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SOUTHERN JOURNAL OF AGRICULTURAL ECONOMICS DECEMBER, 1977

VERIFICATION OF LINEAR PROGRAMMING SOLUTIONS,
WITH EMPHASIS ON SUPPLY IMPLICATIONS*

C. Richard Shumway and Hovav Talpaz

Linear programming (LP) models have been INITIAL MODEL CALIBRATION 2

developed for a wide range of normative purposes in
agricultural production economics. Despite their The static LP model used here was based on the
widespread application, a pervading concern among assumption of a long run adjustment period (i.e., no
users is reliability - how well does a particular model short run constraints on resources such as labor or
actually describe and/or predict real world phe- operating capital), and was developed to evaluate the
nomena when it is so designed. interaction in resource demand among 15 major

Much attention has been devoted in recent years groups of vegetables and field crops in California. The
to methods for making programming models produce state was divided into 95 production areas based on
results more in line with those actually observed, similarities in soil, climate and water resources.
These efforts have included development of more Acreage suitable and potentially available for crop
detail in production activities and restrictions, in- production in each area during the period 1961-65
corporation of flexibility constraints into recursive was inventoried. The 15 commodity groups utilized
programming systems [12], specification of more 79 percent of actual total crop acreage during that
realistic behavioral properties [1], and development period. Acreage in excluded high-value crops (orchard

of guidelines for reducing aggregation error [11]. crops and minor vegetables) and in non-agricultural
The objective of this paper is to develop proce- uses was deducted from the inventory. Maximum

dures for verifying static multicommodity LP models individual crop acreages were limited only by avail-

constructed with a long run adjustment horizon.' able land and water resources and by rotation

Standard procedures for adjusting or calibrating "best requirements.
guess" data used in the model are briefly discussed. Since production area boundaries did not coin-
Major attention is then devoted to additional cide with counties, yield estimates were developed by
methods of evaluating model reliability. In particular, commodity specialists and county extension agents.
two procedures are developed for combining supply The first step in model calibration was multiplying
function parameters from the LP model with time these yields by crop acreage in each production area;
series data in order to predict short run adjustments this determined implied state output in the base period
in commodity production levels. Predictions of 1974 1961-65, assuming yield estimates were correct. All
production of 15 vegetables and field crops are yield estimates for a crop were scaled up or down until

reported and compared. implied state output equaled actual output.

C. Richard Shumway and Hovav Talpaz are Associate Professors of Agricultural Economics, Texas A & M University.

*Technical Article 12738 of the Texas Agricultural Experiment Station. This paper is a revised and expanded version of
"Combining LP Results and Time Series Data for Prediction of Supply: Two Approaches," contributed paper presented at AAEA
annual meeting, State College, Pennsylvania, 15-18 August, 1976. The authors wish to thank Peter Barry, John Penson, C. Robert
Taylor and anonymous Journal reviewers for constructive comments on earlier drafts. Anne Chang provided much computer
assistance for which we are most appreciative.

1This paper is a continuation of research reported in Shumway and Chang [13]. The same empirical data and similar
methodology are used. Alternative econometric procedures are reported for deriving supply elasticities from the LP results and for
using LP estimates as prior information for econometric analysis.

2
Details of the linear programming model are reported in Shumway, et al.
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Beginning with budgets representing a high where
management level, the second step in model calibra- de
tion required solution of the LP model constrained toed output vector of commodity

P1...Pn = 15 commodity vectors of parametrizedproduce actual 1961-65 state output with minimum 
price used in the LP model, and

costs. Shadow prices representing marginal crop er te
1 .= error term.producing costs were thus obtained. Assuming

(1) producers equate marginal cost with expected The equations were first fit with untransformed
price and (2) expected price equals lagged actual (linear) data and then in logarithms to obtain
price, production costs were adjusted so that the estimates of the relation between prices of 15
profit maximizing model results approximated actual commodity groups and the output of each. In all
1961-65 average output of each commodity at cases, the linear equations resulted in a better or
1960-64 average price. almost equivalent fit (based on R2 value). Accord-

ingly, estimates reported here were derived from the
linear equations.

EVALUATING MODEL RELIABILITYEVALUATING MODEL RELIABILITY Stepped variable selection procedures were used

Model results generated with the objective func- to select and estimate price variable parameters
tion of minimizing actual cost of producing 1961-65 significantly different from zero at the five percent
output resulted in a resource demand distribution level or less (based on final degrees of freedom).5

among nine state regions (i.e., aggregate of produc- Supply elasticities obtained from these regressions
tion areas) that was highly correlated with actual use were computed at average 1961-65 output levels and
in that period. The square of the correlation co- lagged representative crop prices, and are reported in
efficient of actual and predicted harvested acreage Table 1. Supply elasticities estimated from quadratic
across regions was .84 and of actual and predicted and simple linear regression equations fit to these
water usage, .82. These correlations were very high, as data are reported in Shumway and Chang [13, p.
noted by Perrin [10], when compared with figures of 350]. More than half of the cross-price elasticities
.02-.50 reported by Wallace [18, p. 16] in an estimated to be non-zero using simple regression are
evaluation of major variables in nine earlier spatial reported as zero here using stepped variable selection
studies. Although higher correlation among larger on multiple regression equations. Our direct elasticity
aggregates than among individual production areas estimates are generally higher than the Shumway and
would be expected, the model's ability to approxi- Chang simple linear regression estimates, but lower
mate actual spatial resource use appeared reasonable. than their quadratic equation estimates.

Remaining considerations for reliability evalua- All direct elasticity estimates are positive, and
tion included estimating sensitivity of implied supply most cross elasticities non-positive. Cross elasticities
to changes in expected prices. From the profit are positive only between grain sorghum and barley,
maximizing model, a total of two hundred parametric two crops frequently double-cropped in the state.
observations on production levels of all crops was Consequently, no elasticities violate a priori expecta-
obtained by sequentially changing product prices, tions as to sign. Actual average 1961-65 crop output
largely in equal increments within the range of and 1960-64 price are reported in Shumway and
1950-73 deflated prices.3 The parametric solutions Chang [13, p. 347].
for each commodity were treated as independent
observations in formulating linear multiple regression Combining LP Results with Time Series
supply equations of the following form: 4 Data for Prediction

The price coefficients derived from LP are
Yi = aio + ailP + ... + ainPn + ±i (1) estimates of long run responsiveness. Since long run

3
California product prices [2, 3, 4, 5] were deflated by the USDA [16, 17] index of prices paid by farmers for factors of

production (1960-64 = 100).
4
Use of regression analysis is reported here with two qualifications: (1) observations are not really independent since prices

were not selected randomly; (2) price selection procedure implies a uniform distribution of prices between the high and low
observations. Since typical distribution of actual prices is more bell-shaped, use of parametric programming observations here
gives undue weight to the outliers. In retrospect, these problems could have been reduced by developing a factorial design for the
LP parametrization instead of adhering to sequential, equal-interval parametrization.

5As Debertin and Freund point out, the standard stepped regression procedures, including these, indicate an upward-biased
level of significance on selected variables (i.e., increases our chances of a Type 1 error). However, stepwise regression was used
here only for discarding obviously unimportant independent variables and estimating parameter values on the others. These data
were never used to test the hypothesis that parameters of specific variables were significantly different from zero. Bias in
significance level was recognized but did not pose a serious problem. Consequently, no attempt was made to adjust for degrees of
freedom associated with the original variables set [8, p. 215]. Supply elasticities estimated from simple regression equations fit to
these data are reported in Shumway and Chang [13].
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TABLE 1. LINEAR PROGRAMMING-STEPPED REGRESSION ESTIMATES OF LONG-RUN ELASTICITIES
OF SUPPLY

Elasticity with respect to the price of:

Commodity No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Alfalfa hay
(and seed) 1 6.6 -1.6 -0.1 0 0 0 0 0 0 -0.2 -0.2 -0.1 -0.1 0 -0.1

Barley
(small grains) 2 -1.5 5.1 -0.1 0 0 1.7 -0.5 0 0 -0.1 -0.1 -0.1 -0.1 0 -0.1

Corn for grain
(and silage) 3 0 3.6 0 0 0 0 0 0 0 0 0 0 0

Cotton 4 -0.7 0 -0.1 1.5 0 0 0 0 0 -0.2 -0.2 0 -0.1 0 -0.1

Dry Beans 5 0 0 -0.1 0 7.2 0 0 0 0 -0.2 -0.2 0 -0.1 0 -0.1

Grain sorghum
(and sorghum silage) 6 -0.9 8.1 -0.1 0 0 10.9 0 0 0 -0.1 0 0 0 0 0

Rice 7 -1.0 -1.6 -0.1 0 -0.3 -0.5 6.6 0 -0.2 -0.1 -0.1 -0.1 -0.1 0 -0.1

Safflower 8 0 0 0 0 0 0 0 9.6 0 0 0 0 0 0 0

Sugar beets 9 0 O 0 0 0 0 0 0 3.7 -0.2 -0.2 0 -0.1 0 0

Asparagus 10 0 0 0 0 0 O O O 18.0 U 0 0 0 0

Broccoli
(cole crops) 11 0 0 O 0 0 0 0 0 14. 1 0 0 0 0

Cantaloups
(melons) 12 0 0 0 0 0 O 0 O 0 0 0 6.0 0 0 0

Lettuce 13 0 0 0 0 0 0 0 0 0 0 0 0 6.2 0 0

Potatoes 14 0 0 0 0 0 0 0 0 0 0 0 2.0 0

Tomatoes, processing
(and fresh) 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.4

output levels are never observed in the real world, no the difference between actual and desired output.
observations exist against which predictive accuracy This adjustment process can be expressed in terms of

of the LP-derived output projections can be a partial adjustment model consisting of two equa-
measured. Therefore, one could not simply insert one tions (see Nerlove [9, pp. 502-503]):
year's prices into the LP-derived supply equations,
predict the next year's output and meaningfully it - yit- = i(Yit Yiit-1) + uit (2)
compare that prediction against actual output. Con- n
sequently, the LP-derived long run price coefficients it Cio + cijPj t (3)
were used as prior information in two models with- j=
annual price and output data for the period 1950-73 where
in order to predict 1974 output levels. Both predic- 

y-t = actual output of commodity i in
tion models presume a geometric lag adjustment 
process; the first in adjusting to desired output levels, eire 
and the second in modifying expectations of future y desired output

0 <y • - =1 estimated coefficient of adjustment
prices.6 The first model is the same as that used by 
Shumway and Chang [13, pp. 353-4]. ( 

Partial adjustment premise. Let us suppose pro- .t price of commodity j in year t
j = commodity index including j = i

ducers revise desired output levels based on prices of j commodity index including j
c" = estimated parameter of the jth com-

relevant crops in the previous year and, in each year, estimated parameter of the jth com-
toward that levelby consta ' omodity price in affecting desired

move toward that level by a constant proportion of

6
A compound geometric lag model could have been developed incorporating both assumptions in a single model. The

estimation equations for that model are similar to the equations for the partial adjustment model expanded such that the
independent price variables, pj are lagged 1,2, ... n periods, and the output y, is lagged 1,2, ... n+l periods. This model was not
used here because of the very high degree of collinearity evident for most crops among the independent variables with different
lag lengths.
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supply of the ith commodity, and same estimation equation. Assuming (1) producers
u = error term. instantaneously adjust output levels to expected price

and (2) expected price is a geometrically lagged
To preserve the relative magnitudes of the LP-derived function of previous prices, the model consists of two
direct and cross-price parameters, a composite vari- equations. These are formulated below for the cur-
able was defined from those parameters and a time rent case where some of the equations have more
series of crop prices, than one relevant price variable:

n
P)t = a^ (4) (7)

Pit = Z aijPt (4)P Pijt -Pijt-1 = ij (Pj,t- - Pi,t-) (7)
j=l

n
where y c ± c + v (8)~~~~~~~~~~~~~where Yit io= i+ Z CijPijt + Vit

j=1
Pt = composite price variable for commodity iit"~~~ . ~~~~where

in year t
ai= LP-derived estimate of the jth commodity Pij = expected price of commodity j in

price parameter in the supply of the ith supply equation i
commodity, and 0 < < 1= coefficient of expectation (a con-

jt= deflated price of the jth representative stant) which is uniquely estimated
commodity in year t. for each price variable in each equa-

tion, andThe aiJ values in some of the LP-derived equa- tion, and
v = error term.tions estimate responsiveness in the supply of crop

groups to changes in the price of individual com- The parameters of this model can be derived from
modities. Here, we are concerned with developing estimation equations (5) and (6) expanded to include
predictive equations for individual commodities only. independent variables p and y lagged 1,2, ... n years.
Therefore, aij values for crop groups were adjusted Alternatively, they can be estimated as maximum
based on individual crop acreage as a percent of the likelihood functions of ij from equation (8) where
group total in 1961-65. Pi is defined as in equation (7) [9, pp. 503-504].

Estimation equations derived from equations (2), The latter method was used because of the high
(3), and (4) and then fit to annual output and degree of collinearity among the independent vari-
composite price data for the period 1950-73. Two ables with different lag lengths.
estimation equations per commodity were fit, re- Rearranging terms, equation (7) becomes:7

gressing output on lagged output and composite
price, with and without a trend variable: Pit - ij(- 3ij)mlPjt-m (9)

m=l

Yit= bio bi1 piltl + bi2Yi,t-l + uit (5) Incorporating the price parameters derived from the
LP model, a composite variable may be defined as

Yit= bo + biiPt 1 + b i + bi 3t + (6) follows:

n
where t for year 1950 equals 1. Pi = Z aijt (10)

Equations in which the lagged dependent variable j=1
appears as an independent variable frequently exhibit where the aij values are the price parameters from the
serially correlated error terms and also bias the test LP-derived supply equation for commodity i. The Pit
for serial correlation in OLS estimation. Conse- variables can be obtained from equation (9) by
quently, the less restrictive Cochrane-Orcutt [6] solving for the 3ij parameters as maximum likelihood
model with the Cooper [7] transformation was used estimates that minimize the sum of squared error
to obtain parameter estimates and standard statistics (equivalent to maximizing R2 with a given set of
with asymptotically desirable properties for these independent variables) in the following modified
equations. equation (8):

Adaptive expectation premise-maximum likeli-
hood formulation. An analogous model to the above Yit = b + biit + Vit (11)
is the adaptive expectations model. When there is
only one price variable, it can be derived from the Because equation (9) is intrinsically nonlinear, a

7
Since pj must be estimated by an iterative search procedure, m (length of lag) was truncated on pragmatic grounds at 9

years.
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nonlinear search procedure developed by Talpaz [15] Partial adjustment model equations. The price
was used to search for the values 3ij in order to parameter and coefficient of adjustment for each
approach within a specified tolerance the maximum crop estimated by the two partial adjustment equa-
R2 value for the equation.8 The search procedure was tions are reported in Table 2. Since the number of
conducted with these alternative conditions: independent variables in the two equations differs,

R2 is reported as the relevant measure of goodness of
(a) no further restrictions fit rather than R2. A priori expectations are:

9 (1) bil> 0 since a direct response in supply to a
m ij(l /3-ij)m pj,t-m change in the composite commodity price is ex-

(b) p* = pected, and (2) 0 < b2 < I since the partial adjust-

. j(1p.ij)m- ment hypothesis implies that producers adjust toward
m=1 desired level but do not overadjust.

Nineteen of the 30 equations satisfied a priori
(c) 0 < 3ij < 1, expectations as to sign and magnitude of the relevant

(d) conditions (b) and (c). parameters. At least one equation satisfied expecta-

Condition (b) scales every pj. so that the sum of.i~ .1 . . . TABLE 2. SELECTED RESULTS OF PARTIAL
coefficients on pj over the relevant time horizon is ADJUSTMENT LP-TIME SERIES
the same (i.e., 1.0). This condition assures that the

EQUATIONSrelative magnitudes of LP-derived direct and cross-
price coefficients are preserved in each equation. Parameter estimates

Condition (a) on the other hand permits modification Price, lagged
Output, 

of the relative magnitudes of LP-derived price Independent Composite Own lagged 
Commodity variables (bil) (b.,ai ) (bi2)

parameters (aij) but only by simultaneously changing i ii (_2)

the shape of the lag distribution. An increase in ij Alfalfa hay p,y -.002 -3,721 3926 .86
p,y,t -.002 -3,721 .360-'-- .88

implies both an increase in the relative weight on the Barley p,y .031* 6,806* .938** .50

LP-derived price parameter of commodity j and a p,,t -.004 -878 .768 .50

rapidly declining lag distribution as m increases. A Corn for grain py .7421* 12,393' 8 .553 .91
p,y,t .681'* 11,373m* .587** .91

decrease in 3ii implies both a decrease in the relative Cotton p,y .214 3,306 .223 .38

weight and an evening out of the lag distribution p,y,t .317* 4,897* 289 .41
Dry beans p,y .066** 388** 1.016'* .77

toward a rectangular lag. Condition (c) forces satis- Dry beans pyt 066 388 1 .016** .
p,y,t 048* 282* .325** .83

faction of the a priori expectation that the difference Grain sorghum p,y .005 631 .853* .90

between last year's and current expected price is p,y,t 018 2,270 .496* .90
Rice p,y -.019 -986 .926** .71

positively related to but no greater than the dif- pyt .34 1,765 .068 .77

ference between last year's expected and actual price. Saff lower p,y .011 322 .832** .77

Condition (d) simultaneously imposes both condi- p,y,t .009 259 .844** .76
tions (b) and (c) on the estimation. Sugar beets p,y .268 509,325 .950** .59

tions~ ~(b) and (c) on the estimation,.~ p^ py,t .714** 1,356,932** .498** .82

Length of lag was truncated for all commodities Asparagus p,y -.009 -62 .771* .63

on pragmatic grounds at nine years. p,y,t -.001 -9 .774** .63
Broccoli p,y .037 276 1.111** .87

^ • • ~~~~~Empirical ResultsT 1^~9 ~p,y,t .090** 677** .596** .91Empirical Results9 , ^-(
Cantaloups p,y .095** 2,264** .953** .76

Two equations based on the partial adjustment p,y,t .095** 2,252** .948** .74
Lettuce p,y .028 2,625 1.080** .94

conceptual model and three based on the adaptive p,y,t .039** 3,626** .862** .95

expectations model were fit to time series data for Potatoes p,y .182** 8,701** .939** .69

1950-73 using the LP-derived price parameters as p,y,t .181** 8,654** .942** .67
Tomatoes, p,y -.017 -5,990 .9 67** .57

prior information. Selected statistics and parameter processing p,y,t .215* 74,769* -.452** .77

estimates are reported below; first for the partial
*b- coefficient significant at the 5 percent level.

adjustment equations and subsequently for the adap- **bi coefficient significant at the 1 percent level.

tive expectation equations.

8
This nonlinear optimization procedure is an improved version of the Fletcher-Powell-Davidon method (see Talpaz [15] for

details). The gradient vector and the Hessian matrix are numerically approximated avoiding need for any mathematical

transformation. A fast convergence is achieved by efficient stepwise selection. Stopping criterion used here was R - R
2

<

.001, where Q is the iteration index.

9In the interest of space, only selected results from the specified equations are reported here. Full details on these equations
are available from the authors.
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tions for all but three crops-alfalfa, asparagus and TABLE 4. PERCENT ERROR IN PREDICTING
tomatoes. Two of these are perennial crops and the 1974 OUTPUT
third experienced a change in production practices LP-baed predictive eqations Econoetric

midway through the time series from labor-intensive part adjustment Adaptive expectation e 
model with indeper- with restriction: independent

to a mechanized harvest. Consequently, it is not dent variables varables

surprising that supply response was not logically Comod i ty p. I.. I ' b c I p.d p l
Alfalfa 1.9 3.5 -2.1 -3.7 0.4 1.0 2.3

explained by the simple geometric lag models. Barley 14.0 12.7 26.5 18. 1 .0 1.4

Adaptive expectations model equations. Price Corn 43.6 43.3 -16.6 -16.6 -16.6 43.6 43.3

parameter and coefficient of expectation for own Cotton -41.6 -37.2 -49.2 -48.3 -48.2 -38.3 -21.3

~~price are reported for each adaptive expectation ~ Dry beans 1.5 -15.7 -36.6 -39.1 -35.5 -1.8 -19.0price are reported for each adaptive expectation 0. ' 3.2 6.2. 0.8 4.5 52.2 4 7
—-2^o Grain sorghum 38.2 66.2. 50.8 49.5 52.2 40.6 70. 1

equation along with R values in Table 3. Three Rice -12.4 -8.3 -11.8 -15.3 -11.8 -12.3 2.1

equations were fit for each crop. Only 17 of the 45 safflower -9.5 -12.2 27.3 27.3 273 -95 - 12.2

equations satisfied a priori expectations as to sign and Sugar beets 28.1 91.9 39.8 27.1 17.8 28.7 83.0

magnitude on bil and most Oij (i.e., bil> 0, 0 < j8 Asparagus 0.4 -3.5 1.1 1.1 1.1 3.4 -3.0
magnitude on b and ost (i., >0 KBroccoli .- 8 -12.3 -20.8 -20.8 -20.8 -8.3 -12.3

_ 1), although two equations did meet those expecta- cantaloups 133 13.5 27.8 27.8 27.8 13.3 13.5

tions for alfalfa. R2 values for the adaptive expecta- Lettuce 3.4 30 -23.1 -23.1 -25.2 3 3.0
tion equations were generally lower than for the Potatoes 2.9 2.5 1.5 1.5 .5 29 2_.5

~~~~~~~~~~~~partial adjustment equations.~~ omatoes -15.4 -26.7 -36.1 -36.1 42.3 -15.4 -26.7partial adjustment equations. -
Underscored numbers are from equations that satisfied a

Comparison of Predictive Accuracy priori expectations with regard to parameter signs and
magnitudes.

The percent error in predicting 1974 output is
reported for each estimation equation in Table 4.
Across crops, the error in prediction ranged from 0.4 to 91.9 percent for the partial adjustment equations

and from 0.4 to 52.4 for the adaptive expectation
equations. Compared without regard to satisfaction

TABLE 3. SELECTED RESULTS OF ADAPTIVE of a priori expectations, the best prediction for 11 of
EXPECTATION LP-TIME SERIES the 15 commodities was provided by partial adjust-
EQUATIONS ment equations.

—a/ Percent error is also reported in Table 4 for two
Parameter estimates-

Price, lagged Coefficient of straight econometric models, i.e., equations (5) and
Comodity Restriction expectat ion, -2 (6) with p[ = pi, using only time series data and no
Commodity set Composite Oct own price

(bi__) (bilaii) (Bii) prior information from the LP results. These equa-
Alfalfa hay a .326 606,509 -.029 .36 tions are equivalent to LP-based partial adjustment

b .055 102,325 .832 .20

c 5.055 9,404,605 .005 .63
Barley a .532 116,793 .483 .87 equations in which the only prior information used

b .095 20,856 .533 .86
.537 117.890 .487 .84 from LP was the own-price parameters. Predictions

Corn for grain a -2.609 -43,581 .113 .74
b ~-1.720 -28,731 .113 .13 74 from the LP-based equations compared favorably to
c -2.613 -43,648 .112 .74

Cotton a 381 5,885 1333 .50 these single commodity time series equations for
c .466 7,198 1.000 .40
d .468 7,229 1.000 :40

Dry beans a -2.854 -16,787 -.007 .80 1974. The best prediction was provided by time series
c -5.262 -30,951 0 .68
Crd --.170 - ,000 .041 .09 equations for two crops, by LP-based equations for

Grain sorghum a .001 126 -.675 .49
b -~-.051 -6,433 -.725 .51 seven, and was tied for six. On average, accuracy of

d -.090 -11,352 0 .35
Rice b -.763 -39,607 016 .52 the best LP-based predictive equations was compar-

c -1.180 -61,254 .095 .38
d -.762 -39,555 .022 .51

Safflower a 319 9,390 .347 .21 able to accuracy of the best of the straight econo-
b .312 9,184 .347 .21

.319 9,390 .347 .21 metric models. Shumway and Chang [13, p. 355]
Sugar beets a .067 127,331 -.038 .63

b I -1.752 -3,329,615 .137 .36 also report comparable predictive accuracy between
Aprgc -2.434 -4,625,732 .032 .19

Asparagus a -.055 -361 .354 .7o straight econometric models and predictive equations
b -.054 -354 .351 .70

Brocc-.055 -361 .351 .70 based on simple linear regressions of LP results and
Broccoli a -1.888 -14,200 .063 .75

b -.842 -6,333 .063 .75-1.894 -16,233 .063 .75 the partial adjustment premise.
cantaloup -1.893 -14,237 .063 .75

Cantaloups a .960 22,779 .113 .64
b .634 15,044 .113 .64

Lettuce .955 22,660 .114 .64 Implications of Prediction Equation Parameters
Lettuce a 0 0 -8.484 · 35

b -.157 -14,583 -8.484 .35
.385 35,761 .303 .:04 With the preceding evidence that LP-based sup-

Potatoes a .853 40,720 .297 .70
b .817 39,001 .297 .70

'.852 40,672 .297 .70 ply equations depicted the real world as precisely as
Tomatoes a 0 0 4.689 .09

b -.265 -92,186 4.689 .09 did single commodity econometric equations, atten-
c -.008 -2,783 1.000 0

—-•—~~~~~ ~~tion is focused finally on implications of the LP-based

calcul estated.s were not parameter estimates. Although the LP results were
used as prior information, additional parameters were
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estimated when time series data were added. Some of the LP over or underestimated supply responsiveness.
these parameters provided evidence that the LP Widening production cost differences would cause the
model either over or underestimated supply respon- marginal cost curve to become steeper (i.e., the
siveness. For example, equations (5) and (6) imply supply curve less elastic). However, the problem in
that real world direct and cross price parameters in attempted calibration is that a change in the marginal
the supply of commodity i are estimated by LP- cost curve of one crop may alter supply curves of
derived parameters multiplied by 16il/(l- 1i2). From several crops because it alters comparative advantage
equation (11), 6l is the appropriate adjuster. The relations. Consequently, use of this information for
closer these coefficients are to 1.0, the closer the LP LP model calibration is likely to be more trial and
price parameters to those implied by LP-based predic- error than a precise analytic adjustment process.
tive equations.

Restricting our attention only to those LP-based
equations satisfying a priori expectations, and assum- SUMMARY
ing those equations correctly specified, implied co- This paper focused on LP model calibration and
efficients by which LP supply parameters should be evaluation. Two calibration procedures for scaling
multiplied are reported in Table 5. Across all crops initial cost and yield estimates were briefly reviewed
the average coefficient is 0.91, but individual coeffi- along with an evaluation procedure based on correla-
cients vary widely. Five are greater than 1.0, implying tions in regional resource use. Major attention was
that the LP model underestimated real supply respon- devoted to two methods for combining LP-derived
siveness. The rest are less, implying overestimation of parameters with time series data in making short run
supply responsiveness for the majority of crops. (i.e., one year) production predictions.
Consequently, it appears that the LP model did not In general, the predictions were not extremely
accurately estimate individual crop supply respon- accurate - of the best predictions for each com-
siveness. modity, six of the 15 missed the mark by more than

The ultimate use of this information would be to ten percent. However, they were comparable to the
recalibrate the LP model. Unfortunately, it is not predictive accuracy of single commodity straight
clear how this could be accomplished in a systematic econometric models. Furthermore, because of the
fashion. A first attempt might be to scale all great flux in the market system that year, predicting
deviations in unit production costs from actual base output levels in 1974 was a rigorous test. With regard
period crop price up or down depending on whether to relative performance, models based on the partial

adjustment premise proved to be more satisfactory
for the specific cases examined here than models
based on the adaptive expectations premise using a

TABLE 5. COEFFICIENTS FOR CALIBRATING maximum likelihood estimation procedure. They
LP SUPPLY RESPONSIVENESS satisfied a priori sign and magnitude expectations and

provided better goodness of fit for more crops than
Coefficients from models satisfying a priori the adaptive expectations procedure. They also pre-

sign and magnitude expectations

Commodity Number Range Average dicted more accurately for most crops and were less
expensive in terms of computation time.

Alfalfa hay 2 0.06-5.06 2.56Alfalfa hay 2 0.06-5.06 2.56 Both methods have the capability of preserving
Barley 4 0.07-0.49 0.35
Corn for grain 2 1.63-1.64 1.64 relative magnitudes of direct and cross relationships
Cotton 4 0.27-0.47 0.40 derived from parametric iterations of the LP model.
Dry beans 1 0.07 0.07 Both also permit re-estimation of the absolute magni-
Grain sorghum 2 0.03-0.04 0.04 tude of long run coefficients based on time series
Rice 1 0.04 0.04

Safflower 5 0.06-0.32 0.21 data. Although a systematic procedure for using this
Sugar beets 2 1.41-5.26 3.34 information in model calibration is not readily
Asparagus 0 apparent, it does serve as an additional basis for
Broccoli 1 0.22 0.22 evaluating the real world performance of the LP
Cantaloups 5 0.42-2.01 1.10Cantaloups 5 0.42-2.01 1.10 model. In this one regard, the LP model evaluated
Lettuce 2 0.28-0.39 0.34

Potatoes 5 0.61-3.09 1.58 was found wanting due to wide variability in supply
Tomatoes, response estimates relative to the time series estimates

processing 0
for individual crops.
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