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Estimation of Firm-Varying,
Input-Specific Efficiencies in
Dairy Production

Daniel A. Lass and Conrado M. Gempesaw II

Firm-varying production technologies were estimated using random coefficients regression
methods for a sample of Massachusetts dairy farms. Results were compared to OLS
Cobb-Douglas production function estimates. The random coefficients regression model was
found to virtually eliminate conventionally measured firm technical inefficiencies by

estimating individual firm technologies and ascribing remaining inefficiencies to specific

inputs. Input-specific measures of firm inefficiencies showed hired labor, land, and machinery
inputs to be used in excess of efficient levels. Livestock supplies were underutilized by all
farms. Efficiencies of feed, crop materials, fuels, and utilities varied, although estimated
means were closer to optimal levels

Measurement of economic efficiency has been an
important area of empirical research in production
economics. During the last decade, several studies
have been conducted to measure efficiency of
Northeast dairy production (e.g., Bravo-Ureta and
Rieger; Tauer and Belbase; Grisley and Mascaren-
has). Development of neoclassical economic the-
ory has provided means for identifying technical
and allocative efficiencies. Technical efficiency
typically is measured using estimated production
functions; deviations from the frontier are assumed
to represent technical inefficiencies, Econometric
estimation methods have progressed from cor-
rected least squares methods (Greene) to the sto-
chastic frontier, composed error model used in re-
cent studies (e.g., Bravo-Ureta and Riege~ Daw-
son and White). Inasmuch as output and input
prices are rarely available in cross-sectional firm-
level data, empirical measurement of allocative ef-
ficiency is seldom conducted. * Studies that do es-

Daniel A. Lass is an associate professor, Department of Resource Eco-
nomics, University of Massachusetts, Amherst, and Conrado M, Gem-
pesaw, II is an associate professor, Delawwe Agricultural Experiment
Station, Department of Food and Resource Economics, College of Ag-
ricultural Sciences, University of Delaware, Newark. Published as Mis-
cellaneous Paper no. 1446 of the Delaware Experiment Station, Com-
ments of the editor and two anonymous reviewers are gratefully ac-
knowledged. We also thank Dr. P.A. V,B, Swamy, Federal Reserve
Board, for allowing us to use the SWAMSLEY program. This research
was partially supported by USDA-ERS cooperative agreement no, 43-
3AEM-O-80062,

1Studies by Hopper, Sahota, Lau and Yotopordos, and, more re-
cently, Bravo-Ureta and Rieger, and Stefanou and Saxena are excep-
tions.

timate firm-level allocative efficiency must make
assumptions about input prices. For example,
Bravo-Ureta and Rieger utilized state-level com-
modity prices to represent firm-level prices for in-
put aggregates. The validity of such an approach
given aggregation of inputs is questionable.

In this study, we present an alternative approach
stipulating that production technology varies
across firms. To allow individual firms to have
their own production function, a random coeffi-
cients regression (RCR) model is used to estimate
individual firm-varying production frontiers. Ap-
plication of the RCR model also allows calculation
of disaggregated input-specific estimates of ineffi-
ciencies directly from parameter estimates. Kopp
presented measures of input-specific efficiencies.
However, his measures relied upon assumptions
about input prices and factor ratios. Unlike Kopp’s
measures, our approach estimates input-specific
efficiencies “simultaneously” and does not rely
upon input price or factor ratio assumptions. The
measures presented in this paper are of economic
or overall inefficiencies; technical and allocative
inefficiencies are not separated. Such estimates are
of interest, both from a research perspective as
well as the more practical input allocation perspec-
tive of farm managers. The technique applied here
represents a relatively new approach to estimation
of production relationships. The ability to identify
inputs that are overused or underused is important
from the practical standpoint.

There are two reasons why the RCR model is
appealing for production analysis. First, the exis-
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tence of a fixed-coefficient production function de-
scribing technology for all firms, such as the
Cobb-Douglas form, is questionable (Fisher, Zell-
ner). A common assumption in modeling produc-
tion functions is one of constant coefficients, im-
plying a stable production process being used by
all firms as characterized in their output supply,
input demand, and investment behavior. However,
as noted in several studies of production efficiency
(e.g., Yotopoulos and Lau), different farm sizes
may have different technological structures. The
conventional approach in the literature has been to
arbitrarily classify farm sizes based on acreage or
gross revenue, Use of the RCR model eliminates
such ad hoc procedures and allows the researcher
to measure production efficiency for individual
farms regardless of size distribution. If in truth,
industry technology cannot be described by a sin-
gle production function, then the parameter vector
for such a model does not have any meaningful
physical interpretation (Swamy, Conway and von
zur Muehlen). Existence conditions for varying-
coefficients models are less restrictive than those
of fixed-coefficient models (Narasimham, Swamy,
and Reed; Zellner).

Second, fixed-coefficients model construction is
based on prior information about data availability
and parameter vectors. However, one cannot dis-
tinguish among the imposition of structure, deter-
mination of the parameter vector, and restrictions
imposed by data. As a result, the model assumed
by the analyst determines interpretation of the pa-
rameter vector that may have no relationship to
reality. The RCR approach allows flexibility in
functional form of estimated firm production func-
tions. The functional form is flexible in that both
production elasticities and elasticities of substitu-
tion vary across firms.

Dairy Production and Efficiency Analysis

There are substantial data requirements for com-
plete analysis of both technical and allocative as-
pects of economic efficiency. Analysis of technical
efficiency requires firm-level output and input
data, while measurement of allocative efficiency
requires price data as well. Cross-sectional data for
dairy farms have been used to estimate primal and
dual models of production. Dual applications to
the dairy sector include Weaver and Lass, and Ste-
fanou and Saxena. In both cases, detailed price
data were available, allowing estimation of dual
profit functions. Weaver and Lass utilized data
from the 1974 U.S. Department of Agriculture
(USDA) Cost of Production Survey, which was

unusual for its detailed set of price data. Stefanou
and Saxena combined Pennsylvania Farmers As-
sociation and Dairy Herd Improvement Associa-
tion data to obtain necessary price information.
Unfortunately, detailed price information usually
is unavailable.

Estimation of the production function is an al-
ternative to the dual approach. Zellner, Kmenta,
and Dreze have shown that single-equation estima-
tion of the production function is valid if farmers
attempt to maximize expected profits. Griliches, in
his classic article, estimated an agricultural pro-
duction function in value form using aggregate
cross-sectional data. Prices are assumed fixed over
the time period for farmers, and changes in value
of production due to changes in input costs are
assumed to indicate production relationships.
Tauer and Belbase, for example, estimated a
Cobb-Douglas production function in value form
for New York dairy farmers. Resulting parameter
estimates are interpreted as production elasticities.
However, evaluation of marginal products is dif-
ficult because prices are typically unknown or
meaningless due to the level of aggregation.
Bravo-Ureta and Rieger estimated a stochastic pro-
duction frontier using the approach of Aigner,
Lovell, and Schmidt, and Meeusen and van den
Broeck. Technical efficiency was measured using
the one-sided component of the composed error.
Allocative efficiencies were measured by deriving
the cost function dual to the estimated production
frontier. They then used state-level prices in order
to estimate allocative inefficiencies.

Efficiency analyses have focused primarily on
technical efficiency using frontier production func-
tion methods.2 Technical efficiencies of dairy
farms in Maine and Vermont (Bravo-Ureta), Penn-
sylvania (Grisley and Mascarenhas), and New
York (Tauer and Belbase) have been considered
using frontier production techniques, Several dairy
farm efficiency studies have focused on factors
that may influence the level of technical effi-
ciency. Grisley and Mascarenhas considered nu-
merous farm characteristics, primarily ratios of
fixed and variable factors of production. Tauer and
Belbase concentrated on farm location and mana-
gerial indicators, such as record-keeping, DHIA
membership, age, and education. Several factors
were found to contribute to the level of technical
efficiency; however, these studies all maintain the
assumption of a common production technology.

2The pioneeringwork of Lau and Yotopoulos on technical and al-
locative efficiency is an exception. The recent work of Stefsrrou and
Saxerrafocused on allocative efficiency and the effects of human capital.
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As Stigler states in hls discussion of Leibenstein’s
article on X-Efficiency, ‘‘. . . attention to X-inef-
ficiency as the explanation is an act of conceal-
ment: it simply postulates the differences in tech-
nology among firms which should be explained”
(p. 215). In this paper, we consider an alternative
approach following Stigler’s suggestion; firms are
assumed to face different technologies. Measures
of inefficiencies are then calculated from these in-
dividual firm technologies.

Empirical Model

In most empirical work, parameters of primal or
dual functions are estimated using fixed-
coefficient least squares procedures. Thus, re-
searchers assume effects of exogenous variables
are constant through time or across observation
units for cross-sectional data. All firms are as-
sumed to face the same technology. A plausible
alternative would be to allow varying coefficients
through time or across observational units. Such
variations may be caused by differences in produc-
tion structure, available resources, and a host of
other farm-specific factors (i. e., management
skill). We assume the following production func-
tion:

K

(1)
k= 1

where coefficients vary across firms (i = 1, . . . ,
n):

(2) ~i~ = ~~ + ~i~.

The ~i~are individual firm production coefficients
defining the distribution of technology. Because
Xil = 1 for all i = 1, . . . , n, ~il are individual
firm intercepts, and ~il assume roles of usual fixed-
coefficient model random errors. This makes clear
the distinction between traditional production
function estimation and the approach taken here. If
only the intercept in equation (1) were allowed to
be random, the varying-coefficients model would
be equivalent to the classical fixed-coefficient re-
gression model (Narasimham, Swamy, and Reed).
The model used here is more general, allowing all
coefficients to be random.

Combining equations (1) and (2), the production
function is written

(3)
k= 1

Equation (3) represents a general set of nonlinear
equations that depend upon individual firm coeffi-
cient vectors. The form of the model used here is
appealing in that the usual assumption of a fixed-
coefficient model is relaxed, but not eliminated, as
a possibility. If coefficient variances are zero (for
k= 2,.. ., K), then the fixed-coefficient Cobb-
Douglas production function is appropriate.

As noted above, Stigler argued that technical
inefficiencies may reflect differences in technol-
ogy. We can illuminate Stigler’s argument by re-
writing equation (3) as follows:

K rK 1

In this form, the model appears as the typical
Cobb-Douglas production function. The first prod-
uct of terms ~n the right-hand side includes fixed
coefficients, ~k, and terms in brackets represent
usual fixed-coefficient model random errors. Esti-
mation of(4) by fixed-coefficient methods and cal-
culating technical inefficiencies from usual ran-
dom errors may be inaccurate. The usual random
errors may represent differences in technologies
rather than technical inefficiencies.

Individual coefficients of equation (3) define in-
dividual farm technologies. Coefficients are inter-
preted as individual firm-varying production elas-
ticities. First-order conditions for profit maximiza-
tion specify that each input coefficient should
equal the expenditure to revenue ratio:

where asterisks denote optimal choices, i-k are in-
put prices, and p is output price. All firms are
assumed to face the same prices. Comparison of
estimated individual coefficients (@iJ to actual in-
put expenditure to revenue ratios (sik) indicates in-
put efficiency. For example, the marginal product
of an underutilized input will be greater than the
input to output price ratio. As a result, the esti-
mated coefficient will be greater than the actual
expenditure to revenue ratio:

Similarly, if the input is overused, the marginal
product would be less than the input to output price
ratio. Ratios of estimated individual firm paramet-
ers with actual expenditure to revenue ratios give
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the following rules for judging firm-level individ-
ual input efficiencies:

{

> 1 input is overused;
(7)

sik
= 1 input is optimul;

z <1 input is underused.

Individual firm coefficients may vary from optimal
expenditure to revenue ratios for reasons of tech-
nical inefficiency or allocative inefficiencies.
While the model allows estimation of individual
input inefficiencies, we cannot distinguish the
causes of inefficiencies. In fact, we capture eco-
nomic inefficiency, which is the combination of
technical and allocative inefficiency.

Several factors of production maybe considered
quasi-fixed inputs. Because farms report no expen-
ditures on these inputs, estimation of efficiency for
quasi-fixed inputs is not possible. However, we
can estimate shadow values for quasi-fixed inputs
as follows. Equation (1) can be expanded to in-
clude quasi-fixed inputs, say Oil,and coefficients,
CXi,,which are also random. Given the functional
form in (3), quasi-fixed input coefficients also rep-
resent production elasticities:

d Yi 6i~
(8)

A —..
‘i~ = d Oi{ Y~“

The shadow value of the lth quasi-fixed input for a
profit-maximizing firm is determined as

(9)

The firm-varying shadow values can be calculated
by multiplying estimated individual firm coeffi-
cients by value of output, and dividing by quasi-
fixed input levels:

Swamy and Tinsley’s stochastic coefficients
model can be used to estimate th~ firm-varying
production functions in (3). Following Swamy and
Tinsley, varying-coefficient models may be writ-
ten in matrix notation as

(11) Yt = X;pt,
where

(12) P,– F= @(13-1 –~) + E,.

An important special case of this model arises
when the correlation matrix of varying coeffi-
cients, @, is a null matrix such that

(13) p,–~= e,.

The varying coefficients in equation (13) can be
described as random variables_drawn from a com-
mon distribution with mean (3. This departs from
the time-varying stochastic coefficient specifica-
tion in (12) because future values of varying coef-
ficients are unpredictable from past values. This is
a case where the regression slope is stochastic, but
not autocorrelated. If the production structure is
characterized by such behavior, the model is said
to be generated under a random-coefficients pro-
cedure. The RCR model is often appropriate in
analyzing cross-sectional data (Hildreth and
Houck). In this study, a single time period is con-
sidered and the subscript for time can be dropped. 3
The error matrix ~ is assumed to be a sequence of
uncorrelated random variables with expected mean
values of zero and constant variance-covariance
matrix denoted X, with zero off-diagonal ele-
ments. Since & and ~ are not known but must be
estimated, the Swamy and Tinsley algorithm pro-
vides for a data-based iterative estimation proce-
dure where Xc initially is chosen arbitrarily with
zero off-diagonal elements and @ is restricted to a
null matrix. Through several iterations, efficient
and consistent Rstimates of XCand (3are derived.
Mean values, ~, which provide the lowest root
mean square error, are selected and reported. In-
dividual coefficient estimates are compared to ac-
tual expenditureh-evenue ratios to determine firm-
varying inefficiencies in input use.

Results

Empirical models were estimated using 1988 sur-
vey data for 33 Massachusetts dairy farms (Engel,
Morzuch, and Lass). Variable-input expenditures
were aggregated into eight accounts: (1) fuels and
utilities; (2) crop production materials; (3) business
and office expenses; (4) land expenses; (5) total
purchased feeds; (6) hired labo~ (7) livestock sup-
plies; and (8) machinery services. In addition to
variable-input expenditures, a set of quasi-fixed
factors was included containing operator labor, un-
paid labor, and number of cows. A preliminary
investigation of multicollinearity was conducted
by calculating variance inflation factors for each
independent variable. Multicollinearity was not
found to be of concern. Descriptive statistics for
variables are presented in Table 1.

3 The matrix of individual coefficients, p, is then N by K, where N is
the sample numberof farms and K is the number of explanatoryvariables
plus a consfant.
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Table 1. Descriptive Statistics for
Massachusetts Dairy Farms, 1988

Means Means
per Farm per Cow
(N = 33) (N = 33)

Gross Returns ($)

Variable Inputs ($)
Fuels and utilities

Crop production materials

Business expenses

Land expenses

Purchased feeds

Hired labor

Livestock supplies

Machinery services

Quasi-Fixed Inputs
Operator labor (hours)

Unpaid labor (hours)

Herd size (number of cows)

138,524.13
(131,578.22~

8,373.18
(6431.53)

13,118.88
(19,752.56)

8,846.82
(12,468.36)
11,346.03

(13,762.25)
48,433.58

(54,289.82)
21,857.26

(33,963.42)
3,798.27

(3,235.14)
24,311.01

(18,361.75)

3,585.37
(1,330.17)

1698.01
(2,556.98)

77.58
(87.02)

1817.18
(411.33)

127.26
(54.23)
135.68
(91.51)
107.63
(79. 10)
163.58
(16.91)
631.51

(221.91)
225.57

(224.71)
55.42

(29.22)
212.32

(177.19)

76.56
(55.16)
38.72

(60.99)
77.58

(87.02)

‘Numbers in parentheses are standard deviations,

Farm Production Technology

A fixed-coefficients Cobb-Douglas production
function was initially estimated by ordinary least
squares (OLS) using data on a per cow basis. The
model fit the data well, explaining about 72% of
variation in output per cow. Independent variables
in the model were collectively significant (Fcalc =
4.93). White’s test for heteroskedasticity resulted
in a highly significant chi-square statistic. Coeffi-
cient estimates and t-statistics presented in Table 2
are OLS estimates using White’s heteroskedastic-
ity-consistent covariance matrix.

A random coefficients regression (RCR) model,
in firm-varying Cobb-Douglas form, was esti-
mated next using data on a per cow basis.4 Esti-
mated mean coefficients and asymptotic t-statistics
for the mean coefficients are presented in Table 2,
Coefficient estimates for individu_d farms were es-
timated using the mean vector (p) and decompo-
sition of the variance-covariance matrix (Xe). OLS
coefficient estimates and mean RCR estimates are

4 The Swsmy and Tinsley estimator corrects for hetcroskedasticity
problems.

comparable. OLS and mean RCR estimates all had
the same signs, and magnitudes were similar.

There was variation in individual farm produc-
tion technologies. Minimum and maximum values
for individual farm coefficient estimates (($J are
presented in Table 2. Coefficients for fuels and
utilities, crop production materials, and business
and office expenses varied from mean estimates by
plus or minus 7% to 99i0.Individual farm produc-
tion coefficients for land and labor varied most
from mean estimates. The maximum coefficient
for land was 100% greater than the mean estimate,
and the minimum coefficient for hired labor was
nearly 70% lower than the mean coefficient esti-
mate. Individual coefficients for machinery ser-
vices also had significant variation, about 23% on
either side of the mean estimate. Remaining indi-
vidual farm coefficient estimates had little varia-
tion, about 2% or less.

Estimated fixed coefficients for quasi-fixed fac-
tors were also comparable to the mean estimates
for the RCR model. Coefficients for operator labor
and unpaid labor were statistically different from
zero in both models. Comparison with previous
studies is difficult since operator labor is often
combined with other family labor (Tauer and Bel-
base) or aggregated into a single labor measure
with family and hired labor (Bravo-Ureta and
Rieger). It appears from the results that Massachu-
setts dairy farmers use unpaid labor beyond an eco-
nomically efficient level. Estimated OLS and
mean RCR parameters for unpaid labor were neg-
ative and statistically different from zero. Results
suggest that there are opportunity costs of unpaid
labor in terms of lower production, possibly due to
training costs of children. These results suggest
aggregating labor in production analyses can result
in biased estimates of operator labor and/or hired
labor production elasticities.

Eficiency Analysis

One objective of this study was to analyze farrn-
varying input-specific efficiency. An important as-
pect of the RCR model is its ability to ascribe farm
inefficiencies to individual inputs. Frontier meth-
ods of efficiency analysis utilize estimates of ran-
dom errors to calculate aggregate farm technical
inefficiency, Estimates of technical efficiency typ-
ically employed in the literature do not capture
input-specific inefficiencies. The stochastic fron-
tier method of Aigner et al. is the prominent
method for estimating both a one-sided error (tech-
nical efficiency) and a purely random two-sided
error. Our approach is to estimate individual farm
technologies and then calculate inefficiencies us-
ing these individual farm technologies. In this
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Table 2. Production Function Estimates, Massachusetts Dairy Farms, 1988”

Fixed-Coefficient
Rarrdom-CoefficientEstimates

Variable Estimates (OLS) Means Minimum Maximum

Variable Inputs
Fuels and utilities

Crop materials

Business expenses

Land expenses

Purchased feeds

Hired labor

Livestock supplies

Machinery expenses

Quasi-Fixed Inputs
Operator labor

Unpaid labor

Number of cows

Intercept

0.0776
(1.35)’
0.0505

(2.17)*
0.0869

(2.68)*
0.0139

(0.49)
0.2914

(3.67)*
0.0114

(1.31)
0.1559

(2.95)*
0.0378

(0.94)

0.1798
(3.35)*

–0.2334
(–5.67)*

0.2943
(0.66)
3.5675

(6.94)

0.0832
(1.26)
0.0473

(2.56)*
0.0822

(2.25)*
0.0081

(0.24)
0.3308

(4.47)*
0.0100

(0.99)
0.1563

(2.82)*
0.0324

(0.87)

0.1813
(2.08)*

-0.2746
(-5.03)”

0.0337
(0.62)
3.3490

(5.33)*

0.0759

0.0436

0.0756

–0.0019

0.3258

0.0031

0.1529

0.0250

0.1793

– 0.2747

0.0297

3.3343

0.0892

0.0520

0,0883

0.0162

0.3352

0.0167

0.1591

0.0398

0.1825

-0,2746

0.0389

3.3635

“Both fixed- and random-coefficient models were estimated in Cobb-Douglas form
~he numbers in parentheses are r-ratios (OLS) and asymptotic t-ratios (RCR).
*Statistically dlff;rent from zero at the 5~o level or better;

way, aggregate inefficiency can be ascribed to in-
dividual inputs. To demonstrate, RCR results are
compared to a corrected ordinary least squares
(COLS) approach to measuring technical ineffi-
ciency (Greene).

COLS technical inefficiency measures were cal-
culated using the regression results in Table 2.5
The COLS method of measuring technical ineffi-
ciency indicated that Massachusetts dairy farmers
in this sample were 78% efficient on average (Ta-
ble 3). The minimum level of efficiency was 58%.
The results are comparable to those reported by
Bravo-Ureta, and Bravo-Ureta and Rieger for New
England dairy farms, and Grisley and Mascarenhas
for large Pennsylvania farms. Tauer and Belbase
found New York dairy farms to be slightly less
efficient using the same method.

In the RCR model, equation errors are not dis-
tinguished from errors of the constant term (@jO).
Thus, a‘ ‘corrected” RCR model can be developed
by shifting firm-level production functions using
errors for the constant terms. This is analogous to

the COLS approach. Results showed that virtually
all errors considered to be technical inefficiencies
in the COLS model are ascribed to individual in-
puts when individual farm technologies were esti-
mated using the RCR model. This may mean that
past estimates of technical efficiencies using
COLS and other frontier methods were inappropri-
ate because they did not account for differences in
firm technologies. Previous estimates of technical
inefficiency may have been measures of differ-
ences in farm technologies. These results support
Stigler’s argument.

Comparison of RCR estimated individual farm
coefficient estimates with actual expenditure to
revenue ratios allows us to identify inputs that are
used inefficiently for each farm. Mean, minimum,
and maximum values are presented in Table 3 for
each variable input. As seen in Table 3, farmers
have a wide range of efficiencies. On average,
land and hired labor were managed least effi-
ciently. All farms utilized excessive amounts of
land, and a majority of farms used too much hired
labor.6 Machine~ services were also used in ex-

5 The composite-error methodology of A1gner, Lovell, and Schmidt
was applied tn the data; however, the nne-sided error dld not exist,
making OLSresults maximum-likelihood estimates. 6 As one referee pointed out, excessive use of land and labor may
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Table 3. Measures of Massachusetts Dairy Farm Ineftlciency, 1988

Regression Model Mean Minimum Maximum

Corrected Ordinary Least Squares
Technical efficiency’ 0.780 0.583 1.000

(0.096)’
Random Coefficients Regression

Technical efficiency’ 0.999 0.997 1.000
(0.001)

Input-specific efficiency
Fuels and utilities 0.923 0.299 3.107

(0.522)
Crop materials 1.609 0.011 4.080

(1.109)
Business expenses 0.733 0.114 1.788

(0.468)
Land expenses 10.712 1.704 64.060

(11.265)
Purchased feeds 1.067 0,396 2.121

(0.348)
Hired labor 15.818 0.046 114.833

(22.335)
Livestock supplies 0.199 0,072 0.531

(o. 104)
Machinery expenses 6.627 0.939 17.992

(4.344)
Shadow pricesd

Operator labor ($/hr.) 3.01 0,77 5.53
(1,28)

Unpaid labor ($/hr.) –7.22 – 13.65 –1.12
(3.31)

Number of cows ($/cow) 63.74 36.14 94.83
(16.54)

aTechnical efficiency is measured by shifting the producing function using OLS errors.
‘Numbers in parentheses are standard deviations from the means.
‘Technical efficiency is measured by shifting the production functions using errors for the constant term.
‘Shadow prices are measured as annual value for one unit of the quasi-fixed input.

cess of efficient levels. Only one farm had an ef-
ficiency measure value of unity or less for machin-
ery services. Consistent underutilization of live-
stock supplies was also an important result.
Livestock supplies include veterinary and breeding
expenses. It appears that farmers could improve
farm profitability by paying closer attention to herd
health and breeding.

Variable inputs that farmers are more adept at
managing include fuels and utilities, crop materi-
als, business expenses, and purchased feeds.
Means for these categories were relatively close to
unity and variations in individual estimates were
smaller. Purchased feeds, for example, was closest
to the optimum value of unity and had limited vari-
ation. Farmers apparently are conscious of feed
expenditures, possibly because farm management
services commonly provide statistics on ‘‘concen-
trates fed. ”

Quasi-fixed input shadow prices are presented in

indicate risk aversion. Impacts of risk attitudes on efficiency is one
direction for future researeh,

Table 3. On average, operator labor was valued at
about $3 per additional hour. Unpaid labor had a
substantial negative shadow value. On average,
unpaid labor cost the farm more than $7 for each
additional hour. It must be noted that finding un-
paid labor to be detrimental to production was un-
expected, but not totally surprising. Among a host
of reasons, this result could indicate costs associ-
ated with training children, excessive use of labor
due to risk aversion, or farm operators overstating
actual labor of unpaid family labor. The true value
of unpaid labor is an empirical issue; the results of
this study suggest there is a good deal of work
needed in this area. Shadow values for cows were
positive, but low. The average value for an addi-
tional cow was about $64 a year. The minimum
shadow value for a cow was about $36 a year and
the maximum value about $95 a year.

Summary and Conclusions

This study introduced another approach to the es-
timation of firm inefficiencies. Stigler suggested
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that measurement of technical inefficiencies may
indicate differences in technology across firms.
Traditional measures of technical inefficiency cal-
culated from a fixed-coefficient estimation tech-
nique (corrected ordinary least squares) were com-
pared to similar measures from the random coef-
ficients regression model allowing firm-varying
technology. In both cases, traditional measures of
technical inefficiency were calculated by shifting
the production frontier. Virtually all technical in-
efficiency, as measured traditionally by corrected
ordinary least squares, was either ascribed to indi-
vidual input use or eliminated by estimating firrn-
varying technologies. Thus, implications from past
studies that technical inefficiencies can be repre-
sented by neutral shifts of the frontier production
function are misleading.

Economic inefficiencies were also estimated us-
ing individual firm coefficients. Results of this
study showed labor, land, and machinery use to be
relatively inefficient on Massachusetts dairy
farms. All farms used too much land, and all but
one farm employed machinery beyond optimal lev-
els. One input, livestock supplies, was underuti-
lized by all dairy farmers. Variable inputs that
were used more efficiently by Massachusetts dairy
farmers were fuels and utilities, crop materials,
and purchased feeds. Shadow values for the quasi-
fixed inputs operator labor and dairy cows were
lower than expected, and shadow values for unpaid
labor were negative for all farms.

The methodology presented here has consider-
able promise in analysis of firm inefficiencies. By
estimating firm-varying technologies, previously
accepted measures of technical inefficiency can be
explained by differences in technology and as-
cribed to specific input utilization. Firm-level anal-
ysis of input allocations can be used to guide farm
decision making. For example, firms that over- or
underutilize specific inputs can be identified from
the results. The random coefficients regression
model shows substantial flexibility in extending
rigorous empirical modeling to the farm level.
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