marketing solutions enumerated in Figure 1. The most obvious benefit of marketing strategies is that one can farm more land, borrow more money, feed more cattle, and generate more net worth with less risk. In all solutions ending net worth is larger when additional marketing strategies are allowed. Benefits are greatest in low to medium risk solutions.

Net worth growth is also less dependent upon asset appreciation. Both cattle feed-

[^5]ing and crop planting generally occur on a larger scale which allows more accumulated earnings. Part of the acreage increase comes from buying more land, but rented land is also increased.

Differences in cattle feeding are significant. In the marketing model, cattle are added in the first year throughout the horizon. Even at low risk solutions (2) through (4), relatively large feedlots are constructed. This suggests that effective marketing strategies make cattle feeding more desirable for low risk farmers.

At high risk solution (10), the marketing model includes more crop planting, but less cattle feeding. In that solution, use of high profit, high risk corn and soybean marketing strategies offer higher returns than increased cattle feeding.

The first year production and marketing plan. Table 8 shows first year cropping and livestock plans of the marketing model. Again, these data show that adding marketing strategies allows farming on a larger scale. In low risk solutions (2) and (3), no soybeans are planted due to their high price variability. At high risk solutions (6) through (10), maximum soybean acreage is planted in response to high soybean profits. In solutions (4) through (8), corn is grown only to feed cattle. However, in solutions (9) and (10), when expected profits are the main concern, corn is sold using the profitable, but risky, Au-gust-June hedge.

In low risk solutions, soybeans are sold using the June-March hedge, even though expected returns are about $\$ 0.75$ per bushel below June cash sale. The June cash strategy is not used much until solution (7) due to its high variability.

In low risk solutions (2) through (4), yearling heifers are placed early in the year and yearling steers later in the year. These options have the smallest variability in expected return. At higher risk solutions, more profitable, but riskier feeding programs are used. These include the steer
calf program and February placements of yearling steers.

## Conclusions

Model structure and size limitations prevented using a number of desirable marketing-financing strategies. Still, model results suggest significant risk management possibilities.

1. Both solution sets show that differences in risk attitudes lead to differences in farm size. Farmers can reduce risk by operating smaller farms.
2. Cattle feeding is a rational addition, even for moderately risk averse farmers. Hedging strategies, which increase expected returns and/or lower variability, increase the desirability of cattle feeding for all levels of risk aversion.
3. Market strategies allow one to accept more risk in investing and producing. Risk reducing marketing strategies are particularly beneficial to more risk averse farmers.
4. Corn is less risky than soybeans, but limited soybean acreage often occurs even in low risk solutions.
5. Feeding heifers seems less risky than feeding steers. The most profitable but riskiest programs are February yearling steer placements and October steer calf placements.
The numerical results of this study suggest that integrating the analysis of production, marketing, and investment alternatives is essential before making recommendations about risk management strategies. Analyzing only one dimension (such as marketing or production) does not account for the significant interrelationships among the various areas of a farm business.

## References

Arrow, K. J. Essays in the Theory of Risk Bearing. Markham Publishing Company, Chicago, 1971.

Barry, P. J. and D. R. Willmann. "A Risk-Programming Analysis of Forward Contracting with Credit Constraints." American Journal of Agricultural Economics, 58(February 1976): 62-70.

Batterham, R. L. "Investment and Financial Management in Farm Firm Growth." Unpublished Ph.D. dissertation, University of Illinois at UrbanaChampaign, 1971.

Boehlje, M. D. and K. T. White. "A Production-Investment Decision Model of Farm Firm Growth." American Journal of Agricultural Economics, 51 (August 1969): 546-63.

Borch, K. The Economics of Uncertainty. Princeton: Princeton University Press, 1968.

Chen, J. T. "Modelling Responses to Uncertainty in Mathematical Programming Growth Models of the Farm Firm." Unpublished Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1972.

Chien, Y. I. "Developing a Multiperiod Linear Pro-gramming-Simulation Farm Firm Growth Model: Application to a Central Kentucky Beef Cattle Farm." Unpublished Ph.D. dissertation, University of Kentucky, 1973.

Cocks, K. D. and H. O. Carter. "Micro Goal Functions and Economic Planning." American Journal of Agricultural Economics, 50(May 1968): 40013.

Feldstein, M. S. "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection." The Review of Economic Studies, 36(January 1969): 5-1.1.

Friedman, Milton. Price Theory. Chicago: Aldine Publishing Co., 1976.

Johnson, D. A. "Investment, Production, and Marketing Strategies for an Iowa Farmer-Cattle Feeder in a Risky Environment." Unpublished Ph.D. dissertation, Iowa State University, 1979.

Kaiser, E. and M. Boehlje. "A Multiperiod Risk Programming Model for Farm Planning." North Central Journal of Agricultural Economics, 2(1980): 147-54.

Lin, W., G. W. Dean, and C. V. Moore. "An Empirical Test of Utility Vs. Profit Maximization in Agricultural Production." American Journal of Agricultural Economics, 56(August 1974): 497-508.

Lins, D. "The Financial Condition of U.S. Agriculture: Past, Present, Implications for the Future." NED Staff Report, ESCS-USDA, 1979.

Luce, D. R. and H. Raiffa. Games and Decisions. New York: John Wiley \& Sons, 1957.

Lutz, F. and V. Lutz. The Theory of the Investment of the Firm. Princeton University Press, Princeton, 1951.

Markowitz, H. M. Portfolio Selection: Efficient Diversification of Investments. Yale University Press, New Haven, 1959.

McGrann, J. M., D. Barnes, and E. Rawson. "Estimated Costs of Crop Production Guides for the Eastern Portion of Northwestern Iowa 1978." Iowa State University Cooperative Extension Service FM1742, December 1977.

Modigliani, F. and K. J. Cohen. "The Role of Anticipations and Plans in Economic Behavior and Their Use in Economic Analysis and Forecasting." Studies in Business Expectations and Planning, No. 4, Bureau of Economics and Business Research, University of Illinois, Urbana, 1961.

Officer, R. R. and A. N. Halter. "Utility Analysis in a Practical Setting." American Journal of Agricultural Economics, 50(May 1968): 257-77.

Peck, A. "Hedging and Income Stability: Concepts, Implications, and an Example." American Journal of Agricultural Economics, 57(1975)3: 410-19.

Plaxico, J. S. and D. D. Kletke. "The Value of Un-
realized Farm Land Capital Gains." American Journal of Agricultural Economics, 61(May 1979): 327-30.

Pratt, J. W. "Risk Aversion in the Small and in the Large." Econometrica, 32(January-April 1964): 122-26.

Reid, D. W., W. N. Musser, and N. R. Martin. "Income Tax Aspects of Liquidation in Multiperiod Linear Growth Models." Southern Journal of Agricultural Economics, 10(December 1978): 29-34.
U.S. Department of Agriculture, Crop Reporting Board, Statistical Reporting Service. Agricultural Prices. Washington, D.C.: U.S. Government Printing Office, 1965 through 1977.
U.S. Department of Commerce, Bureau of the Census. 1979 Farm Finance Survey, Vol. 5 Special Reports, Part 61979 Farm Finance Survey, AC78-SR-6. Washington, D.C., July 1982.

Van Horne, J. C. Financial Management and Policy. Third Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.

Walker, O. L. and G. A. Nelson. "Agricultural Research and Education Related to Decision-Making Under Uncertainty: An Interpretative Review of Literature." Oklahoma Agricultural Experiment Station Research Report P-747, March 1977.


[^0]:    Don Johnson is Economist, Economics Department, Caterpillar Tractor Co., 100 Northeast Adams Street, Peoria, IL, and Michael D. Boehlje is Professor, Department of Economics, Iowa State University, Ames, IA.

[^1]:    ${ }^{1}$ Chance constrained programming still would not provide variable outcomes in later years. Sequentially solving a series of QPs would do so, but it would be extremely difficult to relate a solution on subsequent frontiers with solutions on the initial frontier.

[^2]:    ${ }^{2}$ The QP parametric routine provided many different solutions, each of which had a different risk preference. While the model used the same technical coefficients (as in an LP), each solution was considered representative of a different firm. Hence, the plural is used in discussing the model's composition.

[^3]:    Note: The complete matrix was $56 \times 56$ _too large to report.

[^4]:    ${ }^{3}$ A historical time series was computed for each random activity based on deviations from trend. Variances and covariances were computed for each activity from the historical series.

[^5]:    ${ }^{4}$ Due to the small number of solutions obtained in the linear segment of the marketing model, a comparable solution to solution (1) of the basic model was not generated. We chose solutions on $\mathrm{EF}_{\mathrm{M}}$ that were above and to the left of those numbered the same on $E F_{\mathrm{B}}$. By inspection, we tried to select solutions where slopes along the frontier were the same. In other words, a farmer whose utility indifference curve was tangent to solution (5) on $\mathrm{EF}_{\mathrm{B}}$ would also be tangent to solution (5) on $\mathrm{EF}_{\mathrm{M}}$. Since we did not work with specific utility functions, we cannot precisely say that a solution on $\mathrm{EF}_{\mathrm{M}}$ is most preferred to the like numbered solution on $\mathrm{EF}_{\mathrm{B}}$.

