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Abstract

This paper tests a series of prominent hypotheses regarding the determinants of per-capita
income using a novel spatial econometric approach to control for spillovers among neighboring
countries and for spatially correlated omitted variables. We use simultaneous equations to
identify alternative channels through which country characteristics might affect income, and then
test the robustness of those effects. We find support for both “institutionalist” and *“geographic”
determinants of income. A time-varying index of institutional quality has a strong independent
effect on current income, but there is also a persistent effect of geographic factors such as
seasonal frost, malaria transmission, and coastal location, which influence income through their
links to agricultural output, health, urbanization and trade. The data cover 95 countries across the
world from 1960 through 2002, which we use to construct a pooled dataset of nine 5-year
averages centered on 1960, 1965, and so on through 2000. We use both limited and full
information estimators, partly based on a generalized moments (GM) estimator for spatial
autoregressive coefficients, allowing for spatial error correlation, correlation across equations,
and the presence of spatially lagged dependent variables.

Key words:  economic growth, geography, institutions, spatial econometrics,
simultaneous equations
JEL codes:  C31, C33,118, O13,R12

Copyright © by Ngeleza, Florax and Masters. All rights reserved. Readers may make verbatim
copies of this document for non-commercial purposes by any means, provided that this copyright
notice appears on all such copies.



GEOGRAPHIC AND INSTITUTIONAL
DETERMINANTS OF ECONOMIC GROWTH:
A SPATIO-TEMPORAL SIMULTANEOUS EQUATION APPROACH

1. Introduction

Real income per person varies widely around the world. Most of that variation is associated with
differences across countries, rather than within them (Sala-i-Martin 2006). What accounts for
this “country effect” on productivity and well-being? In this paper we test some of the most
influential theories using a new econometric estimator, allowing for a wide range of
neighborhood effects in space and time.

Following Douglass North (1990) and others, economists have long argued that income
depends primarily on economic and political institutions. This view emphasizes the role of
property rights, market infrastructure and price incentives as the key cause of differences in
investment and economic growth. These institutions may correspond to national government
policies, but they may arise and spread in other ways as well. An alternative approach
championed in recent years by Jared Diamond (1997) and particularly by Jeffrey Sachs (2001)
uses location-specific geographic and technological factors to explain income differences. This
approach argues that geographic obstacles to improving public health, agricultural productivity
and transportation infrastructure could explain cross-country differences in average incomes, and
perhaps also help account for cross-country differences in economic institutions.

The policy implications of the two views are starkly different. The “institutions first”
approach implies that countries can all converge to a common level of income, provided that
they adopt similarly favorable institutions. The “technology first” view argues that those
institutions will not have similar payoffs everywhere, leaving the poorest regions in need of
exogenous injections of public investment for R&D and infrastructure to overcome their
geographic handicaps. Intervention might be most important in sectors where technologies are
location-specific, particularly in agriculture, where different locations require different crop and
livestock techniques, and in public health, where different locations face different kinds of

disease pressure.



A principal challenge in testing among competing hypotheses is endogeneity: any
observed correlation between institutions and income could be due to reverse causality, or to
omitted variables that affect both of them. Using a system of equations approach to account for
reverse causality some of the most widely cited results are due to Rodrik, Subramanian and
Trebbi (2004), Easterly and Levine (2003) and Acemoglu, Johnson and Robinson (2001). These
studies find that geographic location is correlated with income only through its influence on
institutions, and geographic location as such has no additional effect. But researchers using other
variables and specifications have found different results. For example, Gundlach (2004) finds a
large and robust influence of the location-specific degree of malaria transmission, independently
of a country’s institutions.

A second fundamental challenge in testing across countries is spatial correlation: there
are obvious geographical clusters of rich countries and poor ones. Geographic clustering could
be due to spatially correlated attributes such as climate or access to transport, or to interactions
among neighbors such as trade or migration; for recent reviews, see Magrini (2004) and Abreu,
de Groot and Florax (2005a). We have data for some geographic attributes and for some
interactions among countries, but there are inevitably omitted variables of both types which
could account for such geographic correlations as the synchronized growth fluctuations in Latin
American and elsewhere documented by Temple (1999). In this paper we build on the spatial
estimator developed by Kelejian and Prucha (2004) to control for very general kinds of
neighborhood and spatial spillover effects, while allowing for endogeneity of key regressors.
Doing so raises the bar for each hypothesis, by testing them against a wider range of alternative
processes.

The remainder of this paper is organized as follows. Section 2 introduces a particular
simultaneous equation model accounting for several possible channels by which institutions and
technology could influence income. Section 3 presents the data, and provides an exploratory
empirical assessment of the dynamics over space and time of the key variables in the system. In
Section 4, we compare the estimation results of a non-spatial version of the system to the results
based on the Kelejian and Prucha (2004) estimator allowing for spatial error autocorrelation,
correlation across equations, and the presence of spatially lagged dependent variables. Section 5

provides conclusions.



2. Determinants of income across countries: a spatial system of equations approach

The modern literature on the empirics of economic growth across countries begins with Baumol
(1986), who established the tendency of countries to converge towards a common income level.
Such convergence was predicted by growth models with diminishing returns to capital, and was
found by a very large number of studies using the specification pioneered by Barro (1991).
Typically, convergence was found to be conditional on a number of factors, including both
geographic and technological variables as well as institutional or policy measures (see e.g., Sala-
i-Martin 1997), but the estimated coefficients varied widely and their interpretation remained
controversial (see Abreu, de Groot and Florax 2005b, and Dobson, Ramlogan and Strobl 2006,
for an overview). Following Hall and Jones (1999), attention shifted to the determinants of
income levels, focusing particularly on the development of new identification strategies such as
those introduced by Acemoglu, Johnson and Robinson (2001) to account for the endogeneity of
economic institutions and policy choices.

In this paper, we want to allow for different types of spatial autocorrelation processes to
affect a variety of endogenous variables, and also to affect income through other means. For this
purpose, we adopt an explicit three-stage least squares approach, with panel data in a system of
simultaneous equations. By identifying the entire system, the role of each possibly endogenous
determinant of income is tested through an association with particular exogenous variables. Our
identification strategy rests on that exogeneity, together with the exclusion restrictions by which
those variables are tied to particular development channels (Klein and Vella 2005). These
identifying assumptions are plausible but are not tested here. Our goal is to posit a relatively
large and quite general representative system, and leave more general testing of its particular
specification to future work.

The particular system of equations we use specifies six endogenous variables that jointly
influence income. The endogenous variables are: agricultural output, as measured by the Food
and Agricultural Organization’s (FAO) index of net production at international prices; infant
mortality, as estimated by the World Health Organization, which we use as a measure of general
health; schooling, from the Barro-Lee measure of average educational attainment for the

population; institutional quality, using a combination of measures from Freedom House and the



International Country Risk Guide (ICRG); urbanization, the fraction of the population in towns
and cities reported to the FAQO; trade, using the sum of exports plus imports as a fraction of
GDP, from the Penn World Tables (PWT) 6.2; and finally income, using real GDP per capita,
chain indexed, also from version 6.2 of the PWT.

Each of our endogenous variables has been widely used in the growth literature.
Together, they capture a broad range of potential growth mechanisms, whose significance is
econometrically identified and tested across seven equations using ten variables, which we
assume to be exogenous. The exogenous variables can be grouped in five different categories:
farmland and climate, disease ecology, social history, coastal location, country size.

The set of farmland and climate variables helps identify the potential influence of
agricultural output. The specific variables we use are the FAO estimate of agricultural land area,
an estimate of average land quality from the United States Department of Agriculture (USDA),
and data on prevalence of frost in winter and annual rainfall from the Intergovernmental Panel
on Climate Change (IPCC). These variables are included as potential determinants of agricultural
production, but are plausibly excluded from having any significant direct effect on economic
activity outside of agriculture.

The disease ecology variable helps identify the potential influence of disease
transmission on health, through either labor productivity in agriculture or through infant
mortality to non-agricultural activities. The specific variable we use is malaria ecology from
Kiszewski et al. (2004), which captures the ease with which a mosquito-borne disease would
spread from person to person, whether or not the disease is actually present. This variable is
expected to have an influence on agricultural productivity and on infant mortality, but it is
excluded from having any direct effect elsewhere.

A set of social history variables helps identify the role of institutional quality. The
specific measures we use are the percentages of the population that are Protestant, Catholic or
Muslim, to capture the degree to which a country has been influenced by world cultures that
spread through migration and military conquest out of Northern Europe, Southern Europe, or the
Middle East respectively. These variables are included as potential determinants of institutional

quality, and excluded elsewhere.



The coastal location variable helps identify the potential impact on growth of either
agglomeration in cities or international integration through trade. The specific coastal variable
used here is percentage of the population located within 100 km of the ocean or a navigable
river. This variable is included only as a determinant of agglomeration and of international trade.

Finally, a variable reflecting the size of the country is used only as a conditioning
variable with respect to trade. Our specific variable is total population, included here because a
smaller country will have a larger fraction of its transactions classified as “international”, simply
because of where its borders are drawn. This variable is excluded from other equations, on the
grounds that researchers have found very limited scale effects in most income regressions.

The resulting system of equations is recapitulated below. The implied exogeneity and
exclusion restrictions are plausible but, as noted above, specification and robustness tests are left
to future work. Here, our goal is to estimate this representative system taking into account
neighborhood effects through spatially correlated omitted variables and spatial spillover effects
from the dependent variables. The system that we use is chosen primarily for its size and
generality, capturing a wide range of potential growth mechanisms and linkages. Note that we
focus here on the cross-sectional properties of the panel. Time dummies are used for each five-
year period, to absorb any global trends in each equation; future work might focus on temporal
dynamics.

The first equation of the system uses ecological variables to identify exogenous

determinants of agricultural output:

agoutput,, = &, + p,,agland, + p,landqual; + B, frost, + B,,rainfall,
+ psmalaria, + 5, + €.

ey

In this equation agricultural production per capita is a function of land area per capita, the soil
quality of that land, the prevalence of seasonal frost and total rainfall, plus the ecological index
of malaria transmissibility. These factors could be associated with exogenously higher
agricultural output, which in turn could influence economy-wide income through a number of
mechanisms, both positive (e.g., Mellor and Johnston 1961) and negative (e.g., Matsuyama
1992).

The next two equations use malaria transmission to identify exogenous determinants of



human capital. This is done first for health, as measured by infant mortality:

imrate,, =, + f3,income,, + f,,malaria, + 6,, + &,, (2)

In equation (2), infant mortality is subject to feedback effects from income, and potentially also
to an exogenous effect from malarial ecology. An exogenously driven change in health could
matter for income in many ways, including acceleration of investment in schooling as captured

in the next equation:

schooling , = &, + B, income, + B ,imrate, + J,, + &, 3)

In equation (3) there are no exogenous variables. We include this equation only to identify a
possible channel for health to influence growth through education as opposed to other
mechanisms.

The following equation uses social history to identify exogenous determinants of a

country’s institutions:

institqual,, = &, + B,,income, + B,imrate, + B, pctcath, + B,, pctprot, @
+ B,spctmus, + 0, + £,
Equation (4) links our Freedom House-ICRG index of institutional quality to economy-wide
income, the infant mortality rate as a measure of human capital, and social history defined using
prevalence of three global religions that were spread from Europe and the Middle East across
Asia, Africa and Latin America through migration and military conquest.

The next equation uses coastal location as an exogenous driver of opportunities for

specialization and exchange in towns and cities:

urbanization, = a5 + fsincome,, + fs,agoutput, + By, coastal, + J,, + £, 3)

Equation (5) allows urbanization to be driven by feedback from income and also from
agricultural output, as well as access to coasts or navigable rivers.
An alternative route to specialization is captured in the next equation, which identifies

other determinants of international trade:



trade, = o, + B income, + B,coastal, + B, population, + 8, + &, (6)

In equation (6), trade can be driven by economy-wide income, coastal location and population
size.
The last equation brings the endogenous variables together, with no additional exogenous

variables.

income, =a., + [, agoutput, + B, imrate, + f.,schooling ,
+ B instqual, + B surbanization,, + Btrade, + 0, + €,

(7

This system of equations can be estimated using 3SLS, but the results are likely to be
biased and/or inefficient due to spatial processes beyond those captured in the regressors. The
equations may share spatially autocorrelated errors due to spatially correlated omitted variables,
to spatially correlated measurement error, or to interaction among neighboring countries as
detailed by Anselin (2003). In this paper we account for spatially correlated residuals in a system
of equations by allowing each endogenous variable to be subject to both spatial dependence and
also to a spatial autoregressive process in the error term (i.e., a spatial ARAR model). For this we
utilize a recently developed full information estimator based on Instrumental Variable (IV) and
General Moments (GM) estimators, which simultaneously allows for correlation across
equations (Kelejian and Prucha 2004).' Here, we start with the naive three-stage least squares
approach, and then compare these results to the estimates allowing for the potential influence of

spatial spillovers and spatially-correlated omitted variables.

3. Data and some exploratory results

For all time-variant data, we use observations at five-year intervals, around 1960, 1965, and so
on through 2000. In most cases these are an average of five annual observations centered on the
year indicated (that is, 1963—67 for 1965, 1968-72 for 1970, and so forth), although only three
years are available to represent 1960 (that is, 1960—62) and only three years to represent 2000
(that is, 1997-2000). For the Barro-Lee (2001) data on schooling and also the UN data on infant

mortality, single-year observations are used at the corresponding five-year intervals.

! Kelejian and Prucha (2005) developed an extended estimator that incorporates heteroskedasticity as well, which
can be incorporated in future work.



The agriculture data are updated from the dataset in Masters and Wiebe (2000), using
FAO (2004) data for each year’s level of agricultural output (expressed in real international
dollars of the year 2000) and land used in agriculture (expressed in thousands of hectares). The
land quality index is from USDA (2005), reporting the fraction of a country’s agricultural land
that is reported to be in the top three categories of suitability for agriculture in the World Soil
Resources classification scheme, as reported in NRCS (1999). Agricultural land is defined
broadly here, to include ‘cropland’ and ‘cropland plus natural mosaic’ from the International
Geosphere-Biosphere Programme classification (USGS 1999).

Climatic data were compiled by Masters and McMillan (2001) from data published by
the International Panel on Climate Change (IPCC 1999). Frost prevalence refers to the
proportion of a country’s land receiving five or more frost days in that country’s winter, defined
as December through February in the Northern hemisphere and June through August in the
Southern hemisphere. The raw data for this computation were the IPCC’s estimated average
number of frost-days per month over the 1961-90 period, across 0.5-degree cells for all land
mass except Antarctica, interpolated from station observations. Rainfall is average total annual
precipitation for each grid cell averaged over the country’s landmass. The country aggregation is
based on the CRU TS 2.0 gridded dataset (Mitchell et al. 2003).

Economic data are drawn from the Penn World Tables 6.2 for national income (real GDP
per capita, chain indexed, in 2000 US dollars) and for the trade share (exports plus imports as a
fraction of GDP). Urbanization is drawn from the World Development Indicators online, as the
percentage of the population in urban areas. Data on schooling are drawn from Barro and Lee
(2001), from which we use the average number of years of total schooling in the population over
age 15. Data on infant mortality rates are drawn from United Nations Population Statistics, and
our data on long-run social history are the percentages of the population estimated to be
Protestant, Catholic, and Muslim from the Barro-Lee dataset.

Our malaria ecology variable is from Kiszewski et al. (2004), and represents an index of
the ease with which a given infection would be transmitted, independently of whether the
infection is present. The index is constructed from the physiological characteristics of each
region’s dominant mosquito species, combined with temperature data that determine how long a

malaria parasite could survive during transmission from person to person. These factors are



largely independent of a country’s economic activity or its anti-malarial efforts. Most
importantly, the index does not include data on the density of mosquitoes or the prevalence of
infection, both of which can be reduced in an otherwise malarial region.

Our variable for the quality of national institutions is a time-varying index, constructed
by us from data reported by Freedom House (2005) and International Country Risk Services
(ICRG 2006). The Freedom House data is an average of their measures for a country’s political
rights and civil liberties, whereas the ICRG index is an average of their measures for a country’s
degree of corruption, military in politics, religion in politics, law and order, and democratic
accountability. Data from the two sources are rescaled for comparability, and combined to
construct a continuous time series from 1960 to 2000.

Overall, the dataset comprises nine five-year averages pertaining to 1960 through 2000
for 95 countries of the world. Variable definitions and descriptive statistics are provided in Table
1, with a complete list of countries provided in the appendix. Our coverage includes all of North
and South America except for Belize, Suriname, French Guiana and some islands in the
Caribbean. In order to build consistent data series several African countries, such as Morocco,
Libya, Chad, Ethiopia, Nigeria and Chad, could not be included in the sample. Switzerland and
Germany as well as most of the Central and Eastern European countries are excluded, as well as
Russia, Mongolia and some smaller countries in South-East Asia.

The geographic distance between countries is captured through a spatial weights matrix,
which is defined a priori and exogenously on the basis of arc-distances between the geographical
midpoints of the countries considered. It is an inverse-distance matrix where elements are coded
1/d;; if the distance between countries dj; < 2,500 miles. Following convention, we standardize by
enforcing row sums to be equal to one and the diagonal elements set to zero (see e.g., Bell and
Bockstael 2000, for an explanation). The resulting spatial weight matrix for a single time slice
has dimension 95, with 17% of the weights being nonzero. The minimum and maximum number
of links between countries is 1 and 26, respectively, with an average of 16. The minimum cutoff
distance required to ensure that each country would be linked to at least one other country would
have been 1,812 miles. In our weight matrix, the connectivity structure is such that there is no
direct link between America and Europe, although some countries in South America are directly

linked to Africa. The weight matrix for the pooled data set is defined as a 855x855 block



diagonal matrix, with the sequence of nine 95x95 matrices on the diagonal. This implies that we
assume spatial autocorrelation to be strictly contemporaneous.

Figure 1 represents key information for 2000 in choropleth maps, specifically for the
dependent variables in the system of equations developed in Section 2. GDP per capita,
measured in constant US dollars of 2000, is highest in North America, Europe, Australia and
Japan, and is relatively low in South America, Asia and especially the African continent. The
spatial distribution of per capita agricultural output is very similar, although some of the
European countries have a less pronounced position, and the agricultural output levels are
dramatically low in Africa. The spatial distribution of the trade share in GDP shows a much
more scattered picture. Apart from a city-state such as Singapore, which is hard to see on the
map, countries with relatively high trade shares include Guyana and Malaysia as well as Ireland,
Belgium and the Netherlands. Infant mortality rates are highest in India, Pakistan, Iraq and Sub-
Saharan Africa, and comparatively low in the industrialized economies of North America,
Europe and Australasia. The spatial distribution of institutional quality exhibits a concentration
of high quality institutions in North America, Northern Europe and Australasia, and Southern
Europe constitutes an intermediate zone. For schooling a spatial pattern similar to institutional
quality arises, although in most countries in South America schooling duration is above average
as well. The spatial distribution of the level of urbanization, defined as the percentage of the
population living in urban areas, is much more uniform. Except for Southeast Asia and Sub-
Saharan Africa, the level of urbanization is generally greater than 50% throughout the world.

Figure 2 summarizes the level and changes in spatial clustering for the endogenous
variables using Moran’s I statistic, defined as the degree of correlation between each country’s
value and that of its neighbors.” Global GDP per capita values have a high degree of spatial

clustering at the start of the period, suggesting strong neighborhood effects, with a small further

> With a standardized weights matrix Moran’s [ is defined as:

I= ZZWU-(X,- —x)(x; —)_C)/Z(xi -x)?
i=1

i=1 j=1

where the variable x is measured in deviations from its mean, and w;; are the elements of the weights matrix. The
expected value of Moran’s [ equals —1/(n—1) under the null hypothesis of no spatial autocorrelation, which is
approximately —0.01 for our sample and signals a random spatial allocation of the attribute values contained in x.
We use the normal distribution assumption for statistical inference. Extensive details and principles for statistical
inference are available in Cliff and Ord (1981) and Tiefelsdorf (2000).
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increase in clustering during the 1970s and 1980s. Agricultural output, in contrast, exhibits a
much lower degree of spatial autocorrelation, and a greater increase especially in the 1980s. The
trade share has even lower spatial clustering, which increases over time but remains very close to
zero. Infant mortality rates start highly clustered and become even more so, exhibiting the
highest degree of spatial autocorrelation during the entire period. Schooling and institutional
quality start with similar levels of clustering in the early 1960s, but schooling becomes much
more clustered while institutional quality does not. In fact, spatial clustering of institutional
quality actually declines slightly from its peak in the 1980s through the 1990s. Finally,
urbanization has a relatively high degree of spatial clustering, and shows a small increase except
for 1995 and 2000.

Figure 3 provides some more detail with respect to the spatial distribution of the seven
dependent variables in Moran scatterplots, for the latest available period. These charts show the
standardized value of each country’s variable x; against its spatial lag, which equals the spatially
weighted average of the x;-values with the set of neighbors being defined through the i-th row of
the weights matrix. It aids in identifying local clusters of spatial correlation, spatial non-
stationarity and outliers, and the gradient of the trend line equals the Moran’s I coefficient (see
Anselin 1996 for details).

In Figure 3, the Moran scatterplot for GDP per capita shows a strong clustering of
countries in the lower-left quadrant, which are low-income countries surrounded by countries
with similarly low per capita incomes. A few low-income countries, however, are in the upper-
left quadrant, meaning that their neighbors actually have above-average incomes. In contrast,
many of the high-income countries are in neighborhoods with above-average income. The
outliers (as judged by the 2o-rule) are the US, which is surrounded by neighbors with average
per capita income, and Norway, which is surrounded by above-average per capita income
neighbors. The scatterplot for agricultural output is similar to the plot for GDP per capita
although the extent of spatial clustering is smaller. Outliers are New Zealand, Australia,
Denmark, and Ireland. As mentioned above there is no significant spatial clustering in trade, and
Singapore is the extreme outlier. The scatterplot for infant mortality clearly shows two separate

clusters, of which one comprise most of the countries located in Africa. Institutional quality,
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schooling and urbanization show a similar degree of spatial clustering, without any obvious

outliers.

4. Econometric method and estimation results

In two recent papers reviewing the economic growth literature Abreu, de Groot and Florax
(2005a,b) stress two important implications of earlier work. First, in a quantitative analysis of
over 600 estimates drawn from nearly 50 convergence studies they find that correcting for
endogeneity in the explanatory variables results in significantly higher estimates of the rate of
convergence. This is in line with earlier findings of Cho (1996) and Caselli, Esquivel and Lefort
(1996). In addition, they document that the use of panel data and concurrent corrections for
unobserved heterogeneity in technology levels and/or steady states leads to substantially higher
rates of convergence, which is reinforced by the results of Dobson, Ramlogan and Strobl (2006).
Second, the Abreu et al. reviews of the spatial econometric literature dealing with (regional)
economic growth shows that this literature has not yet established a strong link to prevalent
economic growth theories, and it has a tendency to restrict the modeling of spatial spillover
processes to either a spatial lag or a spatial error model, eventually in combination with spatial
regimes to account for non-stationarity in the mean and variance. Only recently have spatial
methods been more rigorously applied, as in Ertur and Koch (2005) and Fingleton and Lépez-
Bazo (2006).

In the current paper we follow the approach outlined in Kelejian and Prucha (2004) and
use a spatial econometric specification that is less restrictive than previous work in terms of
spatial correlation, and accommodates endogeneity at the same time. In terms of spatial
autocorrelation, the specification allows for spatial spillover effects through the dependent
variable as well as for a spatial autoregressive error structure. This specification is known as the

spatial ARAR model. For a single equation this specification reads as:

y=pWy+ X[ +e¢, ®
e=AWe+u,
where y is an (nx 1) vector of observations on the dependent variable, X an (nxk) matrix of non-
stochastic regressors, W an (nxn) spatial weights matrix that represents the topology of the

spatial system, & an (nx 1) vector of iid errors, S a (kx1) vector of regression coefficients, and p
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and A are spatial autoregressive parameters. Substitution and rearrangement of terms in equation

(7) leads to:

y=—pW) (XB+T - W) ), ©)

which shows that equation (7) implies a rather complex form of spatial autocorrelation evoked
by nested spatial multiplier processes pertaining to the observable and the non-observable part of
the model (see also Anselin 2003). The spatial complexity of the model notwithstanding, testing
for spatial autocorrelation is rather straightforward and can be based on a Lagrange Multiplier
test for which the asymptotic distribution has been derived in a maximum likelihood framework.
This test is generally known as the SARMA test but since Lagrange Multiplier tests cannot
distinguish between locally equivalent autoregressive (AR) and moving average (MA) processes
(Godfrey 1988) the SARMA test can also be used to detect an ARAR process.”

Instead of a purely cross-sectional dataset, we use a panel dataset comprising nine time
slices centered on 1960, 1965, etc. through 2000. We do not investigate the temporal dynamics
and associated serial autocorrelation, but simply treat the data as independent replications of the
cross-sectional data. We do, however, include fixed effects for the different time periods, thus
accommodating a possible time trend. Given that some data offer yearly observations, richer
models incorporating spatio-temporal dynamics are feasible, but we leave those for future
research (see Anselin, Le Gallo and Jayet 2006).

A distinct advantage of the Kelejian and Prucha (2004) systems approach is that it
explicitly allows for endogeneity to be taken into account. The endogeneity is not necessarily
restricted to spatial spillover effects, but it can also include the usual system feedback effects.
Kelejian and Prucha (2004) derive a full information generalized spatial systems estimator
(GS3SLYS) in a sequential estimation procedure using limited information IV and GM estimation
to provide initial estimates of the spatial autoregressive parameters. The set-up and the estimators

involved are described concisely as follows.

? Anselin and Kelejian (1997) discuss testing for spatial autocorrelation in a model with endogenous regressors,
where the endogeneity is caused by systems feedbacks or by spatial interaction of an endogenous variable. In the
empirical application we initially use OLS based tests although this ignores the endogeneity of some of the
regressors. Testing for spatial autocorrelation can also be based on the general results for Moran’s / in Kelejian and
Prucha (2001).
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Consider a simultaneous system of m spatially interrelated cross-sectional equations

indexed by j (=1, 2, ..., m) and defined as:

Y =VP+IT+XB+U, (10)

where Y =(y,,y,,...,y,) with y; as the (nx1) vector of observations on the dependent variable,
Y = (¥,,¥,,--.,,,) has the same dimension and contains the spatial lags of the endogenous
variables defined as y =Wy, X = (x,,%,,...,x, ) with x; as the (nx1) vector of observations on
the exogenous variable /, and U = (u,,u,,...,u, ) where u; is the vector of errors in the jth
equation. Further, W is an (nxn) spatial weights matrix of known constants, and P is an (mxm),
I' an (mxm) and B a (kxm) parameter matrix. In addition to the spatial spillovers in the

endogenous variables the errors are also allowed to include a spatial autoregressive process:
U=UA+E, (11)

with E=(&,¢,,...,€,) where € ; denotes the (nx1) vector of innovations. Analogous to the

spatial lag operations above, U = (u,,u,,...,u, ) are the spatially correlated errors with

u; =Wu,, and the spatial autoregressive parameters are given by A =diag"_, (4,).

One should note that the coefficient matrix P referring to the spatially lagged
endogenous variables is not necessarily diagonal, and hence the specification allows for the jth
endogenous variable to depend on its own spatial lag as well as on spatial lags of other
endogenous variables. We leave this generalization to future work. The coefficient matrix A is
also assumed to be diagonal, implying that the errors are spatially correlated within an equation,
but they are not spatially correlated across equaltions.4 The generality of the systems approach
and the suggested estimator is also evident from the fact that the exogenous regressors are
allowed to depend on n, and hence form triangular arrays, which implies that the specification
may also contain spatially lagged exogenous variables (Kelejian and Prucha 2004, p. 30). As a

final observation we note that using the feasible GS3SLS estimator makes Wald tests available to

test restrictions on the (spatial autoregressive) parameters.’

* The GS3SLS estimator allows for error correlation across equations, but this correlation does not have a spatial
dimension.

> As far as the spatial variables are concerned, this is only feasible for the spatially lagged endogenous variables and
eventually the spatially lagged exogenous variables. A Wald test on spatially autocorrelated errors is not possible,
because the values of /; are merely used in the Cochrane-Orcutt transformation. The latter can be tested using
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In order to determine the marginal effects of changes in the exogenous variables we use
the notation and the line of reasoning introduced in Kelejian and Prucha (2004, pp. 30-31).
Define y = vec(Y) and corresponding operations to define Yy, x, u, u and €. Given that
y=(, ®W)y, the system defined by (9) and (10) can be written as:
y=I"y+B'x+u,

. (12)
u=Au-+eg,

where I' =(I"®1,)+(P’"®W), B'=B'®1, and A" = A®W =diag", (4,W). The reduced

form of (11) then follows from rearranging terms as:

y=(,, -T)H'[B'x+,, —A)e], (13)

where [, has dimension (nmxnm). Marginal effects of changes in more or more of the

exogenous variables follow from:

gy/ =, -T")'B =[I, -IT'®I)-(P"®W)]"'B". (14)
X

This equation shows that the impact of a shock to one or more of the exogenous factors leads to
spatial feedback via the endogenous regressors (through the term I"® I ), and depends on the
geographical location and the spatial connectedness of the place where the exogenous shock
occurs (which is contained in the term P’ ® W ). The weights matrix W defines the extent of each
country’s neighborhood, and hence the limits of these spatial feedback effects. In our application,
the definition of neighborhood is extremely broad to capturing a very wide range of spillovers, as
all countries within a 2500 miles radius are linked to each other. Further work could test more

restrictive specificaltions.6

Moran’s I (see Kelejian and Prucha 2001), or the Lagrange Multiplier principle (see Anselin and Kelejian 1997).
See also footnote 2.

® An alternative approach uses direct representation of a distance decay process for spatial spillovers, in a parametric
or non-parametric fashion (see, e.g., Conley and Ligon 2002). Some work has also pursued endogenizing the spatial
weights matrix (Kelejian and Prucha 2005). However, neither approach can circumvent the occurrence and
relevance of the Modifiable Areal Unit Problem (MAUP; see, e.g., Anselin 1988).
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In a concise form we can write (9) and (10) as a system of cross-sectional equations indexed by j
=(1,2,...,m):
Y, =Z;0; +uy,
(15)
u,=A,Wu; +¢,,
where Z, =(Y,.Y,,X ;) and &, =( ,0;. , 7/;. , ,B/' )’. The full information estimator derived in

Kelejian and Prucha (2004) is obtained in the following four steps:

1. Apply 2SLS to each equation and estimate J; as ) ;= Z ;Z i ) Z ; y;» Where 4 =Pz,

P, =H(H ‘H)"'H’ and H is a matrix of instruments formed as a subset of the linearly
independent columns of (X,WX,W?X,...).

2. Basedon 8 ;» compute the 2SLS residuals i, =y, —Z jg ; and use the generalized moments
procedure suggested in Kelejian and Prucha (1999) to estimate 4,, the spatial autoregressive
parameter of the error process for each equation.

3. Use a Cochrane-Orcutt transformation to define the suitably transformed variables
ij =Z,-p,WZ, and yj =y, —p;Wy,, and apply a feasible generalized spatial 2SLS
estimator (FGS2SLS) to obtain Sf SR (2;*Zj)‘12;* y; where ZAj =P,Z..

4. Stack the equations as y* =Z 8+, where y =(y, ,y5 ....,y,) . Z =diag" (Z}), and
0=(4/,6,,...,0.) . Obtain the full information results by using the feasible GS3SLS
estimator to calculate 6% = (Z” (3™ ®1)Z)'Z2” <! ®I,)y", where 3 is estimated as
an (mxm) matrix whose j,-th element is 6, =n"'&/& with&, =y, — ng 725 Kelejian and
Prucha (2004) prove that the small sample distribution of the FGS3SLS estimator can be
approximated by 8"*" + N(&,[Z2" (X ®1)Z' 1.

The asymptotic properties of the above estimator critically depend on the assumption of
homoskedastic innovations. In future work we will extend the application to the ARAR estimator

allowing for heteroskedasticity along the lines developed in Kelejian and Prucha (2005).

We now turn to the estimation results for the system of equations developed in Section 2. The

results are generated using the same spatial weights matrix throughout the entire model, and we
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account only for spatially lagged dependent rather than the more general spatially lagged
endogenous variables (across equations). We do also not incorporate spatially lagged exogenous
variables. We follow Kelejian and Robinson (1993) and define the instruments as the linearly
independent exogenous variables and their first-order spatial lags, although alternatives would be
available as well (see Lee 2003). Table 2 provides the results for an equation-by-equation
estimation using OLS and includes several (spatial) diagnostic test results. Table 3 presents the
3SLS results, which account for endogeneity but not spatial effects, while Table 4 presents the
full information results using the feasible GS3SLS estimator discussed above.

Table 2 is provided for comparative purposes. This naive specification, without any
control for endogeneity or spatial lags, shows how income is closely correlated with a number of
endogenous regressors, notably infant mortality, schooling, institutional quality and urbanization.
Each of them is in turn also correlated with income, when controlling for various other
significant determinants. The misspecification test results shown here are also only heuristic,
since they are derived without accounting for the endogeneity of some of the regressors. The
condition number shows that multicollinearity does not impair the results. The results for the
Jarque-Bera test indicate that the null hypothesis of normally distributed errors is rejected for
nearly all equations. This provides another reason for interpreting the Lagrange Multiplier
diagnostics cautiously. It does not, however, have any major implications for the systems
estimator, because the estimator does not require the disturbances to be normal. The Breusch-
Pagan test results, with random coefficient variation as the alternative hypothesis, show that
homoskedasticity is rejected in all. This implies that it is highly relevant to address this issue in
future work. The spatial diagnostics are fairly mixed. For six out of seven equations there is
evidence that a higher-order model is appropriate (in particular for the equations pertaining to
agriculture output, infant mortality, schooling, urbanization, trade and income). There is,
however, no clear indication of spatial autocorrelation for the institutional quality equation.

Tables 3 and 4 contain the estimation results for the systems estimators. Table 3 accounts
for endogeneity using 3SLS, whereas Table 4 accounts for both endogeneity and neighborhood
effects using the spatial ARAR model. Briefly, the results of Table 3 can be summarized as
follows. Unlike the naive OLS regression, in a system context per-capita income is not correlated

with institutional quality. Income has a strong and significant links from infant mortality, and
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agricultural output. Per capita agricultural output, in turn, is mainly determined by the
availability of agricultural land and land quality; the prevalence of winter frost has the same
significant effect as in Masters and McMillan (2001), while disease ecology (malaria) also has
the expected effect. Infant mortality is mainly linked to income; controlling for income and the
time dummies disease ecology show also strong correlation with infant mortality. Schooling and
institutional quality are both associated negatively with infant mortality but do not have expected
correlation with income. The links to institutions from cultural variables, although statistically
significant, are of minor importance. As expected, the level of urbanization is positively linked to
income, agricultural output and to coastal location. Finally, per capita income is strongly
negatively affected by infant mortality and positively impacted by urbanization.

The results for the spatial system of equations documented in Table 4 shows results that
are broadly similar to those in Table 3, but allowing for spatial dependence changes the results in
important ways. First, after controlling for the observed variables we find significant spatial lags
among all of the endogenous variables, except for infant mortality. Only infant mortality is
explained by our data on country characteristics, without recourse to unobserved neighborhood
effects. For agricultural output, schooling, institutional quality, urbanization, and international
trade there are positive spatial lags, while for income there is a small negative spatial lag. That is,
when controlling for the positive neighborhood effects in these endogenous determinants of
income, the remaining influences are negatively correlated across space. Since our model is
linear, this result could be due to diminishing returns to these or other inputs.

Having controlled for unobserved spillovers and regional characteristics, the measured
variables shown in Table 4 show several very interesting correlations. First, for agricultural
output, our variables on land quality and quantity, prevalence of winter frosts and malaria
ecology remain significant and of the expected sign. Total rainfall is not significant, and there is
a positive time trend as shown by increasing coefficients on the period dummies. In the second
column, for infant mortality, both malaria ecology and income are significant as expected. The
residual effect of time is quite large and significant, suggesting important technological
improvements allowing lower infant mortality at a given level of income and malaria ecology.
The third column, for schooling, shows both infant mortality and income to be significant and of

the expected sign, with no residual time trend. The fourth variable, institutional quality, has a
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positive correlation with income, and a small correlation with social history as measured by
percent Catholic and Muslim, with no residual time trend. Urbanization is correlated with local
agricultural output (though weakly), with income and with coastal location, and has a small
positive time trend when controlling for these factors. Trade is negatively correlated with
population size and with income (perhaps due to the increased role of non-traded services), and
positively linked to coastal location, with a small positive time trend. And in our final equation,
all of these endogenous variables have independent correlation with income, except for
agriculture output and schooling. In other words, exogenously higher agricultural output drives
increased income by facilitating urbanization, and in this specification increased schooling is a
result but not a cause of income growth. There is also a large residual effect of time on real
income, with unmeasured factors driving increases in measured income from period to period
from 1960 until 1975, followed by decreases through 2000.

In sum, when controlling for spatial processes in this model, we maintain support for both
the “institutionalist” and “geographic” schools of thought. Geographic factors such as malaria
ecology, coastal location and seasonal frost are found to have significant independent effects on
the system, influencing institutional quality but not completely determining it, and a country’s

institutional quality then does have a strong independent role in income.

S. Conclusions

This paper uses panel data in a system of simultaneous equations, controlling for spatial
spillovers and unobserved spatial heterogeneity, to explore how measured country characteristics
such as physical geography and institutions might be linked to real income per person. This
approach offers a new kind of test for how particular types of technologies and institutions might
affect income, and then test the robustness of each variable against various kinds of
neighborhood effects.

The endogenous variables associated with income are agricultural output per capita (as
measured by the FAQO), health status (as measured by infant mortality), educational attainment
(as measured by years of schooling), institutional quality (as measured by a combination of
Freedom House and ICRG indexes), and urbanization (percentage of the population in towns or

cities). The exogenous variables represent climate (which plausibly affect only agricultural
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output), malaria ecology (only through agriculture or health), social history (only through
institutions), coastal location (only through urbanization or trade), and population size (through
international trade). With this specification, after controlling for spatial proximity, all of the
variables have some independent effect on income, except schooling. This result provides strong
empirical support for both “geographic” and “institutionalist” hypotheses. Geographic variables
such as land quality, coastal location and malaria prevalence have strong independent effects on
income, primarily by facilitating urbanization and declines in infant mortality. Institutional
quality also has a strong independent link to income, even when controlling for reverse causality
and neighborhood effects.

Most notably, accounting for these country characteristics still leaves large residual
spatial lags. This result suggests that our specification has only begun to capture the relevant
spillovers and spatial heterogeneity among countries. Understanding these spatial correlations
will require more precise measurement of both the unobserved factors driving local agricultural
productivity, public health and ease of urbanization, but also more complete accounting for
cross-border flows associated with migration, investment or technology diffusion.

Throughout the paper we have indicated potential extensions and variations to be
addressed in future work. Among those are testing for exogeneity and exclusion restrictions, the
incorporation of heteroskedasticity following the procedures developed in Kelejian and Prucha
(2005), an assessment of parameter heterogeneity and other robustness checks, and consideration

of the temporal dynamics of the system.
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Table 1. Descriptive statistics”

Variable"\statistic Mean Variance Minimum Maximum Skewness Kurtosis
Agricultural output 0.254 0.060 0.001 1.744 2.724 12.257
Agricultural land 0.412 0.204 0.001 3.731 3.751 20.687
Land quality 20.340 370.685 0.001 76.296 1.029 3.292
Frost 0.366 0.194 0.000 1.000 0.533 1.423
Rainfall 1278.946 575948.400 46.233 3416.267 0.616 2.561
Malaria 3.713 40.247 0.000 30.095 2.026 6.625
Population (x 1000) 37.828 16100.000 0.042 1249.134 6.635 50.647
Infant mortality 72.047 3052.841 2.980 285.000 0.671 2.647
Trade 62.756 2651.960 5.048 541.396 3.388 23.463
Income (x 1000) 6.407 42.500 0.384 33.711 1.469 4.476
Schooling 4.684 8.014 0.120 12.050 0.423 2.407
Institutional quality 0.403 0.086 0.143 1.000 1.143 2.856
Catholic 38.063 1406.900 0.000 96.900 0.489 1.582
Protestant 14.122 478.400 0.000 97.800 2.138 7.397
Muslim 17.886 968.232 0.000 99.700 1.769 4.550
Urbanization 45.183 601.941 2.230 100.000 0.238 2.154
Coastal 48.138 1451.542 0.001 100.000 0.189 1.464
Time dummies® 0.000 0.222 —-1.000 1.000 0.000 4.500

* Based on 95 countries, five-year averages from 1960 through 2000.

® Variable definitions are detailed in the text and summarized here: agricultural output is an index of net farm
production per capita at international prices in 2000 US dollars; agricultural land is land used in agriculture in
thousands of hectares; land quality is the percentage of a country’s farmland that falls in the top three categories of
fertility; frost refers to the proportion of a country’s land receiving five or more frost days per month in winter;
rainfall is average total annual precipitation over the country’s land mass in millimeter; malaria is an ecological
index of malaria transmissibility; infant mortality is per 1,000 live births; income is real GDP per capita in PPP
terms, expressed in 2000 US dollars; schooling is the average number of years of education for the population over
age 15; institutional quality is the average of IRCG indexes for “corruption”, “military in politics”, “religion in
politics”, “law and order”, “democratic accountability”, and “bureaucratic quality”, combined with Freedom House
indexes for “Political Rights” and “Civil Liberty”; catholic, protestant and muslim are estimated percentages of the
population with the specified religion; urbanization is the percentage of the population living in urban areas; coastal
is the percentage of a country’s land that is within 100 km of a seacoast or navigable river.

¢ The time dummies allow fixed effects for 1960, 1965, etc. and are subsequently recomputed as deviations from the
omitted category, 1960.
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Table 2. Regression output, equation-by-equation estimation, OLS with diagnostics for spatial effects*”

Variables Agricultural Infant Schooling  Institutional ~ Urbanization Trade Income
output mortality quality
Agricultural output —0.041" 0.103""
(0.023) (0.022)
Agricultural land 0.397""
(0.025)
Land quality 0.052""
(0.010)
Frost 0.105™
(0.031)
Rainfall 0.072™"
(0.015)
Malaria -0.092°"" 0.061""
(0.011) (0.006)
Infant mortality —0.436""  —0.2477 -0.606""
(0.039) (0.033) (0.026)
Income -0.689"" 02017 0.224™" 0458  —0.115™
(0.019) (0.036) (0.030) (0.019) (0.024)
Schooling -0.099""
(0.028)
Institutional quality 0.230""
(0.033)
Trade -0.057°"
(0.019)
Catholic 0.001"
(0.0004
Protestant 0.005™
(0.001)
Muslim —0.001
(0.001)
Urbanization 0.516"
(0.027)
Coastal 0.056"" 0.043™"
(0.005) (0.007)
Population -0.183""
(0.013)
D065 -0.086" 0.300""  -0.092" 0.113™  —0.121"™"  -0.286""  0.114™
(0.053) (0.042) (0.051) (0.039) (0.042) (0.063) (0.038)
Dio70 -0.045 0.249""  -0.054 0.044 -0.085" -0.1617"  0.1317
(0.053) (0.041) (0.051) (0.039) (0.042) (0.062) (0.037)
D75 -0.014 0.208""  -0.009 -0.018 -0.049 -0.079 0.146™
(0.053) (0.041) (0.051) (0.039) (0.041) (0.062) (0.037)
Diog0 0.004 0.034 0.017 -0.048 -0.003 0.022 0.056
(0.053) (0.041) (0.050) (0.038) (0.041) (0.062) (0.037)
Dioss 0.022 ~0.095" 0.048 -0.057 0.051 0.009 -0.034
(0.053) (0.041) (0.050) (0.038) (0.041) (0.062) (0.037)
D990 0.042 -0.224™"  0.075 -0.041 0.091" 0.138"  —0.112""
(0.053) (0.041) (0.051) (0.039) (0.042) (0.062) (0.037)
D905 0.079 -0.345""  0.068 -0.080" 0.126™ 0.295""  -0.173""
(0.053) (0.041) (0.052) (0.040) (0.042) (0.062) (0.038)
Diooo 0.120™ —0.442""  0.041 -0.069" 0.148™ 0.3977"  —0.227"™
(0.053) (0.042) (0.053) (0.041) (0.042) (0.063) (0.039)
Constant -1.884™ 9.625™ 13057 21177 —0371” 6.422°" 9488
(0.187) (0.152) (0.440) (0.351) (0.178) (0.233) (0.161)
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Table 2. Continued

Variables Agricultural Infant Schooling Institutional  Urbanization Trade Income
output mortality quality
Condition number 32 32 66 70 35 29 36
Jarque-Bera 185.89"" 12397 35127 0.89 362.637 39507 26.627
Breusch-Pagan 49.43™ 30297 130.99 26.44 85.717" 7599 7788
Moran’s / 2657 3187 —6.047 -0.62 6.99 3.1377 —0.004
LM-error 2.94" 13.977  41.09™ 1.75 33.54™ 4.69" 0.58
Robust LM-error 0.0004 6.28" 10.53" 13.70™ 0.78 0.63 0.98
LM-lag 4.40" 10017 3459™ 5.94" 38.89"" 4.08" 15577
Robust LM-lag 1.47 232 403" 17.90" 6.13" 0.02 1597
SARMA 4.40 16.29™  45.12" 19.64™ 39.67° 471" 16.55™
R*-adjusted 0.47 0.83 0.63 0.63 0.67 0.24 0.87
AIC 1410.36 980.90  1306.21 849.66 988.50 1678.76 790.47
Log-likelihood —-691.18 47945  -642.10 -410.83 -482.25 -827.38  —380.23

* All variables enter in logarithmic form, except for the time dummies and the constant. Significance is indicated by
***, " and " for the 1, 5, and 10 per cent level, respectively, with standard errors in parentheses.

" The Jarque-Bera and the Breusch-Pagan tests are asymptotically 4 distributed, and test for normality of the errors
and homoskedasticity with random coefficient variation as the alternative hypothesis, respectively. In cases where
the null hypothesis of the Jarque-Bera test is rejected, the Koenker-Basett variant instead of the Breusch-Pagan

version is reported. For details on the spatial misspecification tests see Anselin et al. (1996).
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Table 3. Regression output, system estimation, 3SLS not allowing for spatial spillovers™”

Variables Agricultural Infant Schooling  Institutional ~ Urbanization Trade Income
output mortality quality
Agricultural output 0.063" 007"
(0.032) (0.028)
Agricultural land 0.434™"
(0.023)
Land quality 0.058""
(0.008)
Frost 0.043™
(0.009)
Rainfall 0.023
(0.031)
Malaria -0.076"" 0.036""
(0.008) (0.007)
Infant mortality 0979 _0.403"™" _0.860""
(0.075) (0.092) (0.068)
Income -0.781""  -0.208"" 0.102 0409  —0.244™
(0.028) (0.071) (0.082) (0.029) (0.033)
Schooling -0.386""
(0.053)
Institutional quality 0.320™
(0.093)
Trade -0.061"
(0.028)
Catholic 0.001
(0.001)
Protestant 0.004™
(0.001)
Muslim -0.001"
(0.001)
Urbanization 0.458™"
(0.047)
Coastal 0.060""  0.070™
(0.005) (0.008)
Population -0.197""
(0.013)
Diog5 -0.089 0.274™ 0.062 0.155™"  -0.136"" -0.326" 0.1277
(0.057) (0.042) (0.054) (0.045) (0.044) (0.062) (0.047)
D70 -0.045 0.236"" 0.077 0.081" -0.094"  -0.183"" 0.149™
(0.057) (0.041) (0.053) (0.044) (0.044) (0.061) (0.043)
D75 -0.01 0.206"" 0.104™ 0.014 -0.052 -0.083 0.175™
(0.057) (0.041) (0.053) (0.043) (0.043) (0.061) (0.042)
Dios0 0.000 0.04 0.038 -0.042 0.000 0.031 0.068™"
(0.057) (0.041) (0.051) (0.039) (0.043) (0.061) (0.041)
Dioss 0.017 -0.085" 0.001 -0.071" 0.058 0.025 -0.031
(0.057) (0.041) (0.051) (0.040) (0.043) (0.061) (0.042)
D990 0.042 -0.209""  —0.041 -0.074" 0.102™ 0.162""  -0.122""
(0.057) (0.041) (0.053) (0.043) (0.044) (0.061) (0.043)
D195 0.083 -0.324™"  —0.112 -0.130™" 0.138"" 0328 -0.199"
(0.057) (0.042) (0.056) (0.048) (0.044) (0.062) (0.046)
Daooo 0.1307  -0416""  -0.189 -0.134" 0.161°7" 0440  -02777"
(0.057) (0.042) (0.058) (0.053) (0.044) (0.062) (0.048)
Constant -1.372"" 10347 6.769 -0.475 0.195 7.552""  11.128"
(0.190) (0.227) (0.867) (0.995) (0.276) (0.290) (0.332)
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Table 3. Continued

Variables Agricultural Infant Schooling Institutiona  Urbanization Trade Income
output mortality 1 quality

R* 0.50 0.83 0.55 0.62 0.67 0.25 0.84

Goodness-of-fit 942,64 353499 1407.15 1178.58" 1389.49""  360.02"" 355423

* See footnote a to Table 2.
® Note that the R>-value is not restricted to the usual [-1,+1] interval. The goodness-of-fit test is a Wald test with an
asymptotic y*-distribution.
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Table 4. Regression output, system estimation, full information estimator for the ARAR specification®

Variables Agricultural Infant Schooling  Institutional ~ Urbanization Trade Income
output mortality quality
WAgricultural output 0501*”
(0.042)
Wlnfant mortality 0.018
(0.036)
WSchooling 0.571 o
(0.053)
WInstitutional quality 0.273***
(0.054)
WUrbanization 04-22)MUF
(0.040)
Wirade 0.698""
(0.096)
Wlncome —0077**
(0.030)
Agricultural output 0.046" 0.031
(0.026) (0.020)
Agricultural land 0.368""
(0.021)
Land quality 0.044™
(0.008)
Frost 0.032"
(0.009)
Rainfall 0.028
(0.028)
Malaria —0.044™"
(0.009)
Infant mortality -0.180™" ~0.033 _0.6177
(0.052) (0.055) (0.040)
Income -0.814™" 0221 0346 031077 —0.064"
(0.028) (0.053) (0.046) (0.027) (0.024)
Schooling 0.032"" 0.037
(0.005) (0.037)
Institutional quality 0.438"
(0.052)
Trade —0.049°
(0.023)
Catholic 0.004™"
(0.001)
Protestant -0.001
(0.001)
Muslim -0.002"
(0.001)
Urbanization 0.434™
(0.035)
Coastal 0.039™ 0.036""
(0.004) (0.007)
Population —0.158™
(0.013)
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Table 4. Continued

Variables Agricultural Infant Schooling Institutional  Urbanization Trade Income
output mortality quality
D65 -0.1107 0.179™"  -0.001 0.057 -0.055 -0.1697  0.092"
(0.055) (0.040) (0.051) (0.040) (0.041) (0.067)  (0.038)
Dig70 -0.061 0.156™"  -0.005 0.006 -0.039 -0.093 0.112"
(0.055) (0.040) (0.050) (0.039) (0.040) (0.063)  (0.037)
Digs -0.023 0.140"  -0.003 -0.042 -0.025 -0.042 0.131™
(0.055) (0.039) (0.049) (0.038) (0.040) (0.061)  (0.037)
Dios0 0.003 0.028 -0.004 -0.046 -0.003 0.013 0.053
(0.055) (0.039) (0.048) (0.037) (0.040) (0.060)  (0.037)
Dioss 0.031 -0.056 0.005 -0.036 0.025 0.022  -0.025
(0.055) (0.039) (0.048) (0.037) (0.040) (0.060)  (0.037)
D900 0.063 -0.137" 0.013 -0.009 0.044 0.093 -0.097"
(0.055) (0.040) (0.050) (0.039) (0.040) 0.062)  (0.037)
D905 0.105" -0.214™"  0.003 -0.019 0.059 0.168°  -0.146"
(0.055) (0.041) (0.052) (0.041) (0.041) (0.068)  (0.038)
Dagoo 0.144™ -0.274™"  -0.018 -0.005 0.065" 02177 -0.192""
(0.055) (0.041) (0.053) (0.042) (0.041) (0.075)  (0.038)
Constant -0.592" 10.555™"  -0.566 -3.529""  —0.522" 3.043™ 10477
(0.179) (0.325) (0.601) (0.558) (0.225) (0.509)  (0.314)
Implicit A° -0.315" 0.304™"  0.004 0.044 0.020 -0.324 0.214
0.111) (0.016) (0.036) (0.093) (0.048) (0.286)  (0.150)

 See footnote a to Table 2.
Estimated values and standard errors for A based on the GM estimator in the second step of the estimation
procedure; used in the Cochrane-Orcutt transformation to obtain full information estimates.
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Figure 1. Maps of GDP per capita, agricultural output, trade share, infant mortality rate, institutional quality, level

of schooling, and urbanization, in 2000
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Figure 2. Moran’s [ grouped by dependent variable from 1960 (left) through 2000 (right)
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Appendix

Table Al. Countries included in the sample

Algeria

Angola

Argentina

Australia

Austria

Bangladesh

Barbados

Belgium

Benin

Bolivia

Botswana

Brazil

Burundi

Cameroon

Canada

Central African Republic
Chile

China

Colombia

Congo, Democratic Republic
Congo, Republic of Congo
Costa Rica

Cyprus

Denmark

Dominican Republic
Ecuador

Egypt

El Salvador

Fiji

Finland

France
Gambia, The

Ghana
Greece
Guatemala
Guinea-Bissau
Guyana

Haiti
Honduras
Iceland

India
Indonesia
Iran

Ireland

Israel

Italy

Jamaica
Japan

Jordan
Kenya
Korea, Republic
Lesotho
Malawi
Malaysia
Mali
Mauritius
Mexico
Mozambique
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Norway

Pakistan
Panama

Papua New Guinea

Paraguay
Peru
Philippines
Portugal
Romania
Rwanda
Senegal
Seychelles
Sierra Leone
Singapore
South Africa
Spain

Sri Lanka
Sweden
Syria
Tanzania
Thailand
Togo

Trinidad and Tobago

Tunisia

Turkey

Uganda

United Kingdom
United States
Uruguay
Venezuela
Zambia
Zimbabwe
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