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Abstract 
 
This paper tests a series of prominent hypotheses regarding the determinants of per-capita 
income using a novel spatial econometric approach to control for spillovers among neighboring 
countries and for spatially correlated omitted variables. We use simultaneous equations to 
identify alternative channels through which country characteristics might affect income, and then 
test the robustness of those effects. We find support for both “institutionalist” and “geographic” 
determinants of income. A time-varying index of institutional quality has a strong independent 
effect on current income, but there is also a persistent effect of geographic factors such as 
seasonal frost, malaria transmission, and coastal location, which influence income through their 
links to agricultural output, health, urbanization and trade. The data cover 95 countries across the 
world from 1960 through 2002, which we use to construct a pooled dataset of nine 5-year 
averages centered on 1960, 1965, and so on through 2000. We use both limited and full 
information estimators, partly based on a generalized moments (GM) estimator for spatial 
autoregressive coefficients, allowing for spatial error correlation, correlation across equations, 
and the presence of spatially lagged dependent variables.  
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GEOGRAPHIC AND INSTITUTIONAL 
DETERMINANTS OF ECONOMIC GROWTH: 

A SPATIO-TEMPORAL SIMULTANEOUS EQUATION APPROACH 
 

 
 

1. Introduction 

Real income per person varies widely around the world. Most of that variation is associated with 

differences across countries, rather than within them (Sala-i-Martin 2006). What accounts for 

this “country effect” on productivity and well-being? In this paper we test some of the most 

influential theories using a new econometric estimator, allowing for a wide range of 

neighborhood effects in space and time. 

Following Douglass North (1990) and others, economists have long argued that income 

depends primarily on economic and political institutions. This view emphasizes the role of 

property rights, market infrastructure and price incentives as the key cause of differences in 

investment and economic growth. These institutions may correspond to national government 

policies, but they may arise and spread in other ways as well. An alternative approach 

championed in recent years by Jared Diamond (1997) and particularly by Jeffrey Sachs (2001) 

uses location-specific geographic and technological factors to explain income differences. This 

approach argues that geographic obstacles to improving public health, agricultural productivity 

and transportation infrastructure could explain cross-country differences in average incomes, and 

perhaps also help account for cross-country differences in economic institutions.  

The policy implications of the two views are starkly different. The “institutions first” 

approach implies that countries can all converge to a common level of income, provided that 

they adopt similarly favorable institutions. The “technology first” view argues that those 

institutions will not have similar payoffs everywhere, leaving the poorest regions in need of 

exogenous injections of public investment for R&D and infrastructure to overcome their 

geographic handicaps. Intervention might be most important in sectors where technologies are 

location-specific, particularly in agriculture, where different locations require different crop and 

livestock techniques, and in public health, where different locations face different kinds of 

disease pressure. 
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A principal challenge in testing among competing hypotheses is endogeneity: any 

observed correlation between institutions and income could be due to reverse causality, or to 

omitted variables that affect both of them. Using a system of equations approach to account for 

reverse causality some of the most widely cited results are due to Rodrik, Subramanian and 

Trebbi (2004), Easterly and Levine (2003) and Acemoglu, Johnson and Robinson (2001). These 

studies find that geographic location is correlated with income only through its influence on 

institutions, and geographic location as such has no additional effect. But researchers using other 

variables and specifications have found different results. For example, Gundlach (2004) finds a 

large and robust influence of the location-specific degree of malaria transmission, independently 

of a country’s institutions.   

A second fundamental challenge in testing across countries is spatial correlation: there 

are obvious geographical clusters of rich countries and poor ones. Geographic clustering could 

be due to spatially correlated attributes such as climate or access to transport, or to interactions 

among neighbors such as trade or migration; for recent reviews, see Magrini (2004) and Abreu, 

de Groot and Florax (2005a). We have data for some geographic attributes and for some 

interactions among countries, but there are inevitably omitted variables of both types which 

could account for such geographic correlations as the synchronized growth fluctuations in Latin 

American and elsewhere documented by Temple (1999). In this paper we build on the spatial 

estimator developed by Kelejian and Prucha (2004) to control for very general kinds of 

neighborhood and spatial spillover effects, while allowing for endogeneity of key regressors. 

Doing so raises the bar for each hypothesis, by testing them against a wider range of alternative 

processes.   

The remainder of this paper is organized as follows. Section 2 introduces a particular 

simultaneous equation model accounting for several possible channels by which institutions and 

technology could influence income. Section 3 presents the data, and provides an exploratory 

empirical assessment of the dynamics over space and time of the key variables in the system. In 

Section 4, we compare the estimation results of a non-spatial version of the system to the results 

based on the Kelejian and Prucha (2004) estimator allowing for spatial error autocorrelation, 

correlation across equations, and the presence of spatially lagged dependent variables. Section 5 

provides conclusions. 
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2.  Determinants of income across countries: a spatial system of equations approach 

The modern literature on the empirics of economic growth across countries begins with Baumol 

(1986), who established the tendency of countries to converge towards a common income level. 

Such convergence was predicted by growth models with diminishing returns to capital, and was 

found by a very large number of studies using the specification pioneered by Barro (1991). 

Typically, convergence was found to be conditional on a number of factors, including both 

geographic and technological variables as well as institutional or policy measures (see e.g., Sala-

i-Martin 1997), but the estimated coefficients varied widely and their interpretation remained 

controversial (see Abreu, de Groot and Florax 2005b, and Dobson, Ramlogan and Strobl 2006, 

for an overview). Following Hall and Jones (1999), attention shifted to the determinants of 

income levels, focusing particularly on the development of new identification strategies such as 

those introduced by Acemoglu, Johnson and Robinson (2001) to account for the endogeneity of 

economic institutions and policy choices. 

 In this paper, we want to allow for different types of spatial autocorrelation processes to 

affect a variety of endogenous variables, and also to affect income through other means. For this 

purpose, we adopt an explicit three-stage least squares approach, with panel data in a system of 

simultaneous equations. By identifying the entire system, the role of each possibly endogenous 

determinant of income is tested through an association with particular exogenous variables. Our 

identification strategy rests on that exogeneity, together with the exclusion restrictions by which 

those variables are tied to particular development channels (Klein and Vella 2005). These 

identifying assumptions are plausible but are not tested here. Our goal is to posit a relatively 

large and quite general representative system, and leave more general testing of its particular 

specification to future work.   

 The particular system of equations we use specifies six endogenous variables that jointly 

influence income. The endogenous variables are: agricultural output, as measured by the Food 

and Agricultural Organization’s (FAO) index of net production at international prices; infant 

mortality, as estimated by the World Health Organization, which we use as a measure of general 

health;  schooling, from the Barro-Lee measure of average educational attainment for the 

population; institutional quality, using a combination of measures from Freedom House and the 
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International Country Risk Guide (ICRG); urbanization, the fraction of the population in towns 

and cities reported to the FAO; trade, using the sum of exports plus imports as a fraction of 

GDP, from the Penn World Tables (PWT) 6.2; and finally income, using real GDP per capita, 

chain indexed, also from version 6.2 of the PWT.    

Each of our endogenous variables has been widely used in the growth literature.  

Together, they capture a broad  range of potential growth mechanisms, whose significance is 

econometrically identified and tested across seven equations using ten variables, which we 

assume to be exogenous. The exogenous variables can be grouped in five different categories: 

farmland and climate, disease ecology, social history, coastal location, country size.  

The set of farmland and climate variables helps identify the potential influence of 

agricultural output. The specific variables we use are the FAO estimate of agricultural land area, 

an estimate of average land quality from the United States Department of Agriculture (USDA), 

and data on prevalence of frost in winter and annual rainfall from the Intergovernmental Panel 

on Climate Change (IPCC). These variables are included as potential determinants of agricultural 

production, but are plausibly excluded from having any significant direct effect on economic 

activity outside of agriculture. 

The disease ecology variable helps identify the potential influence of disease 

transmission on health, through either labor productivity in agriculture or through infant 

mortality to non-agricultural activities. The specific variable we use is malaria ecology from 

Kiszewski et al. (2004), which captures the ease with which a mosquito-borne disease would 

spread from person to person, whether or not the disease is actually present. This variable is 

expected to have an influence on agricultural productivity and on infant mortality, but it is 

excluded from having any direct effect elsewhere. 

A set of social history variables helps identify the role of institutional quality. The 

specific measures we use are the percentages of the population that are Protestant, Catholic or 

Muslim, to capture the degree to which a country has been influenced by world cultures that 

spread through migration and military conquest out of Northern Europe, Southern Europe, or the 

Middle East respectively. These variables are included as potential determinants of institutional 

quality, and excluded elsewhere.    
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The coastal location variable helps identify the potential impact on growth of either 

agglomeration in cities or international integration through trade. The specific coastal variable 

used here is percentage of the population located within 100 km of the ocean or a navigable 

river. This variable is included only as a determinant of agglomeration and of international trade. 

Finally, a variable reflecting the size of the country is used only as a conditioning 

variable with respect to trade. Our specific variable is total population, included here because a 

smaller country will have a larger fraction of its transactions classified as “international”, simply 

because of where its borders are drawn. This variable is excluded from other equations, on the 

grounds that researchers have found very limited scale effects in most income regressions. 

 The resulting system of equations is recapitulated below. The implied exogeneity and 

exclusion restrictions are plausible but, as noted above, specification and robustness tests are left 

to future work. Here, our goal is to estimate this representative system taking into account 

neighborhood effects through spatially correlated omitted variables and spatial spillover effects 

from the dependent variables. The system that we use is chosen primarily for its size and 

generality, capturing a wide range of potential growth mechanisms and linkages. Note that we 

focus here on the cross-sectional properties of the panel. Time dummies are used for each five-

year period, to absorb any global trends in each equation; future work might focus on temporal 

dynamics.  

The first equation of the system uses ecological variables to identify exogenous 

determinants of agricultural output: 
 

 
.1115

141312111

itti

iiiitit

malaria

rainfallfrostlandqualaglandagoutput

εδβ
ββββα

+++
++++=

 (1) 

 

In this equation agricultural production per capita is a function of land area per capita, the soil 

quality of that land, the prevalence of seasonal frost and total rainfall, plus the ecological index 

of malaria transmissibility. These factors could be associated with exogenously higher 

agricultural output, which in turn could influence economy-wide income through a number of 

mechanisms, both positive (e.g., Mellor and Johnston 1961) and negative (e.g., Matsuyama 

1992). 

The next two equations use malaria transmission to identify exogenous determinants of 
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human capital.  This is done first for health, as measured by infant mortality: 
 
 ittiitit malariaincomeimrate 2222212 εδββα ++++=  (2) 
 

In equation (2), infant mortality is subject to feedback effects from income, and potentially also 

to an exogenous effect from malarial ecology. An exogenously driven change in health could 

matter for income in many ways, including acceleration of investment in schooling as captured 

in the next equation: 
 
 ittititit imrateincomeschooling 3312313 εδββα ++++=  (3) 
 

In equation (3) there are no exogenous variables. We include this equation only to identify a 

possible channel for health to influence growth through education as opposed to other 

mechanisms.   

The following equation uses social history to identify exogenous determinants of a 

country’s institutions: 
 

 
itti

iiititit
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+++
++++=

 (4) 

 

Equation (4) links our Freedom House-ICRG index of institutional quality to economy-wide 

income, the infant mortality rate as a measure of human capital, and social history defined using 

prevalence of three global religions that were spread from Europe and the Middle East across 

Asia, Africa and Latin America through migration and military conquest. 

 The next equation uses coastal location as an exogenous driver of opportunities for 

specialization and exchange in towns and cities:   
 
 ittiititit coastalagoutputincomeonurbanizati 555352515 εδβββα +++++=  (5) 
 

Equation (5) allows urbanization to be driven by feedback from income and also from 

agricultural output, as well as access to coasts or navigable rivers. 

An alternative route to specialization is captured in the next equation, which identifies 

other determinants of international trade:  
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 ittitiitit populationcoastalincometrade 666362616 εδβββα +++++=  (6) 
 

In equation (6), trade can be driven by economy-wide income, coastal location and population 

size.   

 The last equation brings the endogenous variables together, with no additional exogenous 

variables. 
 

 
ittititit

itititit

tradeonurbanizatiinstqual

schoolingimrateagoutputincome

77767574

7372717

εδβββ
βββα

+++++
+++=

 (7) 

 

This system of equations can be estimated using 3SLS, but the results are likely to be 

biased and/or inefficient due to spatial processes beyond those captured in the regressors. The 

equations may share spatially autocorrelated errors due to spatially correlated omitted variables, 

to spatially correlated measurement error, or to interaction among neighboring countries as 

detailed by Anselin (2003). In this paper we account for spatially correlated residuals in a system 

of equations by allowing each endogenous variable to be subject to both spatial dependence and 

also to a spatial autoregressive process in the error term (i.e., a spatial ARAR model). For this we 

utilize a recently developed full information estimator based on Instrumental Variable (IV) and 

General Moments (GM) estimators, which simultaneously allows for correlation across 

equations (Kelejian and Prucha 2004).1 Here, we start with the naïve three-stage least squares 

approach, and then compare these results to the estimates allowing for the potential influence of 

spatial spillovers and spatially-correlated omitted variables. 

 

3.  Data and some exploratory results  

For all time-variant data, we use observations at five-year intervals, around 1960, 1965, and so 

on through 2000. In most cases these are an average of five annual observations centered on the 

year indicated (that is, 1963–67 for 1965, 1968–72 for 1970, and so forth), although only three 

years are available to represent 1960 (that is, 1960–62) and only three years to represent 2000 

(that is, 1997–2000). For the Barro-Lee (2001) data on schooling and also the UN data on infant 

mortality, single-year observations are used at the corresponding five-year intervals. 

                                                           
1 Kelejian and Prucha (2005) developed an extended estimator that incorporates heteroskedasticity as well, which 
can be incorporated in future work.   
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 The agriculture data are updated from the dataset in Masters and Wiebe (2000), using 

FAO (2004) data for each year’s level of agricultural output (expressed in real international 

dollars of the year 2000) and land used in agriculture (expressed in thousands of hectares). The 

land quality index is from USDA (2005), reporting the fraction of a country’s agricultural land 

that is reported to be in the top three categories of suitability for agriculture in the World Soil 

Resources classification scheme, as reported in NRCS (1999). Agricultural land is defined 

broadly here, to include ‘cropland’ and ‘cropland plus natural mosaic’ from the International 

Geosphere-Biosphere Programme classification (USGS 1999). 

 Climatic data were compiled by Masters and McMillan (2001) from data published by 

the International Panel on Climate Change (IPCC 1999). Frost prevalence refers to the 

proportion of a country’s land receiving five or more frost days in that country’s winter, defined 

as December through February in the Northern hemisphere and June through August in the 

Southern hemisphere. The raw data for this computation were the IPCC’s estimated average 

number of frost-days per month over the 1961–90 period, across 0.5-degree cells for all land 

mass except Antarctica, interpolated from station observations. Rainfall is average total annual 

precipitation for each grid cell averaged over the country’s landmass. The country aggregation is 

based on the CRU TS 2.0 gridded dataset (Mitchell et al. 2003). 

Economic data are drawn from the Penn World Tables 6.2 for national income (real GDP 

per capita, chain indexed, in 2000 US dollars) and for the trade share (exports plus imports as a 

fraction of GDP). Urbanization is drawn from the World Development Indicators online, as the 

percentage of the population in urban areas. Data on schooling are drawn from Barro and Lee 

(2001), from which we use the average number of years of total schooling in the population over 

age 15. Data on infant mortality rates are drawn from United Nations Population Statistics, and 

our data on long-run social history are the percentages of the population estimated to be 

Protestant, Catholic, and Muslim from the Barro-Lee dataset. 

 Our malaria ecology variable is from Kiszewski et al. (2004), and represents an index of 

the ease with which a given infection would be transmitted, independently of whether the 

infection is present. The index is constructed from the physiological characteristics of each 

region’s dominant mosquito species, combined with temperature data that determine how long a 

malaria parasite could survive during transmission from person to person. These factors are 
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largely independent of a country’s economic activity or its anti-malarial efforts. Most 

importantly, the index does not include data on the density of mosquitoes or the prevalence of 

infection, both of which can be reduced in an otherwise malarial region.  

 Our variable for the quality of national institutions is a time-varying index, constructed 

by us from data reported by Freedom House (2005) and International Country Risk Services 

(ICRG 2006). The Freedom House data is an average of their measures for a country’s political 

rights and civil liberties, whereas the ICRG index is an average of their measures for a country’s 

degree of corruption, military in politics, religion in politics, law and order, and democratic 

accountability. Data from the two sources are rescaled for comparability, and combined to 

construct a continuous time series from 1960 to 2000.  

 Overall, the dataset comprises nine five-year averages pertaining to 1960 through 2000 

for 95 countries of the world. Variable definitions and descriptive statistics are provided in Table 

1, with a complete list of countries provided in the appendix. Our coverage includes all of North 

and South America except for Belize, Suriname, French Guiana and some islands in the 

Caribbean. In order to build consistent data series several African countries, such as Morocco, 

Libya, Chad, Ethiopia, Nigeria and Chad, could not be included in the sample. Switzerland and 

Germany as well as most of the Central and Eastern European countries are excluded, as well as 

Russia, Mongolia and some smaller countries in South-East Asia.  

The geographic distance between countries is captured through a spatial weights matrix, 

which is defined a priori and exogenously on the basis of arc-distances between the geographical 

midpoints of the countries considered. It is an inverse-distance matrix where elements are coded 

1/dij if the distance between countries dij � 2,500 miles. Following convention, we standardize by 

enforcing row sums to be equal to one and the diagonal elements set to zero (see e.g., Bell and 

Bockstael 2000, for an explanation). The resulting spatial weight matrix for a single time slice 

has dimension 95, with 17% of the weights being nonzero. The minimum and maximum number 

of links between countries is 1 and 26, respectively, with an average of 16. The minimum cutoff 

distance required to ensure that each country would be linked to at least one other country would 

have been 1,812 miles. In our weight matrix, the connectivity structure is such that there is no 

direct link between America and Europe, although some countries in South America are directly 

linked to Africa. The weight matrix for the pooled data set is defined as a 855×855 block 
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diagonal matrix, with the sequence of nine 95×95 matrices on the diagonal. This implies that we 

assume spatial autocorrelation to be strictly contemporaneous. 

 Figure 1 represents key information for 2000 in choropleth maps, specifically for the 

dependent variables in the system of equations developed in Section 2. GDP per capita, 

measured in constant US dollars of 2000, is highest in North America, Europe, Australia and 

Japan, and is relatively low in South America, Asia and especially the African continent. The 

spatial distribution of per capita agricultural output is very similar, although some of the 

European countries have a less pronounced position, and the agricultural output levels are 

dramatically low in Africa. The spatial distribution of the trade share in GDP shows a much 

more scattered picture. Apart from a city-state such as Singapore, which is hard to see on the 

map, countries with relatively high trade shares include Guyana and Malaysia as well as Ireland, 

Belgium and the Netherlands. Infant mortality rates are highest in India, Pakistan, Iraq and Sub-

Saharan Africa, and comparatively low in the industrialized economies of North America, 

Europe and Australasia. The spatial distribution of institutional quality exhibits a concentration 

of high quality institutions in North America, Northern Europe and Australasia, and Southern 

Europe constitutes an intermediate zone. For schooling a spatial pattern similar to institutional 

quality arises, although in most countries in South America schooling duration is above average 

as well. The spatial distribution of the level of urbanization, defined as the percentage of the 

population living in urban areas, is much more uniform. Except for Southeast Asia and Sub-

Saharan Africa, the level of urbanization is generally greater than 50% throughout the world. 

Figure 2 summarizes the level and changes in spatial clustering for the endogenous 

variables using Moran’s I statistic, defined as the degree of correlation between each country’s 

value and that of its neighbors.2 Global GDP per capita values have a high degree of spatial 

clustering at the start of the period, suggesting strong neighborhood effects, with a small further 

                                                           
2 With a standardized weights matrix Moran’s I is defined as: 

  �� �
= = =
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where the variable x is measured in deviations from its mean, and wij are the elements of the weights matrix. The 
expected value of Moran’s I equals –1/(n–1) under the null hypothesis of no spatial autocorrelation, which is 
approximately –0.01 for our sample and signals a random spatial allocation of the attribute values contained in x. 
We use the normal distribution assumption for statistical inference. Extensive details and principles for statistical 
inference are available in Cliff and Ord (1981) and Tiefelsdorf (2000).  
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increase in clustering during the 1970s and 1980s. Agricultural output, in contrast, exhibits a 

much lower degree of spatial autocorrelation, and a greater increase especially in the 1980s.  The 

trade share has even lower spatial clustering, which increases over time but remains very close to 

zero.  Infant mortality rates start highly clustered and become even more so, exhibiting the 

highest degree of spatial autocorrelation during the entire period. Schooling and institutional 

quality start with similar levels of clustering in the early 1960s, but schooling becomes much 

more clustered while institutional quality does not.  In fact, spatial clustering of institutional 

quality actually declines slightly from its peak in the 1980s through the 1990s. Finally, 

urbanization has a relatively high degree of spatial clustering, and shows a small increase except 

for 1995 and 2000.  

 Figure 3 provides some more detail with respect to the spatial distribution of the seven 

dependent variables in Moran scatterplots, for the latest available period. These charts show the 

standardized value of each country’s variable xi against its spatial lag, which equals the spatially 

weighted average of the xj-values with the set of neighbors being defined through the i-th row of 

the weights matrix. It aids in identifying local clusters of spatial correlation, spatial non-

stationarity and outliers, and the gradient of the trend line equals the Moran’s I coefficient (see 

Anselin 1996 for details). 

  In Figure 3, the Moran scatterplot for GDP per capita shows a strong clustering of 

countries in the lower-left quadrant, which are low-income countries surrounded by countries 

with similarly low per capita incomes. A few low-income countries, however, are in the upper-

left quadrant, meaning that their neighbors actually have above-average incomes. In contrast, 

many of the high-income countries are in neighborhoods with above-average income. The 

outliers (as judged by the 2σ-rule) are the US, which is surrounded by neighbors with average 

per capita income, and Norway, which is surrounded by above-average per capita income 

neighbors. The scatterplot for agricultural output is similar to the plot for GDP per capita 

although the extent of spatial clustering is smaller. Outliers are New Zealand, Australia, 

Denmark, and Ireland. As mentioned above there is no significant spatial clustering in trade, and 

Singapore is the extreme outlier. The scatterplot for infant mortality clearly shows two separate 

clusters, of which one comprise most of the countries located in Africa. Institutional quality, 
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schooling and urbanization show a similar degree of spatial clustering, without any obvious 

outliers. 

 

4. Econometric method and estimation results 

In two recent papers reviewing the economic growth literature Abreu, de Groot and Florax 

(2005a,b) stress two important implications of earlier work. First, in a quantitative analysis of 

over 600 estimates drawn from nearly 50 convergence studies they find that correcting for 

endogeneity in the explanatory variables results in significantly higher estimates of the rate of 

convergence. This is in line with earlier findings of Cho (1996) and Caselli, Esquivel and Lefort 

(1996). In addition, they document that the use of panel data and concurrent corrections for 

unobserved heterogeneity in technology levels and/or steady states leads to substantially higher 

rates of convergence, which is reinforced by the results of Dobson, Ramlogan and Strobl (2006). 

Second, the Abreu et al. reviews of the spatial econometric literature dealing with (regional) 

economic growth shows that this literature has not yet established a strong link to prevalent 

economic growth theories, and it has a tendency to restrict the modeling of spatial spillover 

processes to either a spatial lag or a spatial error model, eventually in combination with spatial 

regimes to account for non-stationarity in the mean and variance. Only recently have spatial 

methods been more rigorously applied, as in Ertur and Koch (2005) and Fingleton and López-

Bazo (2006). 

In the current paper we follow the approach outlined in Kelejian and Prucha (2004) and 

use a spatial econometric specification that is less restrictive than previous work in terms of 

spatial correlation, and accommodates endogeneity at the same time. In terms of spatial 

autocorrelation, the specification allows for spatial spillover effects through the dependent 

variable as well as for a spatial autoregressive error structure. This specification is known as the 

spatial ARAR model. For a single equation this specification reads as: 
 

 
,

,
µελε

εβρ
+=

++=
W

XWyy
 (8) 

where y is an (n×1) vector of observations on the dependent variable, X an (n×k) matrix of non-

stochastic regressors, W an (n×n) spatial weights matrix that represents the topology of the 

spatial system, µ an (n×1) vector of iid errors, β a (k×1) vector of regression coefficients, and ρ 
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and λ are spatial autoregressive parameters. Substitution and rearrangement of terms in equation 

(7) leads to: 
  
 ( )µλβρ 11 )()( −− −+−= WIXWIy , (9) 
  

which shows that equation (7) implies a rather complex form of spatial autocorrelation evoked 

by nested spatial multiplier processes pertaining to the observable and the non-observable part of 

the model (see also Anselin 2003). The spatial complexity of the model notwithstanding, testing 

for spatial autocorrelation is rather straightforward and can be based on a Lagrange Multiplier 

test for which the asymptotic distribution has been derived in a maximum likelihood framework. 

This test is generally known as the SARMA test but since Lagrange Multiplier tests cannot 

distinguish between locally equivalent autoregressive (AR) and moving average (MA) processes 

(Godfrey 1988) the SARMA test can also be used to detect an ARAR process.3 

Instead of a purely cross-sectional dataset, we use a panel dataset comprising nine time 

slices centered on 1960, 1965, etc. through 2000. We do not investigate the temporal dynamics 

and associated serial autocorrelation, but simply treat the data as independent replications of the 

cross-sectional data. We do, however, include fixed effects for the different time periods, thus 

accommodating a possible time trend. Given that some data offer yearly observations, richer 

models incorporating spatio-temporal dynamics are feasible, but we leave those for future 

research (see Anselin, Le Gallo and Jayet 2006). 

A distinct advantage of the Kelejian and Prucha (2004) systems approach is that it 

explicitly allows for endogeneity to be taken into account. The endogeneity is not necessarily 

restricted to spatial spillover effects, but it can also include the usual system feedback effects. 

Kelejian and Prucha (2004) derive a full information generalized spatial systems estimator 

(GS3SLS) in a sequential estimation procedure using limited information IV and GM estimation 

to provide initial estimates of the spatial autoregressive parameters. The set-up and the estimators 

involved are described concisely as follows. 

                                                           
3 Anselin and Kelejian (1997) discuss testing for spatial autocorrelation in a model with endogenous regressors, 
where the endogeneity is caused by systems feedbacks or by spatial interaction of an endogenous variable. In the 
empirical application we initially use OLS based tests although this ignores the endogeneity of some of the 
regressors. Testing for spatial autocorrelation can also be based on the general results for Moran’s I in Kelejian and 
Prucha (2001). 
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Consider a simultaneous system of m spatially interrelated cross-sectional equations 

indexed by j (= 1, 2, …, m) and defined as: 
 
 UXYYY +Β+Γ+Ρ= , (10) 
 

where ),,,( 21 myyyY �=  with yj as the (n×1) vector of observations on the dependent variable, 

),,,( 21 myyyY �=  has the same dimension and contains the spatial lags of the endogenous 

variables defined as jj Wyy = , ),,,( 21 kxxxX �=  with xl as the (n×1) vector of observations on 

the exogenous variable l, and ),,,( 21 muuuU �=  where uj is the vector of errors in the jth 

equation. Further, W is an (n×n) spatial weights matrix of known constants, and Ρ  is an (m×m), 

Γ  an (m×m) and Β  a (k×m) parameter matrix. In addition to the spatial spillovers in the 

endogenous variables the errors are also allowed to include a spatial autoregressive process: 
 
 EUU +Λ= , (11) 
 

with ),,,( 21 mE εεε �=  where jε  denotes the (n×1) vector of innovations. Analogous to the 

spatial lag operations above, ),,,( 21 muuuU �=  are the spatially correlated errors with 

jj uWu = , and the spatial autoregressive parameters are given by )(diag 1 j
m
j λ==Λ . 

One should note that the coefficient matrix Ρ  referring to the spatially lagged 

endogenous variables is not necessarily diagonal, and hence the specification allows for the jth 

endogenous variable to depend on its own spatial lag as well as on spatial lags of other 

endogenous variables. We leave this generalization to future work. The coefficient matrix Λ  is 

also assumed to be diagonal, implying that the errors are spatially correlated within an equation, 

but they are not spatially correlated across equations.4 The generality of the systems approach 

and the suggested estimator is also evident from the fact that the exogenous regressors are 

allowed to depend on n, and hence form triangular arrays, which implies that the specification 

may also contain spatially lagged exogenous variables (Kelejian and Prucha 2004, p. 30). As a 

final observation we note that using the feasible GS3SLS estimator makes Wald tests available to 

test restrictions on the (spatial autoregressive) parameters.5 

                                                           
4 The GS3SLS estimator allows for error correlation across equations, but this correlation does not have a spatial 
dimension. 
5 As far as the spatial variables are concerned, this is only feasible for the spatially lagged endogenous variables and 
eventually the spatially lagged exogenous variables. A Wald test on spatially autocorrelated errors is not possible, 
because the values of λj are merely used in the Cochrane-Orcutt transformation. The latter can be tested using 
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In order to determine the marginal effects of changes in the exogenous variables we use 

the notation and the line of reasoning introduced in Kelejian and Prucha (2004, pp. 30-31). 

Define )(vecy Y=  and corresponding operations to define �. and u u,  x,,y  Given that 

y)(y WI m ⊗= , the system defined by (9) and (10) can be written as: 
 

 
,�uu

,uxyy
*

**

+Λ=
+Β+Γ=

 (12) 

 

where ),()(* WI n ⊗Ρ′+⊗Γ′=Γ  nI⊗Β′=Β*  and ).(diag 1
* WW j

m
j λ==⊗Λ=Λ  The reduced 

form of (11) then follows from rearranging terms as: 
 
 ]�)(x[)(y 1**1* −− Λ−+ΒΓ−= nmnm II , (13) 
  

where Inm has dimension (nm×nm). Marginal effects of changes in more or more of the 

exogenous variables follow from: 
 

 *1*1* )]()([)(
x
y Β⊗Ρ′−⊗Γ′−=ΒΓ−=
′∂

∂ −− WIII nnmnm . (14) 

 

This equation shows that the impact of a shock to one or more of the exogenous factors leads to 

spatial feedback via the endogenous regressors (through the term nI⊗Γ′ ), and depends on the 

geographical location and the spatial connectedness of the place where the exogenous shock 

occurs (which is contained in the term W⊗Ρ′ ). The weights matrix W defines the extent of each 

country’s neighborhood, and hence the limits of these spatial feedback effects. In our application, 

the definition of neighborhood is extremely broad to capturing a very wide range of spillovers, as 

all countries within a 2500 miles radius are linked to each other. Further work could test more 

restrictive specifications.6  

 

                                                                                                                                                                                           
Moran’s I (see Kelejian and Prucha 2001), or the Lagrange Multiplier principle (see Anselin and Kelejian 1997).  
See also footnote 2. 
6 An alternative approach uses direct representation of a distance decay process for spatial spillovers, in a parametric 
or non-parametric fashion (see, e.g., Conley and Ligon 2002).  Some work has also pursued endogenizing the spatial 
weights matrix (Kelejian and Prucha 2005). However, neither approach can circumvent the occurrence and 
relevance of the Modifiable Areal Unit Problem (MAUP; see, e.g., Anselin 1988).  
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In a concise form we can write (9) and (10) as a system of cross-sectional equations indexed by j 

= (1, 2, …, m): 
 

 
,

,

jjjj

jjjj

Wuu

uZy

ελ
δ

+=

+=
 (15) 

 

where ),,( jjjj XYYZ =  and .),,( ′′′′= jjjj βγρδ  The full information estimator derived in 

Kelejian and Prucha (2004) is obtained in the following four steps: 

 

�� Apply 2SLS to each equation and estimate jδ  as ,
~

)
~

(
~ 1

jjjjj yZZZ ′′= −δ where ,
~

jHj ZPZ =  

HHHHPH ′′= −1)(  and H is a matrix of instruments formed as a subset of the linearly 

independent columns of ,...).,,( 2 XWWXX   

�� Based on jδ~ , compute the 2SLS residuals jjjj Zyu δ~~ −=  and use the generalized moments 

procedure suggested in Kelejian and Prucha (1999) to estimate jλ , the spatial autoregressive 

parameter of the error process for each equation. 

�� Use a Cochrane-Orcutt transformation to define the suitably transformed variables 

jjjj WZZZ ρ~* −=  and jjjj Wyyy ρ~* −= , and apply a feasible generalized spatial 2SLS 

estimator (FGS2SLS) to obtain **1**2 ˆ)ˆ(ˆ
jjjj

SLSF
j yZZZ ′′= −δ  where .ˆ **

jHj ZPZ =   

�� Stack the equations as εδ += ** Zy , where ),,,( **
2

*
1

* ′′′′= myyyy � , ),(diag *
1

*
j

m
j ZZ ==  and 

.),,,( 21 ′′′′= mδδδδ �  Obtain the full information results by using the feasible GS3SLS 

estimator to calculate *1*1*1*3 )ˆ(ˆ))ˆ(ˆ(ˆ yIZZIZ nn
SLSF ⊗�′⊗�′= −−−δ , where �̂  is estimated as 

an (m×m) matrix whose j,l-th element is ljjl n εεσ ~~ˆ 1 ′= −  with .ˆ~ 2** SLSF
jjjj Zy δε −=  Kelejian and 

Prucha (2004) prove that the small sample distribution of the FGS3SLS estimator can be 

approximated by )]ˆ)ˆ(ˆ[,(N~ˆ 1*1*3 −− ⊗�′ ZIZ n
SLSF δδ � . 

 

The asymptotic properties of the above estimator critically depend on the assumption of 

homoskedastic innovations. In future work we will extend the application to the ARAR estimator 

allowing for heteroskedasticity along the lines developed in Kelejian and Prucha (2005). 

 

We now turn to the estimation results for the system of equations developed in Section 2. The 

results are generated using the same spatial weights matrix throughout the entire model, and we 
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account only for spatially lagged dependent rather than the more general spatially lagged 

endogenous variables (across equations). We do also not incorporate spatially lagged exogenous 

variables. We follow Kelejian and Robinson (1993) and define the instruments as the linearly 

independent exogenous variables and their first-order spatial lags, although alternatives would be 

available as well (see Lee 2003). Table 2 provides the results for an equation-by-equation 

estimation using OLS and includes several (spatial) diagnostic test results. Table 3 presents the 

3SLS results, which account for endogeneity but not spatial effects, while Table 4 presents the 

full information results using the feasible GS3SLS estimator discussed above. 

 Table 2 is provided for comparative purposes. This naïve specification, without any 

control for endogeneity or spatial lags, shows how income is closely correlated with a number of 

endogenous regressors, notably infant mortality, schooling, institutional quality and urbanization. 

Each of them is in turn also correlated with income, when controlling for various other 

significant determinants. The misspecification test results shown here are also only heuristic, 

since they are derived without accounting for the endogeneity of some of the regressors. The 

condition number shows that multicollinearity does not impair the results. The results for the 

Jarque-Bera test indicate that the null hypothesis of normally distributed errors is rejected for 

nearly all equations. This provides another reason for interpreting the Lagrange Multiplier 

diagnostics cautiously. It does not, however, have any major implications for the systems 

estimator, because the estimator does not require the disturbances to be normal. The Breusch-

Pagan test results, with random coefficient variation as the alternative hypothesis, show that 

homoskedasticity is rejected in all. This implies that it is highly relevant to address this issue in 

future work. The spatial diagnostics are fairly mixed. For six out of seven equations there is 

evidence that a higher-order model is appropriate (in particular for the equations pertaining to 

agriculture output, infant mortality, schooling, urbanization, trade and income). There is, 

however, no clear indication of spatial autocorrelation for the institutional quality equation. 

  Tables 3 and 4 contain the estimation results for the systems estimators. Table 3 accounts 

for endogeneity using 3SLS, whereas Table 4 accounts for both endogeneity and neighborhood 

effects using the spatial ARAR model. Briefly, the results of Table 3 can be summarized as 

follows. Unlike the naïve OLS regression, in a system context per-capita income is not correlated 

with institutional quality. Income has a strong and significant links from infant mortality, and 
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agricultural output. Per capita agricultural output, in turn, is mainly determined by the 

availability of agricultural land and land quality; the prevalence of winter frost has the same 

significant effect as in Masters and McMillan (2001), while disease ecology (malaria) also has 

the expected effect. Infant mortality is mainly linked to income; controlling for income and the 

time dummies disease ecology show also strong correlation with infant mortality. Schooling and 

institutional quality are both associated negatively with infant mortality but do not have expected 

correlation with income. The links to institutions from cultural variables, although statistically 

significant, are of minor importance. As expected, the level of urbanization is positively linked to 

income, agricultural output and to coastal location. Finally, per capita income is strongly 

negatively affected by infant mortality and positively impacted by urbanization. 

The results for the spatial system of equations documented in Table 4 shows results that 

are broadly similar to those in Table 3, but allowing for spatial dependence changes the results in 

important ways. First, after controlling for the observed variables we find significant spatial lags 

among all of the endogenous variables, except for infant mortality.  Only infant mortality is 

explained by our data on country characteristics, without recourse to unobserved neighborhood 

effects. For agricultural output, schooling, institutional quality, urbanization, and international 

trade there are positive spatial lags, while for income there is a small negative spatial lag. That is, 

when controlling for the positive neighborhood effects in these endogenous determinants of 

income, the remaining influences are negatively correlated across space. Since our model is 

linear, this result could be due to diminishing returns to these or other inputs. 

Having controlled for unobserved spillovers and regional characteristics, the measured 

variables shown in Table 4 show several very interesting correlations. First, for agricultural 

output, our variables on land quality and quantity, prevalence of winter frosts and malaria 

ecology remain significant and of the expected sign. Total rainfall is not significant, and there is 

a positive time trend as shown by increasing coefficients on the period dummies. In the second 

column, for infant mortality, both malaria ecology and income are significant as expected. The 

residual effect of time is quite large and significant, suggesting important technological 

improvements allowing lower infant mortality at a given level of income and malaria ecology. 

The third column, for schooling, shows both infant mortality and income to be significant and of 

the expected sign, with no residual time trend. The fourth variable, institutional quality, has a 
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positive correlation with income, and a small correlation with social history as measured by 

percent Catholic and Muslim, with no residual time trend. Urbanization is correlated with local 

agricultural output (though weakly), with income and with coastal location, and has a small 

positive time trend when controlling for these factors. Trade is negatively correlated with 

population size and with income (perhaps due to the increased role of non-traded services), and 

positively linked to coastal location, with a small positive time trend. And in our final equation, 

all of these endogenous variables have independent correlation with income, except for 

agriculture output and schooling. In other words, exogenously higher agricultural output drives 

increased income by facilitating urbanization, and in this specification increased schooling is a 

result but not a cause of income growth. There is also a large residual effect of time on real 

income, with unmeasured factors driving increases in measured income from period to period 

from 1960 until 1975, followed by decreases through 2000.  

In sum, when controlling for spatial processes in this model, we maintain support for both 

the “institutionalist” and “geographic” schools of thought. Geographic factors such as malaria 

ecology, coastal location and seasonal frost are found to have significant independent effects on 

the system, influencing institutional quality but not completely determining it, and a country’s 

institutional quality then does have a strong independent role in income.     

 

5. Conclusions 

This paper uses panel data in a system of simultaneous equations, controlling for spatial 

spillovers and unobserved spatial heterogeneity, to explore how measured country characteristics 

such as physical geography and institutions might be linked to real income per person. This 

approach offers a new kind of test for how particular types of technologies and institutions might 

affect income, and then test the robustness of each variable against various kinds of 

neighborhood effects.  

The endogenous variables associated with income are agricultural output per capita (as 

measured by the FAO), health status (as measured by infant mortality), educational attainment 

(as measured by years of schooling), institutional quality (as measured by a combination of 

Freedom House and ICRG indexes), and urbanization (percentage of the population in towns or 

cities). The exogenous variables represent climate (which plausibly affect only agricultural 
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output), malaria ecology (only through agriculture or health), social history (only through 

institutions), coastal location (only through urbanization or trade), and population size (through 

international trade). With this specification, after controlling for spatial proximity, all of the 

variables have some independent effect on income, except schooling. This result provides strong 

empirical support for both “geographic” and “institutionalist” hypotheses. Geographic variables 

such as land quality, coastal location and malaria prevalence have strong independent effects on 

income, primarily by facilitating urbanization and declines in infant mortality.  Institutional 

quality also has a strong independent link to income, even when controlling for reverse causality 

and neighborhood effects.   

Most notably, accounting for these country characteristics still leaves large residual 

spatial lags. This result suggests that our specification has only begun to capture the relevant 

spillovers and spatial heterogeneity among countries. Understanding these spatial correlations 

will require more precise measurement of both the unobserved factors driving local agricultural 

productivity, public health and ease of urbanization, but also more complete accounting for 

cross-border flows associated with migration, investment or technology diffusion.   

 Throughout the paper we have indicated potential extensions and variations to be 

addressed in future work. Among those are testing for exogeneity and exclusion restrictions, the 

incorporation of heteroskedasticity following the procedures developed in Kelejian and Prucha 

(2005), an assessment of parameter heterogeneity and other robustness checks, and consideration 

of the temporal dynamics of the system. 
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Table 1. Descriptive statisticsa 

Variableb\statistic Mean Variance Minimum Maximum Skewness Kurtosis 
Agricultural output 0.254 0.060 0.001 1.744 2.724 12.257 
Agricultural land 0.412 0.204 0.001 3.731 3.751 20.687 
Land quality 20.340 370.685 0.001 76.296 1.029 3.292 
Frost 0.366 0.194 0.000 1.000 0.533 1.423 
Rainfall 1278.946 575948.400 46.233 3416.267 0.616 2.561 
Malaria 3.713 40.247 0.000 30.095 2.026 6.625 
Population (× 1000) 37.828 16100.000 0.042 1249.134 6.635 50.647 
Infant mortality 72.047 3052.841 2.980 285.000 0.671 2.647 
Trade 62.756 2651.960 5.048 541.396 3.388 23.463 
Income (× 1000) 6.407 42.500 0.384 33.711 1.469 4.476 
Schooling 4.684 8.014 0.120 12.050 0.423 2.407 
Institutional quality 0.403 0.086 0.143 1.000 1.143 2.856 
Catholic 38.063 1406.900 0.000 96.900 0.489 1.582 
Protestant 14.122 478.400 0.000 97.800 2.138 7.397 
Muslim 17.886 968.232 0.000 99.700 1.769 4.550 
Urbanization 45.183 601.941 2.230 100.000 0.238 2.154 
Coastal 48.138 1451.542 0.001 100.000 0.189 1.464 
Time dummiesc 0.000 0.222 –1.000 1.000 0.000 4.500 
a Based on 95 countries, five-year averages from 1960 through 2000. 
b Variable definitions are detailed in the text and summarized here: agricultural output is an index of net farm 
production per capita at international prices in 2000 US dollars; agricultural land is land used in agriculture in 
thousands of hectares; land quality is the percentage of a country’s farmland that falls in the top three categories of 
fertility; frost refers to the proportion of a country’s land receiving five or more frost days per month in winter; 
rainfall is average total annual precipitation over the country’s land mass in millimeter; malaria is an ecological 
index of malaria transmissibility; infant mortality is per 1,000 live births; income is real GDP per capita in PPP 
terms, expressed in 2000 US dollars; schooling is the average number of years of education for the population over 
age 15; institutional quality is the average of IRCG indexes  for “corruption”, “military in politics”, “religion in 
politics”, “law and order”, “democratic accountability”, and “bureaucratic quality”, combined with Freedom House 
indexes for “Political Rights” and “Civil Liberty”; catholic, protestant and muslim are estimated percentages of the 
population with the specified religion; urbanization is the percentage of the population living in urban areas; coastal 
is the percentage of a country’s land that is within 100 km of a seacoast or navigable river. 
c The time dummies allow fixed effects for 1960, 1965, etc. and are subsequently recomputed as deviations from the 
omitted category, 1960.   
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Table 2. Regression output, equation-by-equation estimation, OLS with diagnostics for spatial effectsa,b 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutional 

quality 
Urbanization Trade Income 

Agricultural output     –0.041* 
(0.023) 

 0.103*** 
(0.022) 

Agricultural land 0.397*** 
(0.025) 

      

Land quality 0.052*** 
(0.010) 

      

Frost 0.105*** 
(0.031) 

      

Rainfall 0.072*** 
(0.015) 

      

Malaria –0.092*** 
(0.011) 

0.061*** 
(0.006) 

     

Infant mortality   –0.436*** 
(0.039) 

–0.247*** 
(0.033) 

  –0.606*** 
(0.026) 

Income  –0.689*** 
(0.019) 

0.201*** 
(0.036) 

0.224*** 
(0.030) 

0.458*** 
(0.019) 

–0.115*** 
(0.024) 

 

Schooling       –0.099*** 
(0.028) 

Institutional quality       0.230*** 
(0.033) 

Trade       –0.057*** 
(0.019) 

Catholic    0.001*   
(0.0004 

   

Protestant    0.005*** 
(0.001) 

   

Muslim    –0.001 
(0.001) 

   

Urbanization       0.516*** 
(0.027) 

Coastal     0.056*** 
(0.005) 

0.043*** 
(0.007) 

 

Population      –0.183*** 
(0.013) 

 

D1965 –0.086*   
(0.053) 

0.300*** 
(0.042) 

–0.092*   
(0.051) 

0.113*** 
(0.039) 

–0.121*** 
(0.042) 

–0.286*** 
(0.063) 

0.114*** 
(0.038) 

D1970 –0.045 
(0.053) 

0.249*** 
(0.041) 

–0.054 
(0.051) 

0.044 
(0.039) 

–0.085** 
(0.042) 

–0.161*** 
(0.062) 

0.131*** 
(0.037) 

D1975 –0.014 
(0.053) 

0.208*** 
(0.041) 

–0.009 
(0.051) 

–0.018 
(0.039) 

–0.049 
(0.041) 

–0.079 
(0.062) 

0.146*** 
(0.037) 

D1980 0.004 
(0.053) 

0.034 
(0.041) 

0.017 
(0.050) 

–0.048 
(0.038) 

–0.003 
(0.041) 

0.022 
(0.062) 

0.056 
(0.037) 

D1985 0.022 
(0.053) 

–0.095** 
(0.041) 

0.048 
(0.050) 

–0.057 
(0.038) 

0.051 
(0.041) 

0.009 
(0.062) 

–0.034 
(0.037) 

D1990 0.042 
(0.053) 

–0.224*** 
(0.041) 

0.075 
(0.051) 

–0.041 
(0.039) 

0.091**   
(0.042) 

0.138**  
(0.062) 

–0.112*** 
(0.037) 

D1995 0.079 
(0.053) 

–0.345*** 
(0.041) 

0.068 
(0.052) 

–0.080** 
(0.040) 

0.126*** 
(0.042) 

0.295*** 
(0.062) 

–0.173*** 
(0.038) 

D2000 0.120**  
(0.053) 

–0.442*** 
(0.042) 

0.041 
(0.053) 

–0.069*   
(0.041) 

0.148*** 
(0.042) 

0.397*** 
(0.063) 

–0.227*** 
(0.039) 

Constant 
  

–1.884*** 
(0.187) 

9.625*** 
(0.152) 

1.305*** 
(0.440) 

–2.117*** 
(0.351) 

–0.371**  
(0.178) 

6.422*** 
(0.233) 

9.488*** 
(0.161) 
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Table 2. Continued 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutional 

quality 
Urbanization Trade Income 

Condition number 32 32 66 70 35 29 36 
Jarque-Bera 185.89*** 12.39*** 351.27*** 0.89 362.63*** 39.50*** 26.62*** 
Breusch-Pagan 49.43*** 30.29*** 130.99*** 26.44 85.71*** 75.99*** 77.88*** 
Moran’s I 2.65*** –3.18*** –6.04*** –0.62 6.99 3.13*** –0.004 
LM-error 2.94* 13.97*** 41.09*** 1.75 33.54*** 4.69** 0.58 
Robust LM-error 0.0004 6.28** 10.53*** 13.70*** 0.78 0.63 0.98 
LM-lag 4.40** 10.01*** 34.59*** 5.94** 38.89*** 4.08** 15.57*** 
Robust LM-lag 1.47 2.32 4.03*** 17.90*** 6.13** 0.02 15.97*** 
SARMA 4.40 16.29*** 45.12*** 19.64*** 39.67*** 4.71* 16.55*** 
R2-adjusted 0.47 0.83 0.63 0.63 0.67 0.24 0.87 
AIC 1410.36 980.90 1306.21 849.66 988.50 1678.76 790.47     
Log-likelihood –691.18 –479.45 –642.10 –410.83 –482.25 –827.38 –380.23 
a All variables enter in logarithmic form, except for the time dummies and the constant. Significance is indicated by 
***, ** and * for the 1, 5, and 10 per cent level, respectively, with standard errors in parentheses. 
b The Jarque-Bera and the Breusch-Pagan tests are asymptotically χ2 distributed, and test for normality of the errors 
and homoskedasticity with random coefficient variation as the alternative hypothesis, respectively. In cases where 
the null hypothesis of the Jarque-Bera test is rejected, the Koenker-Basett variant instead of the Breusch-Pagan 
version is reported. For details on the spatial misspecification tests see Anselin et al. (1996). 
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Table 3. Regression output, system estimation, 3SLS not allowing for spatial spilloversa,b 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutional 

quality 
Urbanization Trade Income 

Agricultural output     0.063**  
(0.032) 

 0.077*** 
(0.028) 

Agricultural land 0.434*** 
(0.023)  

     

Land quality 0.058*** 
(0.008)  

     

Frost 0.043*** 
(0.009)  

     

Rainfall 0.023 
(0.031)  

     

Malaria –0.076*** 
(0.008) 

0.036*** 
(0.007)  

    

Infant mortality   –0.979*** 
(0.075) 

–0.403*** 
(0.092)  

 –0.860*** 
(0.068) 

Income  –0.781*** 
(0.028) 

–0.208*** 
(0.071) 

0.102 
(0.082) 

0.409*** 
(0.029) 

–0.244*** 
(0.033)  

Schooling    
   

–0.386*** 
(0.053) 

Institutional quality    
  

 0.320*** 
(0.093) 

Trade       –0.061** 
(0.028) 

Catholic    0.001 
(0.001)  

  

Protestant    0.004*** 
(0.001)  

  

Muslim    –0.001** 
(0.001)  

  

Urbanization       0.458*** 
(0.047) 

Coastal     0.060*** 
(0.005) 

0.070*** 
(0.008)  

Population      –0.197*** 
(0.013)  

D1965 –0.089 
(0.057) 

0.274*** 
(0.042) 

0.062 
(0.054) 

0.155*** 
(0.045) 

–0.136*** 
(0.044) 

–0.326*** 
(0.062) 

0.127*** 
(0.047) 

D1970 –0.045 
(0.057) 

0.236*** 
(0.041) 

0.077 
(0.053) 

0.081*   
(0.044) 

–0.094**  
(0.044) 

–0.183*** 
(0.061) 

0.149*** 
(0.043) 

D1975 –0.01 
(0.057) 

0.206*** 
(0.041) 

0.104**    
(0.053) 

0.014 
(0.043) 

–0.052 
(0.043) 

–0.083 
(0.061) 

0.175*** 
(0.042) 

D1980 0.000 
(0.057) 

0.04 
(0.041) 

0.038 
(0.051) 

–0.042 
(0.039) 

0.000 
(0.043) 

0.031 
(0.061) 

0.068*** 
(0.041) 

D1985 0.017 
(0.057) 

–0.085**  
(0.041) 

0.001 
(0.051) 

–0.071*   
(0.040) 

0.058 
(0.043) 

0.025 
(0.061) 

–0.031 
(0.042) 

D1990 0.042 
(0.057) 

–0.209*** 
(0.041) 

–0.041 
(0.053) 

–0.074*  
(0.043) 

0.102**  
(0.044) 

0.162*** 
(0.061) 

–0.122*** 
(0.043) 

D1995 0.083 
(0.057) 

–0.324*** 
(0.042) 

–0.112 
(0.056) 

–0.130*** 
(0.048) 

0.138*** 
(0.044) 

0.328*** 
(0.062) 

–0.199*** 
(0.046) 

D2000 0.130**  
(0.057) 

–0.416*** 
(0.042) 

–0.189 
(0.058) 

–0.134** 
(0.053) 

0.161*** 
(0.044) 

0.440*** 
(0.062) 

–0.277*** 
(0.048) 

Constant 
  

–1.372*** 
(0.190) 

10.347*** 
(0.227) 

6.769 
(0.867) 

–0.475 
(0.995) 

0.195 
(0.276) 

7.552*** 
(0.290) 

11.128*** 
(0.332) 
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Table 3. Continued 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutiona

l quality 
Urbanization Trade Income 

R2 0.50 0.83 0.55 0.62 0.67 0.25 0.84 
Goodness-of-fit 942.64*** 3534.99*** 1407.15*** 1178.58*** 1389.49*** 360.02*** 3554.23*** 
a See footnote a to Table 2. 
b Note that the R2-value is not restricted to the usual [–1,+1] interval. The goodness-of-fit test is a Wald test with an 
asymptotic χ2-distribution. 
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Table 4. Regression output, system estimation, full information estimator for the ARAR specificationa 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutional 

quality 
Urbanization Trade Income 

WAgricultural output 
 

0.501*** 
(0.042) 

      

WInfant mortality 
 

 0.018 
(0.036) 

     

WSchooling 
 

  0.571*** 
(0.053) 

    

WInstitutional quality 
 

   0.273*** 
(0.054) 

   

WUrbanization 
 

    0.422*** 
(0.040) 

  

WTrade 
 

     0.698*** 
(0.096) 

 

WIncome 
 

      –0.077** 
(0.030) 

Agricultural output     0.046*  
(0.026) 

 0.031 
(0.020) 

Agricultural land 0.368*** 
(0.021) 

      

Land quality 0.044*** 
(0.008) 

      

Frost 0.032**   
(0.009) 

      

Rainfall 0.028 
(0.028) 

      

Malaria –0.044*** 
(0.009) 

      

Infant mortality   –0.180** 
(0.052) 

–0.033 
(0.055) 

  –0.617*** 
(0.040) 

Income  –0.814*** 
(0.028) 

0.221*** 
(0.053) 

0.346*** 
(0.046) 

0.310*** 
(0.027) 

–0.064** 
(0.024) 

 

Schooling  0.032*** 
(0.005) 

    0.037 
(0.037) 

Institutional quality       0.438*** 
(0.052) 

Trade       –0.049*   
(0.023) 

Catholic    0.004*** 
(0.001) 

   

Protestant    –0.001 
(0.001) 

   

Muslim    –0.002**  
(0.001) 

   

Urbanization       0.434*** 
(0.035) 

Coastal     0.039*** 
(0.004) 

0.036*** 
(0.007) 

 

Population      –0.158*** 
(0.013) 
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Table 4. Continued 
Variables Agricultural 

output 
Infant 

mortality 
Schooling Institutional 

quality 
Urbanization Trade Income 

D1965 –0.110*   
(0.055) 

0.179*** 
(0.040) 

–0.001 
(0.051) 

0.057 
(0.040) 

–0.055 
(0.041) 

–0.169** 
(0.067) 

0.092*   
(0.038)  

D1970 –0.061 
(0.055) 

0.156***  
(0.040) 

–0.005 
(0.050) 

0.006 
(0.039) 

–0.039 
(0.040) 

–0.093 
(0.063) 

0.112**  
(0.037) 

D1975 –0.023 
(0.055) 

0.140**  
(0.039) 

–0.003 
(0.049) 

–0.042 
(0.038) 

–0.025 
(0.040) 

–0.042 
(0.061) 

0.131*** 
(0.037)  

D1980 0.003 
(0.055) 

0.028 
(0.039) 

–0.004 
(0.048) 

–0.046 
(0.037) 

–0.003 
(0.040) 

0.013 
(0.060) 

0.053 
(0.037)  

D1985 0.031 
(0.055) 

–0.056 
(0.039) 

0.005 
(0.048) 

–0.036 
(0.037) 

0.025 
(0.040) 

0.022 
(0.060) 

–0.025 
(0.037) 

D1990 0.063 
(0.055) 

–0.137**  
(0.040) 

0.013 
(0.050) 

–0.009 
(0.039) 

0.044 
(0.040) 

0.093 
(0.062) 

–0.097**  
(0.037) 

D1995 0.105*    
(0.055) 

–0.214*** 
(0.041) 

0.003 
(0.052) 

–0.019 
(0.041) 

0.059 
(0.041) 

0.168*   
(0.068) 

–0.146** 
(0.038) 

D2000 0.144**  
(0.055) 

–0.274*** 
(0.041) 

–0.018 
(0.053) 

–0.005 
(0.042) 

0.065*   
(0.041) 

0.217**  
(0.075) 

–0.192*** 
(0.038)  

Constant 
  

–0.592**  
(0.179) 

10.555*** 
(0.325) 

–0.566 
(0.601) 

–3.529*** 
(0.558) 

–0.522*  
(0.225) 

3.043*** 
(0.509) 

10.477*** 
(0.314) 

Implicit λb –0.315** 
(0.111) 

0.304*** 
(0.016) 

0.004 
(0.036) 

0.044 
(0.093) 

0.020 
(0.048) 

–0.324 
(0.286) 

0.214 
(0.150) 

a See footnote a to Table 2. 
b Estimated values and standard errors for λ  based on the GM estimator in the second step of the estimation 
procedure; used in the Cochrane-Orcutt transformation to obtain full information estimates. 
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Figure 1. Maps of GDP per capita, agricultural output, trade share, infant mortality rate, institutional quality, level 
of schooling, and urbanization, in 2000 
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Figure 2. Moran’s I grouped by dependent variable from 1960 (left) through 2000 (right) 
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Figure 3. Moran scatterplots for GDP per capita, agricultural output, trade share, infant mortality rate, institutional 
quality, level of schooling, and urbanization, in 2000 
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Appendix 
 
Table A1. Countries included in the sample 
Algeria Ghana Pakistan 
Angola Greece Panama 
Argentina Guatemala Papua New Guinea 
Australia Guinea-Bissau Paraguay 
Austria Guyana Peru 
Bangladesh Haiti Philippines 
Barbados Honduras Portugal 
Belgium Iceland Romania 
Benin India Rwanda 
Bolivia Indonesia Senegal 
Botswana Iran Seychelles 
Brazil Ireland Sierra Leone 
Burundi Israel Singapore 
Cameroon Italy South Africa 
Canada Jamaica Spain 
Central African Republic Japan Sri Lanka 
Chile Jordan Sweden 
China Kenya Syria 
Colombia Korea, Republic Tanzania 
Congo, Democratic Republic Lesotho Thailand 
Congo, Republic of Congo Malawi Togo 
Costa Rica Malaysia Trinidad and Tobago 
Cyprus Mali Tunisia 
Denmark Mauritius Turkey 
Dominican Republic Mexico Uganda 
Ecuador Mozambique United Kingdom 
Egypt Nepal United States 
El Salvador Netherlands Uruguay 
Fiji New Zealand Venezuela 
Finland Nicaragua Zambia 
France Niger Zimbabwe 
Gambia, The Norway   

 


