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Abstract

We adapt the classical SUR procedure to a minimum cross entropy approach to estimate
linear systems of equations where the errors across equations are correlated.  We conclude that our
entropy-based approach may provide a reasonable substitute for SUR in cases where classical
methods may not be applied due to shortages of data.
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Entropy-based Seemingly Unrelated Regression

The standard least squares approach to regression problems is based on the model where y
denotes our dependent variable, x denotes the independent variables, $ denotes the parameters to be
estimated, and , denotes an error term.  This standard approach assumes nothing about $.  However,

it makes moderately strong assumptions regarding the error term, ,.  The error term is assumed to
be independent normal with mean zero.  The error variance, F , is unknown.2

An alternative approach that has been gaining attention is based on the principal of maximum
entropy.  In contrast to the least squares approach, the entropy approach makes relatively strong
assumptions regarding $.  Assumptions are made on the bounds for the $’s and “priors” regarding
their values are assumed.  However, fewer assumptions are made regarding the error terms.  The
error terms are assumed to have a bounded, discrete support and mean zero, but no other structure
on the distribution of , is assumed.  While the advantages and disadvantages of these two approaches
to estimating the relationships between variables are under evaluation, there is no clear consensus on
the superiority of either approach.  

Due to its long-standing use in estimation problems, least squares methods have been adapted
for a number of problems related to (1).  One adaptation is for the estimation of parameters in
systems of equations.  Due to the perpetual problem of omitted variables, an important feature of
these system estimation problems is that the errors in (1) are often correlated, not across
observations, but across the equations in the system.  The Generalized Least Squares (GLS)
approach, which encompasses many of the adaptations of (1), has been specialized to the estimation
of systems where errors are correlated across equations, resulting in the method of Seemingly
Unrelated Regressions (SUR).  
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Golan, Judge, and Miller (GJM, 1996)  address GLS and specifically SUR problems in their
recent book on using entropy for the general linear problem.  However, the implementation of their
approach is somewhat unclear, and their methods that recognize correlated errors are not easily
operationalized.  Their approach requires prior information on the correlations between the cross-
equation errors in the system.  This information is not usually known before estimation, but is a result
of the estimation process.

The goal of this paper is to develop an easily implemented approach to estimation via the
entropy method that closely parallels the SUR method, and then to  compare the results of these two
approaches to estimation.  The well-known General Electric/Westinghouse data set (Boot and deWitt,
1960) will be used to develop the relationship between gross investment (the dependent variable) and
the other variables.  Estimates will be obtained for both the iterative cross-entropy approach to be
developed as well as estimates for the more traditional methods of least squares, Aitken 2-step, and
maximum likelihood using the general algebraic modeling system GAMS (Brooke, Kendrick, and
Meeraus, 1992).  Using the parameter estimates, the similarity of the results is tested by checking that
the iterative cross-entropy estimates fall in a 95% confidence interval of the traditional estimates.
Further comparison will be done by computing the summary statistics of the errors, including the sum,
the variance, and the maximum and minimum values, for both methods and examining each step of
the iterative process for both methods.

Background Theory

SUR is a general error covariance statistical model which can be viewed as a special case of
GLS.   In classical SUR, both the parameters of the conditional means and the error covariance matrix
are estimated.  The SUR label arises because a separate estimation of the relations ignores the
possible correlation of the equation errors.  Thus with SUR, the covariance matrix the potential for
nonzero covariance between the errors in different equations, but not across observations.  

The SUR estimation problem begins by estimating the system using ordinary least squares.
Then the covariance matrix of the errors across equations is computed.  At the next step, parameter
estimates based on feasible GLS using the OLS estimate of the error covariance are computed.  If
iterations are halted at this point, the technique is often called Aitken 2-step.  This estimation process
results in new errors, and a new covariance matrix of the errors may be computed.  The new matrix
is used to weight the errors, and the GLS estimates may again be obtained.  If this procedure is
repeated until the estimates and covariance matrix converge, the result is the iterated SUR method
and the estimates are maximum likelihood.

Adapting SUR to the Entropy Framework

GJM address the problem of seemingly unrelated regressions  in their book.  They suggest a
Generalized Maximum Entropy (GME) approach combined with SUR.   To reflect the non-zero
covariances between errors across equations, they specify, within a maximum entropy format, an
additional set of restrictions that force the error covariance to equal specified values.  Because the
errors are constrained to have the specified covariance structure, the covariance must be known a
priori, and it is unclear how one would adapt the procedure to the normal case where the covariance
matrix must also be estimated.    
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A Cross-Entropy Approach

Our entropy-based approach is iterative and parallels the classical SUR procedure closely.
To focus attention on the treatment of correlations between the errors, the errors will be
“reparameterized”, but the coefficients $ will not.  Thus, the estimation problem will be changed from
the least squares setting only via the treatment of the errors.  

This approach is Bayesian in flavor and uses a prior distribution on the errors for computing
the parameter estimates.  As with the traditional SUR method, the initial assumption is that the errors
are independent across the equations.  The GJM entropy approach requires that we specify a discrete
support for the errors.  This support is chosen for each individual error to be -5F, 0, 5F with prior
probabilities 1/50, 48/50, 1/50, respectively.  The resulting distribution has mean zero, variance F ,2

no skewness and broad support.  

These features are vaguely similar to the normal distribution.  Because the errors across
equations are correlated, they must be treated as jointly distributed.  Thus to start the method, the
prior distribution of the errors across equations is set to the n-fold Cartesian product of the priors for
the individual errors for the n equation case.  This means that for a two equation system, the prior
joint distribution of the errors will contain nine points which will be organized as in Figure 1a.  (The
balance of the exposition will focus on this two equation case.  The generalization to n equations is
straightforward.)

For convenience in describing the parameterization of the errors, the equations are ordered
as follows: (1,1), (2,1), (1,2), (2,2), (1,3), (2,3), ... where the first index corresponds to the equation
number in the system, and the second index corresponds to the observation number.  That is, rather
than ordering the system equation by equation, it is ordered by observation.  This simplifies the
specification of the matrix V below.  If the prior joint distribution’s probabilities are denoted by q  forj

j = 1,2,...,9, and the prior distribution points are denoted by a matrix V, where 

and the weights associated with the columns of V are w = [w , w , ..., w , w , ..., w ], then the11 12 19 21 n9

minimum Cross Entropy problem that is analogous to the OLS problem that is used as the initial step
of the traditional SUR approach is
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This minimum Cross Entropy formulation chooses parameters $ and weights w as “close” as
possible to q, where q = [q , q , ..., q , q , ..., q ] is the prior distribution of probabilities (Kapur and1 2 9 1 9

Kesavan, 1992).  The errors associated with each observation may be obtained as 

The covariance matrix is computed based on these errors.  The Cholesky decomposition of this
covariance matrix is then used to linearly transform the points in the prior distribution, u, with the
result that the covariance matrix of the prior is equal to the covariance matrix of the errors obtained
from the previous problem.  The model is re-estimated with the updated prior distribution.

If G is the covariance matrix of the errors, and D where D D = G is obtained from thet

Cholesky factors of G, then the minimum Cross Entropy problem with the updated prior is identical
to (2), but the matrix V is replaced by 

After solving this problem, the estimates are analogous to an entropy version of Aitken 2-step.
The covariance matrix of the errors is recomputed, a new Cholesky decomposition is computed, and
the matrix V is transformed so that the covariance matrix of the prior again matches the covariance
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matrix of the errors from the previous estimation problem.  As in traditional SUR, this process repeats
until the $ estimates converge.

Data

The General Electric/Westinghouse data set (given in Appendix A), reports gross investment,
end-of-period capital stock, and end-of period value of outstanding shares.  This data was used to
compare our proposed method with the more traditional methods.  We first employed the traditional
methods of ordinary least squares, Aitken 2-step, and iterated SUR. Then our cross-entropy approach
was applied to the same data set for comparison.

Results

The parameter estimates for the more traditional methods of least squares, Aitken 2-step, and
maximum likelihood, as well as the parameter estimates for the corresponding Cross Entropy
problems, are shown in the Table 1.  The parameter estimates from these two approaches are quite
similar, but not identical.  The signs and magnitudes of the estimated coefficients agree across
methods, and excluding the intercept, seven out of twelve of the estimates match the first significant
digit.  Furthermore, the Cross Entropy parameter estimates fall well within 95% confidence intervals
of the traditional estimates.  While the latter point does not imply that one method or the other is
closer to “true” values, it does provide evidence that the methods produce similar results.

To extend the comparison, the summary statistics of the errors are examined.  The sum, the
maximum and minimum values, and the sum of the absolute errors were computed for both methods.
The sum of the errors in the cross-entropy approach stand out, because they are not forced to sum
to zero as they do automatically in the least squares case.  However the maximum and the minimum
values, compared between methods, are close.  The sum of the absolute errors are also of similar
magnitude but are uniformly lower for the entropy-based approach.

To give insight into the dynamics of the iteration process, Table 3 lists the covariance matrices
for the errors for both methods.  Comparing across the least squares and cross-entropy methods,
these matrices are quite similar.  All of the variances except one agree to one significant digit, and all
of the covariances except one agree to two significant digits.  In both cases, the disagreement is for
the case where iterations continued to convergence (i.e., Max Likelihood for least squares, and CE
Iterated for cross-entropy).

In the cross-entropy formulation, recall that the effect of the covariance matrix on the
estimation problem is through rotation and scaling of the joint prior distribution for the errors across
equations.  The effect on the prior for this problem is illustrated in Figures 1a-1c.  For both methods,
the covariance matrix changes much more in going from the case of independent errors to the first
GLS iteration than in all subsequent iterations combined.  Hence, it is not surprising to see that the
prior distribution changes far more in going from the independent case to the prior for the first
rotation and scaling than for the subsequent rotations and scalings.  That is, it is not surprising that
Figures 1a and 1b are very different, while Figures 1b and 1c are qualitatively quite similar.
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Table 1. Parameter Estimates for Least Squares and Entropy-Based SUR Methods & 95%
Confidence Bounds for Least Squares Estimates

General Electric Westinghouse

Intercept $ $ Intercept $ $C F C F

Least Squares

OLS -9.956 0.152 0.027 -0.509 0.092 0.053 

Aitken 2-Step -27.719 0.139 0.038 -1.252 0.064 0.058 

Maximum Likelihood -30.748 0.136 0.041 -1.702 0.056 0.059 

Cross Entropy

CE Indep. Errors -11.194 0.156 0.025 -0.559 0.106 0.051 

CE 2-Step -30.303 0.147 0.037 -0.374 0.075 0.054 

CE Iterated -32.928 0.145 0.038 -0.869 0.069 0.055 

95% Confidence Intervals for Least Squares Estimates

OLS [-76.32,56.14] [0.097,0.205] [-0.006,0.059] [-17.42,16.40] [-0.026,0.211] [0.020,0.086]

Aitken 2-Step [-89.82,33.96] [0.086,0.198] [0.008,0.069] [-17.20,14.64] [-0.048,0.176] [0.027,0.088]

Maximum Likelihood [-93.60,31.62] [0.082,0.190] [0.010,0.071] [-17.59,14.12] [-0.056,0.167] [0.029,0.090]

Table 2. Residual Analysis

General Electric Westinghouse

E  e max e min e E  *e * E  e max e min e E  *e *i i i i i i i i i i i i

Least Squares

OLS 0 58.737 -37.511 398.867 0 17.265 -13.505 163.674

Aiken 2-step 0 54.912 -34.511 420.555 0 16.493 -12.323 169.334

Maximum Likelihood 0 54.157 -36.013 428.741 0 16.562 -12.162 170.949

Cross-Entropy

CE Indep. Errors 46.208 61.613 -36.589 390.966 5.030 17.903 -13.975 160.739

CE 2-Step 53.589 58.492 -30.390 408.956 16.449 17.347 -11.766 165.561

CE Iterated 53.957 57.559 -30.465 414.275 16.2758 17.234 -11.395 166.806
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Table 3. Final Covariance Matrices of the Residual Errors

Least Squares Cross-Entropy
GE W GE W

OLS CE Ind. ErrorsGE GE660.829 176.449 667.045 176.351

W W176.449 88.662 176.351 89.042

GE W GE W

Aiken 2-step CE 2-StepGE GE689.4188 190.636 684.416 187.483

W W190.636 90.065 187.483 90.160

GE W GE W

Max  Likelihood CE IteratedGE GE702.233 195.352 691.052 190.038

W 195.352 90.953 W 190.038 90.510

Conclusions

We have developed an entropy-based analogue to the SUR method which is practical to
apply.  The method appears to function similarly to the traditional SUR method and produces similar
estimates.  Hence, it is possible to conclude that an entropy-based approach may provide a reasonable
alternative to SUR.  This approach is applicable in both the standard SUR case as well as in cases
where there are cross equation restrictions such as in the case of demand systems.  Given the sparse
nature of demand data in many cases, the combined approach may be most useful for coping with
correlated errors across equations in demand systems.  While this paper does not advocate replacing
SUR with the combined cross-entropy/SUR approach, this approach may be useful in cases where
classical methods may not be applied due to shortages of data.



Figure 1a.  The Initial Prior
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Figure 1b.  The Prior After One Step
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The axes labeled GE correspond to the errors for General Electric, and the axes labeled W correspond to the errors for
Westinghouse.  The decimal values shown near the points in Figure 1a are the corresponding probabilities.  The same
probabilities apply to the rotated and scaled points in Figures 1b and 1c.
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Appendix A

General Electric Westinghouse

Gross End-of-period End-of-period value of Gross End-of-period End-of-period value of
Investment Capital Stock outstanding shares Investment Capital Stock outstanding shares

1935 33.10 1170.60 97.80 12.93 191.50 1.80 

1936 45.00 2015.80 104.40 25.90 516.00 0.80 

1937 77.20 2803.30 118.00 35.05 729.00 7.40 

1938 44.60 2039.70 156.20 22.89 560.40 18.10 

1939 48.10 2256.20 172.60 18.84 519.90 23.50 

1940 74.40 2132.20 186.60 28.57 628.50 26.50 

1941 113.00 1834.10 220.90 48.51 537.10 36.20 

1942 91.90 1588.00 287.80 43.34 561.20 60.80 

1943 61.30 1749.40 319.90 37.02 617.20 84.40 

1944 56.80 1687.20 321.30 37.81 626.70 91.20 

1945 93.60 2007.70 319.60 39.27 737.20 92.40 

1946 159.90 2208.30 346.00 53.46 760.50 86.00 

1947 147.20 1656.70 456.40 55.56 581.40 111.10 

1948 146.30 1604.40 543.40 49.56 662.30 130.60 

1949 98.30 1431.80 618.30 32.04 583.80 141.80 

1950 93.50 1610.50 647.40 32.24 635.20 136.70 

1951 135.20 1819.40 671.30 54.38 723.80 129.70 

1952 157.30 2079.70 726.10 71.78 864.10 145.50 

1953 179.50 2371.60 800.30 90.08 1193.50 174.80 

1954 189.60 2759.90 888.90 68.60 1188.90 213.50 

Table from data given in J.C.G. Boot and G.M. deWitt, “Investment Demand: An Empirical Contribution to the
Aggregation Problem,” International Economic Review, January 1, 1960, pp 3-30.


