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Parametric Decomposition of Output Growth: An Input-Distance Function 

Approach 
 
 
 
 
 

Introduction 
 
Several recent studies (i.e., Fan, Ahmad and Bravo-Ureta, Wu, Kalirajan et al., Kalirajan and 

Shand, Giannakas et al.,) have attempted to explain and identify the sources of output growth 

in agriculture.  By using a parametric production frontier approach, they have attributed 

output growth to changes in input use (movements along a path on or beneath the production 

frontier), technological change (shifts in the production frontier), and changes in technical 

efficiency (movements towards or away from the production frontier).  In this theoretical 

framework, initiated by Nishimizu and Page, it is implicitly assumed that the production 

technology exhibits constant returns to scale and that individual producers are perfectly 

allocative efficient.1  As a result, changes in total factor productivity (TFP) has been attributed 

only to technical change and changes in technical efficiency.  

Despite this limitation coherent to the decomposition framework adopted from the 

aforementioned studies, parametric production frontier approach has in general two 

shortcomings.  First, it is unable to accommodate multi-output technologies, which are quite 

common in agriculture.  It is well known that inappropriate and unnecessary aggregation of 

outputs (and inputs) often results in misrepresentation of the structure of production.  Second, 

the effects of scale economies and of allocative inefficiency on TFP changes cannot be 

separated from each other, even if input prices data are available (Bauer; Kumbhakar).  

Indeed, the effect of returns to scale can be identified only if allocative efficiency is presumed 

(Lovell).  Thus, within the parametric production frontier approach, TFP changes may at most 

be attributed to technical change, changes in technical efficiency, and the effect of scale 

economies.2 

On the other hand, cost frontiers can satisfactorily deal with decomposing TFP changes 

even in the presence of input allocative inefficiency and non-constant returns to scale (Bauer).  

Whenever panel data are available this can be achieved by estimating a system of equations 

consisting of the cost frontier and the derived demand (or cost share) equations, which allows 

firm-specific and time-varying technical and allocative inefficiencies to be separate from each 

other (Kumbhakar and Lovell, pp. 166-75).  Clearly, this is a more complicated econometric 
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problem than the single-equation estimation, and also requires data on input prices.  In 

contrast, under the assumption of expected profit maximization, production frontiers have the 

advantage of a single-equation estimation procedure and of requiring only input and output 

quantity data.  However, a single-equation estimation of a production frontier function is in 

general incapable of providing estimates of allocative inefficiency.  This does not hold only in 

the limited case of self dual functions (i.e., Bravo-Ureta and Rieger, Karagiannis et al., 2000).  

The objective of this paper is to develop a tractable approach for recovering and 

quantifying all sources of TFP changes (namely, technical change, changes in technical and 

allocative efficiency, and scale economies) from the econometric estimation of an input 

distance function which also fully describes the production technology.  The proposed 

theoretical framework relies on Bauer’s TFP decomposition framework and the duality 

between input distance and cost functions.  Hence, instead of using a system approach to 

estimate a cost frontier, all necessary information for decomposing TFP changes are 

recovered from its dual counterpart.   

By definition, the input distance function can easily accommodate multi-output 

technologies and thus has an obvious advantage over production frontiers.  In addition, 

estimates of the input-oriented measure of technical inefficiency may be directly obtained 

from the estimated input distance function (Färe and Lovell).  Further, by using the duality 

between input distance and cost functions (Färe and Primont), it can be shown that the effects 

of scale economies and of allocative inefficiency on TFP changes can be separated from each 

other.  Given input price information at a regional or even at a national level,3 the only 

assumption required to measure allocative efficiency from an input distance function is that 

one observed price equals the cost-minimizing price at the observed input mix (Färe and 

Grosskopf).   

As a result, a more complete decomposition of output growth can be achieved  from an 

estimated input distance function at the cost of information on input prices only at a regional 

or national level.  Then output growth may be attributed to input growth, technical change, 

changes in technical and allocative inefficiency, and the effect of scale economies.  This can 

be done by relying on its dual counterpart (i.e., cost function) for the theoretical 

decomposition of output growth and the use of the estimated primal (input distance function) 

representation of technology to recover all necessary information.4  In this way, the input 

distance function approach retains the advantages of a single-equation estimation and the use 

of only input and output quantity data as well as of prices at a regional or national level.   
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However, if the assumption of cost minimization is maintained, there is an endogeneity 

problem with input quantities in the single-equation estimation of the input distance function.  

The problem can be apparently solved by applying an instrumental GLS estimation procedure 

with output quantities and input prices used as instruments.  This consists an alternative 

approach to corrected ordinary least square (Grosskopf et al., 1995; 1997, Coelli and 

Perelman, 1999; 2000) maximum likelihood (Morrison et al.) and semi-parametric (Sickles et 

al., ) single-equation procedures for estimating input distance functions.       

The empirical analysis is based on an unbalanced panel data sample on 121 UK 

livestock farms over the period 1983-92 drawn from the Farm Business Survey of England 

and Wales.  These livestock farms jointly produce cattle, sheep and wool. Farm-specific time-

varying technical inefficiencies are modeled using the approach put forward by Cornwell et 

al., while technical change is specified via the general index model developed by Baltagi and 

Griffin.  In that way it is possible to disentangle the effect that time-varying technical 

efficiency and technological change may have into TFP growth (Karagiannis et al., 2002).5  

The rest of the paper is organised as follows: the proposed theoretical model is 

developed in the next section.  The empirical model, data and estimation procedure are 

described in the third section.  Empirical results, based on the translog input distance function 

and data from the UK livestock sector, are presented in the fourth section.  Concluding 

remarks form the final section. 

 

Theoretical Framework 
 
The Farrell-type, input-oriented measure of productive efficiency may be defined as (Bauer; 

Lovell): ( ) ( ) Ct;w,QCt;x,w,QE = , where ( ) 10 ≤< t;x,w,QE , ( )t;w,QC  is a well-defined 

cost frontier function, C is the observed cost, Q is a vector of output quantities, w is a vector of 

input prices, and t is a time index that serves as a proxy for technical change.  ( )t;x,w,QE  is 

independent of factor prices scaling and has a clear cost interpretation with ( )t;x,w,QE−1  

indicating the percentage reduction in cost if productive inefficiency is eliminated (Kopp).  

Using Farrell’s decomposition of productive efficiency, ( ) ( ) ( )t;x,w,QAt;x,QTt;x,w,QE ⋅= , 

where ( ) =txQT ;,  ( )txQD I ;,1  and ( ) ( ) ( )[ ] Ct;w,QCt;x,QDt;x,w,QA I=  are respectively 

the Farrell-type, input-oriented measures of technical and allocative efficiency and ( )t;x,QD I  

is an input distance function that is non-decreasing, concave and linearly homogeneous in 

inputs and non-increasing and convex in outputs.  By definition, ( ) 10 ≤< t;x,QT  and 
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( ) 10 ≤< t;x,w,QA , are both independent of factor prices scaling and have an analogous cost 

interpretation. 

Following Bauer, by taking the logarithm of each side of ( ) ( ) Ct;w,QCt;x,w,QE =  and 

totally differentiating it with respect to t yields: 
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Alternatively, by taking the logarithm of x'wC = , and totally differentiating it with 

respect to t, yields: 

 

∑∑
==

+=
m

j
jj

m

j
jj wsxsC

11
&&&      (2) 

 
Substituting (2) into (1) results in: 
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Then, using the conventional Divisia index of TFP growth, 
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(where TRQpR kkk = ; p refers to output price and; TR is total revenue), the time rate of 

change of productive efficiency, i.e.,  ( ) ( ) ( )t;x,w,QAt,x,QTt;x,w,QE &&& +=  and by assuming 

marginal cost pricing   
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(3) may be rewritten as: 
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  (4) 

 

which is an output growth representation of the decomposition relationship developed by 

Bauer. 

The first term in (4) captures the contribution of aggregate input growth on output 

changes over time (size effect).6  The more essential an input is in the production process, the 

higher is its contribution to the size effect.  The second term measures the relative contribution 

of scale economies to output growth (scale effect).  This term vanishes under constant returns 

to scale as ( ) 1=∑ t;w,QCQ
kε , while it is positive (negative) under increasing (decreasing) 

returns to scale, as long as aggregate input increases, and vice versa.  The third term refers to 

the dual rate of technical change (cost diminution), which is positive (negative) under 

progressive (regressive) technical change.  

The fourth and the fifth terms in (4) are positive (negative) as technical and allocative 

efficiency increases (decreases) over time.  There is no a priori reason for both types of 

efficiency to increase or decrease simultaneously (Schmidt and Lovell) nor that their relative 

contribution should be of equal importance for output growth.  More importantly, what really 

matters in output growth decomposition analysis is not the degree of efficiency itself, but its 

improvement over time.  That is, even at low levels of productive efficiency, output gains may 

be achieved by improving either technical or allocative efficiency, or both.  However, it seems 

difficult to achieve substantial output growth gains at very high levels of technical and/or 

allocative efficiency. 

The last term in (4) is the price adjustment effect.7  The existence of this term indicates 

that the aggregate measure of inputs is biased in the presence of allocative efficiency (Bauer).  

Under allocative efficiency, the price adjustment effect is equal to zero as ( )t;w,Qss jj = .  

Otherwise, its magnitude is inversely related to the degree of allocative efficiency.  The price 

adjustment effect is also equal to zero when input prices change at the same rate, since 

( )[ ]∑ =− 0t;w,Qss jj . 

The next step concerns the recovery of all factors in (4) from an input distance function 
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frontier, through its duality with the cost function.  First of all, Färe et al., have shown that  
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which provides the relationship for recovering the scale effect in (4) directly from the input 

distance function.  Second, Atkinson and Cornwell have shown that  
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which relates the dual (cost diminution) with the primal (based on the input distance function) 

rate of technical change and also provides to the latter a clear cost saving interpretation. 

On the other hand, ( )t;x,QT  is directly computed from ( )t;x,QD I  as ( ) IDt,x,QT 1= .  

Calculation of ( )t;x,w,QA  requires, however, knowledge of minimum cost ( )t;w,QC , which 

can be computed as follows.  Färe and Grosskopf have shown that 
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where ( )t;x,QwV  denotes the vector of virtual input prices.  Virtual prices consist of that 

vector of input prices which makes the (observed) technically inefficient input mix 

allocativelly efficient; that is, virtual prices are interpreted as marginal products of inputs at 

the observed input mix (Grosskopf et al., 1995).  However, in the presence of allocative 

inefficiency, observed input prices (w0) do not necessarily coincide with the vector of cost 

minimizing input prices (w) for the observed input mix.  Then, to compute ( )t;w,QC  from 

(7), it is required to assume that j
O
j ww =  for one input. 

Finally, the cost minimizing cost shares of inputs need to be retrieved from the 

underlying input distance function, in order to compute the last term in (4).  According to 

Bosco these are estimated from the following:8 
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Empirical Model, Data and Estimation Procedure 

 
Quantitative measures of output growth decomposition analysis results presented in (4) can be 

obtained by econometrically estimating an input distance function.  The following translog 

function (e.g., Grosskopf et al., 1997, Coelli and Perelman, 1999; 2000): 
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is a flexible functional form that may be used to approximate the underlying production 

technology.  The required regularity conditions include homogeneity of degree one in inputs 

and symmetry.  These imply the following restrictions on the parameters of (9): 
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Technical change is specified according to Baltagi and Griffin general index model 

defined as: 
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where TDt is a time dummy for year t (t=1, …, T).  All the associated parameters (λt) 

can be econometrically estimated by imposing the normalizing restrictions suggested by 

Baltagi and Griffin requiring that γ1=γ2=1 and λ1=0.  Since ( )2tA  is the same as A(t), (9) does 

not include the square term.  In this general setup the primal rate of technical change is 

obtained from: 
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Which can be decomposed into a pure ( ) ( )[ ]1−− tAtA  and a non-neutral component 

( ) ( )[ ]( )∑∑ +−− jitjkitk xQtAtA lnln1 θε  that is producer-specific.  The hypothesis of zero 

technical change can be tested by imposing a restriction that λt=0 t∀ .9  If this hypothesis 

cannot be rejected, the third term in (4) becomes equal to zero.   

On the other hand, the degree of returns to scale is measured as: 
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The hypothesis of constant returns to scale can also be tested by imposing the necessary 

restrictions associated with homogeneity of degree one of the input distance function on 

output quantities.  That is, 
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If this hypothesis cannot be rejected, the underlying technology is characterized by 

constant returns to scale and the second term in (4) vanishes.  

In the case of the translog input distance function, there is no actual need to calculate 

virtual prices for the computation of allocative inefficiency and of cost minimizing factor 

shares.  

By combining (7) and ( ) ( ) ( )[ ] itit
I
itit CtwQCtxQDtxwQA ;,;,;,, = , ( )txwQAit ;,,  

( )[ ]jit
I
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jit ww =  for the jth input.  Then, 
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and ( )txwQAit ;,,  and ( )twQs jit ;,  for all j are computed by using (14) and (8) along with the 

observed factor share of the input for which has been assumed that its cost minimizing price 

equals its observed price. 

The homogeneity restrictions in (10) may also be imposed in (9), by dividing the left-

hand side and all input quantities in the right-hand side by the quantity of one input used as a 
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numeraire.  Hence, (9) may be written as I
itjit Dfx ln)(ln −⋅=−  to obtain an estimable form 

of the input distance function. Since there are no observations for I
itDln  and given that 

0ln ≤I
itD , the following replacement can be made (Grosskopf et al., 1995; 1997, Coelli and 

Perelman, 1999; 2000, Morrison et al.,): it
I
it uD −=ln , where uit is a one-side, non-negative 

error term representing farm and time-specific technical inefficiency relative to the production 

frontier.  Then, the stochastic input distance function model may be written as: 

 

ititjit vufx +−⋅=− )(ln      (15) 

 

where vit depicts a symmetric and normally distributed error term (i.e., statistical noise), 

representing a combination of those factors that cannot be controlled by farmers, omitted 

explanatory variables, and measurement errors.   

Following Cornwell et al., we can replace uit in (15) with a quadratic function of time 

capturing time-varying technical inefficiency i.e., 

 
 2

210 ttu iiiit ζζζ ++=     (16) 

 

where iii ,, 321 ζζζ  (i = 1,...,n) are the firm-specific parameters to be estimated and t refers to a 

simple time trend.  The above specification is very flexible as it allows for firm-specific 

patterns of temporal variation, and for testing the hypothesis of time-varying technical 

efficiency (i.e., 021 == ii ζζ  for i = 1,...,n).   

An important feature of the above specification of the translog input distance function is 

the fact that it enables the separation of the effects that technical change and time-varying 

technical efficiency may have into TFP changes.  However, since A(t) appears interactively 

with input and output quantities the model is non-liner in estimated parameters.10  It can be 

estimated though in a single stage using the GLS approach described by Kumbhakar and 

Hjalrmasson.  The estimation procedure is adapted to the Cornwell et al., efficient 

instrumental variable estimator in order to account for the endogeneity of input quantities.  

Since the underlying behavioural hypothesis of the input-distance function is cost-

minimization, input prices (at a regional level) and output quantities were used as instruments.  

Financial data from livestock farm accounts are drawn from the Farm Business Survey 

(FBS) for England and Wales (MAFF).11  The FBS is an annual survey covering about 3,000 
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farms in England and Wales, selected from a random sample of census data that is stratified 

according to region, economic size of farm and type of farming.  From this survey, a sample of 

121 livestock farms, defined as those where 60 per cent or more of their total revenue was 

derived from livestock products (cattle, sheep and, wool) were extracted to form an 

unbalanced panel, consisting in total of 1,069 observations. This implies that, on average, each 

farm was observed almost 9 times during the 1982-92 period.  Livestock farms were chosen in 

the present analysis because they are the most widely represented farm-type in the FBS, both 

in terms of geographical distribution and in the total number surveyed.  

The outputs included in the translog input distance function in (9) are: total annual cattle 

live weight production in kilogrammes; the total annual live sheep weight production in 

kilogrammes; and total annual production of wool in kilogrammes.  Aggregate inputs 

included model are: total agricultural land in hectares; total labour, comprising hired 

(permanent and casual), family and contract labour, measured in working hours; the number 

of beef breeding cows; the total number of sheep; purchased concentrate feed, coarse fodder 

and other livestock expenses (such as veterinary and medicine costs) measured in pounds 

sterling (constant 1992 prices).  A summary statistics of the variables is presented in Table 1.  

 

Empirical Results 
 
The GLS parameter estimates of the translog input distance function are presented in Table 2.  

According to the estimated parameters, the translog input distance function is found, at the 

approximation point to be non-increasing in outputs and non-decreasing in inputs.  Also, at the 

point of approximation, the Hessian matrix of the first and second-order partial derivatives 

with respect to inputs is found to be negative definite and the corresponding Hessian matrix 

with respect to outputs to be positive definite.  These indicate respectively the concavity and 

convexity of the underlying input distance function with respect to inputs and outputs.  The 

estimated variance of the one-side error term is found to be 105.02 =uσ  and that of the 

statistical noise 013.02 =vσ .  The value of the adjusted R-squared indicates a satisfactory fit 

for the particular functional specification. 

Statistical testing suggest that the average input distance function does not adequately 

represent the structure of UK livestock farms in the sample.  Using LM-test, the null 

hypothesis that 02 =uσ  is rejected at 5% level of significance, indicating that the technical 

inefficiency effects are in fact stochastic.12  Thus, a significant part of output variability among 

livestock farms is explained by existing differences in the degree of technical inefficiency.   



 - 11 -

The hypothesis that technical inefficiency is time-invariant is rejected as the null 

hypothesis of  i 01 =ζ and i  i ∀= 02ζ  cannot be accepted at 5% level of significance (see 

Table 3).  This means that output growth has been affected by changes in the degree of 

technical efficiency over time.  During the period 1983-92, technical inefficiency tended to 

increase over time as the most of the estimated ζ parameters are positive.13  Specifically, mean 

input-oriented technical efficiency increased from 78.80% in 1983 to 84.73% in 1992 (see 

Table 4), implying that its contribution into output growth would be significant.  During the 

period 1983-92, the average annual rate of increase in technical inefficiency is estimated to be 

0.66%.  

The vast majority of livestock farms in the sample have consistently achieved scores of 

technical efficiency greater than 60% during the period 1983-92.  However, the portion of 

livestock farms with technical efficiency scores below 60% decreased over time.  This means 

that the portion of livestock farms facing significant technical inefficiency problems has been 

decreased.  The estimated mean technical efficiency was found to be 82.77% during the period 

1983-1992.  Thus, on average, a 17.23% decrease in total cost could have been achieved 

during this period, without altering the total volume of outputs, production technology and 

input usage. 

Mean allocative efficiency is found to be 53.85% during the period 1983-92 (see Table 

4), implying that UK livestock farms in the sample have achieved a relatively poor allocation 

of existing resources.  As a result, a 46.15% decrease in cost should be feasible by means of a 

further re-allocation of inputs for any given level of outputs.  The great majority of farmers in 

the sample have consistently achieved scores of allocative efficiency less than 60%.  This 

portion tended however to remain rather stable over time.  Mean allocative efficiency is 

smaller than the corresponding point estimate of technical efficiency, indicating that livestock 

farms in UK did better in achieving the maximum attainable outputs for given inputs than in 

allocating existing resources.   

Finally, allocative efficiency increased slightly from 49.51% in 1983 to 50.78% in 1992 

(see Table 4).  In particular, allocative efficiency increased during the period 1983-92 with an 

average annual rate of only 0.14%.  Thus, also allocative efficiency tended to contribute 

positively to both TFP and output growth.  More importantly, the average rate of change of 

allocative efficiency is lower than that of technical efficiency and thus, its relative 

contribution to output growth is expected to be relatively lower. 
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Mean productive efficiency was found to be 44.35% (see Table 4).  This figure 

represents the ratio of minimum to actual cost of production and implies that significant cost 

savings (about 45.65%) may be achieved by improving both technical and allocative 

efficiency.  Only a very small portion of farms in the sample achieved a score greater than 

80%.  Given the estimates of technical and allocative inefficiency, productive inefficiency is 

mostly due allocative inefficiency.  Productive efficiency increased over time from 37.85% in 

1983 to 42.83% in 1993.  Nevertheless, its annual rate of increase (0.55%) is greater than that 

of allocative efficiency as technical inefficiency tended to increase at a higher rate.  

The hypotheses of both zero and Hicks neutral technical change are rejected at the 5% 

level of significance using the LR-test (see Table 3).  Parameter estimates indicate 

technological progress for the UK livestock farms during the 1983-92 period which on the 

average was 0.20%.  Hence, technical change has contributed to the corresponding TFP 

changes during the same period.  The non-neutral component dominates the neutral 

component although the latter exhibits complex and erratic patterns of technical change 

consisting of bursts of rapid changes and periods of stagnation.  Specifically, the non-neutral 

component is on the average 0.18% ranging between a maximum of 0.41% in 1988 and a 

minimum of 0.02% in 1984, whereas the neutral component while is on the average only 

0.02% it ranges from a maximum of 3.25% in 1989 and a minimum of -4.06% in 1987.  

The decomposition analysis results for UK livestock farms’ output growth during the 

period 1983-1992 are given in Table 5.  An average annual rate of 1.93% is observed for 

output growth.  This growth stems mainly from the corresponding increase in sheep meat 

(1.72%) and wool (0.46%), whereas cattle output exhibits a decrease during the same period of 

-0.26%.   Our empirical findings suggest that most of output growth (59.5%) in livestock 

production is due to input increase. A smaller portion is attributed to productivity growth, 

which grew with an average annual rate of 0.96%.  Thus, substantial output increases may still 

be achieved ceteris paribus by improving TFP; this has important policy implications as far as 

sources of productivity growth are identified.   

In contrast to most previous studies, technical change has not been the main element of 

TFP growth among UK livestock farms, accounting for only 20.7% of TFP growth and 10.4% 

of output growth.  The scale effect, on the other hand, is positive as livestock farms in UK 

exhibited increasing returns to scale and the aggregate output index increased over time. 

Nevertheless, in the present study the hypothesis of constant returns to scale is rejected at 5% 

level of significance (see Table 3).  On average, the degree of scale economies is estimated at 

1.289 during the period 1983-92.  As a result, economies of scale enhanced annual output 
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growth by an average annual rate of 0.15%.  In relative terms, the scale effect is the third 

larger factor influencing TFP and output growth, after technical efficiency and technological 

progress.  This rather significant figure would have been omitted if constant returns to scale 

were falsely assumed.  

Technical and allocative inefficiencies have affected TFP and output growth in the same 

manner.  The relative contribution of each depends on their rate of change over time, rather 

than their absolute magnitude.  As shown in Table 5, the relative contribution of the allocative 

efficiency effect on output growth is less than that of technical efficiency, since the average 

rate of increase of the former was found to be lower than that of the latter.  Moreover, changes 

in technical efficiency are found to be the main source of TFP and output change.  Overall, 

productive efficiency accounts for 83.3% of annual TFP growth and for 41.5% of average 

annual output growth among livestock farms in UK. 

The price adjustment effect was found to have a relatively significant impact on TFP 

and output growth.  On average, the price adjustment effect accounted for 19.6% of output 

slowdown.  However, given the existence of allocative inefficiency, its impact cannot be 

neglected in attempting to measure the TFP growth rate accurately.  After accounting for all 

theoretically proposed sources of TFP growth and for the size effect, a -9.1% of observed 

output growth remained unexplained.  Nevertheless, the unexplained portion of output growth 

is smaller than the unexplained residual that would have been obtained by using a production 

approach (e.g., Ahmad and Bravo-Ureta), which does not separate the scale and the allocative 

inefficiency effects.14 

 
Concluding Remarks 
 

The development of the distance function approach provides a more realistic framework 

for parametric decomposition of output growth appropriate to the multi-input, multi-output 

context of the farm business. Separate identification of the effects for cattle, sheep and wool 

on British livestock farms will have substantial implications for the development of 

agricultural policy, since improvements in technical and allocative efficiency appear, on the 

evidence presented by this study, to provide greater potential for the improvement of farm 

returns than that which may be obtained from shifting the production frontier itself. This is 

especially important where technical changes are implicated in a decline in the environmental 

quality of the agro-ecosystem, since a large (and growing) number of farms in the sample 

analysed could improve both technical and allocative efficiency. 
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Table 1. Summary Statistics of the Variables 
 
Variable Mean Min Max StDev 

Outputs     

Beef (animals) 71 2 724 58 

Lamb (kgs) 616 4 3.839 457 

Wool (kgs) 1.362 17 11.430 1.018 

Inputs     

Cattle (animals) 129 3 827 106 

Sheep (animals) 667 10 2.689 451 

Labour (working hours) 5.254 1.806 17.727 2.415 

Land (acres) 156 28 944 137 

Machinery (GBP pounds) 9.034 612 59.999 6.808 

Materials (GBP pounds) 13.723 428 108.219 12.476 

Other Cost (GBP pounds) 15.150 664 113.559 14.098 
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Table 2. Parameter Estimates of the Translog Input Distance Function  

Parameter Estimate Std Error Parameter Estimate Std Error 
αΒ -0.173 (0.071)* βSF 0.106 (0.043)* 
αL -0.283 (0.079)* βSS -0.177 (0.047)* 
αW -0.446 (0.082)* βEA 0.280  
βC 0.066 (0.029)** βEM 0.017 (0.091) 
βS 0.322 (0.090)* βEF -0.082 (0.043)** 
βE 0.155 (0.078)** βEE 0.104 (0.048)* 
βA 0.054  βAM 0.082  
βM 0.224 (0.035)* βAF 0.009  
βF 0.178 (0.057)* βAA -0.335  
λ2 -0.015 (0.031) βMF 0.049 (0.059) 
λ3 -0.050 (0.021)* βMM 0.038 (0.042) 
λ4 -0.024 (0.035) βFF 0.114 (0.029)* 
λ5 -0.465 (0.135)* θCT 0.021 (0.008)* 
λ6 -0.276 (0.109)* θST 0.034 (0.009)* 
λ7 0.238 (0.121)** θET -0.015 (0.033) 
λ8 0.044 (0.041) θAT 0.011  
λ9 0.136 (0.065)** θMT -0.011 (0.006)** 
λ10 0.904 (0.201)* θFT -0.020 (0.045) 
αBL -0.008 (0.057) δCB 0.024 (0.045) 
αBW 0.256 (0.059)* δCL -0.117 (0.046)* 
αBB -0.073 (0.030)* δCW -0.058 (0.081) 
αLW -0.324 (0.055)* δSB -0.285 (0.070)* 
αLL 0.085 (0.037)* δSL 0.130 (0.054)* 
αWW 0.008 (0.025) δSW 0.238 (0.065)* 
εBT 0.034 (0.071) δEB -0.008 (0.087) 
εLT -0.039 (0.019)** δEL -0.329 (0.099)* 
εWT 0.061 (0.082) δEW 0.335 (0.097)* 
βCS 0.366 (0.086)* δAB 0.158  
βCE -0.267 (0.100)* δAL 0.033  
βCA 0.041  δAW 0.192  
βCM -0.033 (0.078) δMB 0.006 (0.006) 
βCF -0.196 (0.055)* δML 0.260 (0.077)* 
βCC 0.089 (0.026)* δMW -0.106 (0.062)** 
βSE -0.058 (0.105) δFB 0.105 (0.043)* 
βSA -0.083  δFL 0.017 (0.054) 
βSM -0.154 (0.065)* δFW -0.217 (0.052)* 

2R  0.878   
where, B: beef meat, L: lamb meat, W: wool, C: cattle, S: sheep, E: labor, A: area, M: machinery, F: materials, 

T: time. *(**) indicates statistical significance at the 1(5)% level. 
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Table 3. Model Specification Tests 

Hypothesis Test Statistic Critical Value (α=0.05) 

Zero TC ( )t  t ∀= 0λ  52.58 92.162
9 =χ  

Hicks-Neutral TC  ( )jk,  jk ∀=∧= 00 θε  34.71 92.162
9 =χ  

CRS  ( )∑ ∑ ∑ === 0,0,1 jkklk δαα  29.06 31.182
10 =χ  

Time-Invariant TE ( )i   ii ∀=∧= 00 21 ζζ   295.3 2322
242 ≈χ  
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Table 4. Frequency Distribution of Technical, Allocative and Productive Efficiency.  

 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Technical Efficiency 
<20 0 0 0 0 0 0 0 0 0 0 

20-30 0 0 1 0 0 0 1 0 0 0 
30-40 4 4 4 4 1 3 1 0 2 1 
40-50 3 4 5 7 6 7 9 5 4 0 
50-60 11 7 6 6 9 7 9 7 3 2 
60-70 11 7 8 12 9 9 6 7 7 9 
70-80 14 10 16 9 17 10 8 11 13 8 
80-90 14 26 30 30 22 26 29 21 16 12 
>90 39 53 51 53 57 58 57 55 44 29 

Mean 78.80 83.00 82.18 82.27 82.83 82.61 82.37 85.38 83.48 84.73 
Allocative Efficiency 
<20 0 1 1 1 1 2 2 0 1 1 

20-30 5 10 11 10 8 7 9 6 7 1 
30-40 27 18 21 22 22 16 19 21 12 13 
40-50 19 23 23 22 23 20 18 16 14 10 
50-60 6 12 11 16 13 15 21 15 12 5 
60-70 7 7 9 10 5 7 4 4 3 5 
70-80 2 2 6 8 10 6 3 5 1 1 
80-90 2 4 2 0 6 5 4 0 4 2 
>90 2 0 1 3 0 7 3 4 2 2 

Mean 49.51 53.64 52.61 55.74 53.06 55.68 54.17 57.63 55.68 50.78 
Productive Efficiency 
<20 16 8 12 11 12 11 13 6 7 4 

20-30 22 17 16 17 15 13 16 12 9 6 
30-40 19 19 23 23 19 14 16 21 15 14 
40-50 9 20 20 21 24 20 22 15 15 5 
50-60 5 10 9 9 8 14 10 9 4 5 
60-70 0 1 2 4 3 6 2 3 1 2 
70-80 1 2 2 5 5 2 1 3 2 2 
80-90 2 2 0 1 3 0 3 1 3 3 
>90 1 0 2 3 1 5 2 2 2 0 

Mean 37.85 44.06 42.78 46.46 44.06 45.24 44.37 49.16 46.67 42.83 
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Table 5. Decomposition of Output Growth (average values for the 1983-92 period) 
 

Average Annual 
Rate of Change 

percentage 

Aggregate Output Growth 1.93 100 

of which:     

Cattle -0.26 -13.4 

Sheep 1.72 89.3 

Wool 0.46 24.1 

   

Aggregate Input Growth 1.15 59.5 

of which:   

Cattle herd -0.19 -16.9 

Sheep herd 0.25 21.9 

Labour -0.04 -3.9 

Area -0.25 -21.7 
Machinery 0.56 49.0 

Materials 0.82 71.6 

   

Total Factor Productivity Growth 0.96 49.7 

of which:   

Rate of Technical Change 0.20 20.7 

Scale Effect 0.15 15.3 

Change in Technical Efficiency 0.66 69.0 

Change in Allocative Efficiency 0.14 14.6 

Price Adjustment Effect -0.19 -19.6 

   

Unexplained Residual -0.18 -9.1 
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Endnotes 
                                                           
1 Eventually, the assumption of constant returns to scale is not always evident from the 

empirical results reported in the aforementioned studies. 
2 The nonparametric approach can provide a similar decomposition in a multi-output setting 

based on the Malmquist TFP index, which however cannot account for the extent of allocative 

inefficiency since the Malmquist index is a primal concept (Tauer). 
3 Radial efficiency indices are independent of factor price scaling which in turn allows the use 

of regional or even national price data in their estimation without altering the final results 

(Kopp).  
4  If, however, the input distance function itself is used to develop an output growth 

decomposition framework, then the scale effect and the effect of allocative efficiency cannot 

be separated from each other.  As in the case of the production function, the effect of returns 

to scale can be identified only if allocative efficiency is presumed. 
5 If both technical change and time-varying are modelled via a single time trend then it is not 

possible to identify separately their effects on TFP changes (Kumbhakar and Lovell, p. 285).  
6 Aggregate input growth is measured as a Divisia index; this follows directly from the 

standard definition of total factor productivity.  The fact that actual (observed) factor cost 

shares are used as weights of individual input growth gives rise to the sixth term in (4). 
7 The existence of the price adjustment effect is closely related to the definition of TFP, which 

is based on observed input and output quantities. 
8 Also, Kim has shown that cost-minimizing factor shares can also be estimated from 
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.  However, after few 

manipulations,  it can be shown that these two relationships are equal to each other.  
9 In contrast to the single time trend specification, the non-neutral component in (12) depends 

on the neutral one.  That is, the non-neutral component is different than zero only if the 

neutral component is different than zero (Baltagi and Griffin).  As a result, if A(t) is 

unchanged, changes in input or output quantities have no effect on the rate of technical 

change. 
10 Apparently it becomes linear if Hicks neutral technical change is assumed.  
11 Grateful acknowledgement is made to MAFF, for permission to use data from the Farm 

Business Survey, provided through the ESRC Data Archive at the University of Essex. 
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12 If 02 =uσ  then the least squares estimator is best linear unbiased and farm-effects are zero 

(Breusch and Pagan).  The LM-test statistic is computed by  
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NT εελ  and it is asymptotically distributed as chi-

squared with one degree of freedom. 
13 To conserve space estimates of the ζ parameters are not reported herein, but are available 

from the authors upon request.  
14  A similar comparison with Fan or Kalirajan et al., and Kalirajan and Shand approaches is 

not possible as technical change and the size effect are respectively calculated in a residual 

manner. 


