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Abstract

In this paper we develop a dynamic data-consistent way for estimating agricultural
land use choices at a disaggregate level (district-level), using more aggregate data
(regional-level). The disaggregation procedure requires two steps. The first step
consists in specifying and estimating a dynamic model of land use at the regional-
level. In the second step, we disaggregate outcomes of the aggregate model using
maximum entropy (ME). The ME disaggregation procedure is applied to a sample of
California data. The sample includes 6 districts located in Central Valley and 8
possible crops, namely: Alfalfa, Cotton, Field, Grain, Melons, Tomatoes, Vegetables
and Subtropical. The disaggregation procedure enables the recovery of land use at
the district-level with an out-sample prediction error of 16%. This result shows that
the micro behavior, inferred from aggregate data with our disaggregation approach,
seems to be consistent with observed behavior.
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1. Introduction

In this paper we develop a data-consistent way to estimate agricultural land use choices at a
disaggregate level (district-level) using more aggregate data (regional-level). We argue that such a

disaggregation method is of interest in agricultural production economics for three main reasons.

The first reason deals with data availability. As Just and Pope mention (1999-a), the most
significant obstacle to progress in agricultural production is the lack of better and more detailed data.
Therefore, applied economists often use aggregate data for estimating relationships, which are
theoretically defined, at a more disaggregate level. The main criticism of using aggregate data deals
with aggregation problems; namely the failure to consider heterogeneity across agricultural producers
may result in misrepresenting technology, but it also may fail to support the regularity conditions
needed to recover technology from estimated structures, Just and Pope (1999-a). It follows that a valid
disaggregation method would partially bypass the lack of disaggregate data in agricultural economics.

The second argument for having a valid data disaggregation tool is the increasing demand for
environmental and multidisciplinary policy models. Agricultural production models are being
increasingly used in conjunction with biophysical process models'. These latter models are often
calibrated at a smaller scale. Disaggregation of economic models enables more effective interaction
with physical process models. A good example of the scale problems involved in multidisciplinary
studies is given by the Integrated Model to Predict European Land use (IMPEL). The IMPEL project
is funded by the Commission of the European Communities under Framework IV Program (Climate
and Environment — DGXII). IMPEL is a spatial model aiming to integrate physical and socio-
economic modeling procedures to evaluate the impact of climate change on European land use at the
regional scale. It includes five interrelated modules: climate, soil and crop, land degradation, socio-
economics and hydrology. One of the key challenges for the IMPEL project is the successful
integration of these modules defined at different scales. For example, the soil and crop modules
operate at the scale of individual soil types, whereas the socio-economic module must operate at the
scale of individual farms that include one or more soil types. This aggregation method addresses the

issue of defining a compatible scale for the conjunctive use of these two modules. A valid

! As mentioned by Antle and Capalbo (2001), assessing environmental impacts of agriculture increasingly requires the use

of linked disciplinary simulation models.



disaggregation method would allow the two modules to interact at the smaller scale level without
information loss.

The third reason is based on efficient model use. Given the cost of disaggregated data
collection and modeling, an aggregate economic model coupled with an efficient disaggregation
procedure may provide a more cost-effective approach to annual policy modeling. For example, the
CAPRI model for EEC wide agricultural policy” has 200 regional spatial units, mostly based on NUTS
II definition®. A disaggregation procedure would allow the policy results to be disaggregated to the
NUTS III more detailed spatial units at a low computational cost. In the empirical example used in this
paper, we use an agricultural production and resource use model, CVPM®*, defined over 21 production
regions that are economically homogenous. However, one of the key uses of the model is water policy
planning, and the hydrologic units used for this purpose are smaller than the economic regions and are
termed Detailed Analysis Units (DAUs). There are 59 DAUs within the 21 economic regions. This

clearly addresses the issue of a valid data disaggregation method from regional-level to DAU-level.

For these three reasons, we think that a disaggregation method is of interest for agricultural
economists. The problem of data disaggregation should be related to the much wider econometrics
literature on aggregation. A rapid survey of the aggregation literature shows that there has been, since
the beginning of the seventies, a lot of work done on aggregation problems in econometrics. Two main

lines of research have been particularly followed:

o Aggregation Problems: ldentification of conditions under which aggregate models reflect and
provide interpretable information on the underlying micro behavior.
e Model selection problem: Choice between different levels of aggregation specification when the

objective is to predict some aggregate (macro) phenomena.

2 See Heckelei and Britz (2000).

’ The nomenclature of territorial units for statistics (NUTS) has been created by the European Office for Statistics
(Eurostat) in order to create a single and coherent structure of territorial distribution. The current nomenclature subdivides
the 15 countries of the European Union into 78 NUTS level 1 territorial units, 210 NUTS level 2 units and 1093 NUTS
level 3 units.

* The Central Valley California Model (CVPM) has been developed by the Bureau of Reclamation, US Department of the
Interior. See USBR (1997) for a detailed presentation of this model.



The main conclusion of this literature is that, when (1) the disaggregate model is correctly specified
and (2) the available data are free from measurement errors, then the investigator cannot improve on a
disaggregate approach. Some arguments may however support use of aggregate data. First, the model
specification may be subject to less error at the aggregate. Second, there are errors in variable
measurement at the disaggregate level that may roughly cancel out at the aggregate level. Third,
individual equations have unobserved influences that may cancel with aggregation. Finally, the use of

aggregate data may simply result from data availability considerations.

In contrast to the aggregation literature, only a few papers explicitly address the
disaggregation of economic model results. In macroeconomics, the linkage problem between an
aggregate models and disaggregate sectoral models of the economy has been widely recognized,
Barker and Pesaran (1989). It is, for example, a common practice to use a macro model to provide
estimates and forecasts of national economic aggregates and then, to divide these up by various
approaches to yield disaggregate results. Yet, little is known of the implication of such macro-micro
linkages. In agricultural economics, Miller and Plantinga (1999) have proposed a maximum of entropy
approach (ME) for estimating land use shares using aggregate data. They use ME to disaggregate land
use shares from multi-county scale to county scale. They show that ME specification encompasses the
traditional pooled logistic regression as a particular case. They apply ME approach for estimating land
use in three Iowa counties and for predicting its impact on soil erosion. Our paper differs from Miller
and Plantinga as we explicitly model cropping pattern choices as a dynamic process within an

endogenous framework.

The question under study in this paper is the following. How can we combine in a dynamic
framework partial information at disaggregate-level with complete information at an aggregated level
to recover information at the disaggregate level? More precisely, we want to recover from year to year
land use at a small-scale level using:

e observation of cropping patterns at a larger scale

e an initial allocation of land at the small-scale-level.

Our disaggregation procedure requires two steps. First we estimate a dynamic model of land
use using aggregate data. In the second step, we disaggregate large-scale land use observations to a

smaller scale by ME using first-step aggregate land use forecasts as priors. The remainder of the paper



is organized as follows. Section 2 presents the dynamic aggregate model of land use and the ME

disaggregating approach. In section 3 we apply our model to a sample of Californian data.

2. The Disaggregation model

2.1 The Problem

Let us consider a region made of / sub-regions termed districts in the rest of the paper. Districts
are indexed by i going from 1 to /. We assume that each year we observe at the regional-level the land

that is allocated to each crop S, (¢), where k=1,...,K and t=1,...,T respectively index crops and

years. Let Y, (¢) be the probability of producing crop k at date ¢. By definition:

S (1)

ZSk (0

k

Y, (t) = Vk,t. (1)

Moreover, we assume that the available information at the district-level is limited to the land
allocated to each crop in each district s} (¢) for the r first periods, » <T. We only have a partial
information at the district-level limited to the r first periods. This partial information may come from
detailed district-level surveys that are not conducted every year. Let y;,(f) be the probability of

producing crop k at date ¢ in district i:

y,i(t)zﬁ Vk, t=1,..,r. (2)

2.5k ()
k
The brief review of data availability in the EEC and US supports the view that we often get
exhaustive data at aggregated level but only partial information at disaggregate-level. We want to

combine the complete information at the regional-level for # =1,...,7 with the partial information at
the district-level for ¢ =1,...,7 < T, in order to recover land use in each district for periods » +1,...,T .
In other words, we want to estimate s} (¢) or in an equivalent way y;,(t) Vk,i and t=r+1,...,T.

Notice that these estimates must satisfy the following data-compatibility constraint:

Sk(t)=21:s;;(z) Vk, t=r+1,...,T (3)

i=i



The land allocated to a given crop in a given period must be equal to the total land allocated to this
crop across all districts. Figure 1 presents the objective of the disaggregation method in the case of

four crops and three districts.

Figure 1: Land use share disaggregation from regional level to district level
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We want to go from land use, defined at the regional level, to a distribution of cropping patterns for

each district.

2.2 The Model

We first present the dynamic land use at the district-level we would have estimated if data at
this disaggregate level were available. Then, we turn to our disaggregation procedure that enables the

recovery of cropland allocations in a dynamic framework at the district-level.



2.2.1 Dynamic land use at the district-level.

Let us first define the dynamic land-use model at the district-level. We assume that land use at
a given period ¢, f € {1,. T } , only depends on the » previous periods. This assumption is based on the

view that land use is a dynamic problem’ and that an agricultural producers' crop rotation horizon is

finite.
Assumption 1: Land use at the district-level follows a finite non-stationary r-order Markov process.

A Markov process is a valid tool for estimating intertemporal relationships between economic
variables when the current value of a variable only depends on the preceding values of the same
variable. Moreover, a Markov process can be estimated even if we only observe aggregate data in the
form of proportions , Lee et al. (1970). The assumption of non-stationarity means that we allows
transition probabilities to be influenced by exogeneous shocks (drough year, crop price changes...) but
there is no systematic change in the dynamic relationships. This latter assumption can be easily
relaxed if a richer data set is available to estimate the non stationary Markov process. Specifying a r-
order Markov process allows us to use all information at the district-level. Since we observe land use
at the district-level for the 7 first periods, we can assign an initial probability to each Markov state for

all districts.

As is well-known, any r-order Markov process may be rewritten as a more complicated first-
order process by enlarging the space of possible states, Kijima (1997). Hence, a sequence of 7-
observed crops is characterized by a first-order Markov process. At each period, farmers choose

among K possible crops at the district-level hence the Markov process is defined on the Markov space

, = {1,...,K : } There exist K" states corresponding to the K" possible r-tuplets. States are indexed
by je {1,...,] } with J =K". The probability associated with any state ; in district i at time ¢ is

denoted q; (). q; (1) is computed as the product of probabilities y; () corresponding to the crop

> Farmer’s choices are inherently dynamic. Four main types of intertemporal relationships between crops can be mentioned
to justify the use of a dynamic process. First, crop rotation may be viewed as a way to reduce the loss of soil productivity
due to erosion. Second, it may stabilize profits of risk-averse agricultural producers over time. Third, crop rotations may be
used for breaking weed and disease cycles. Finally by reducing dependence on external inputs, crop rotation system offer

the possibility of atenuating agriculture environmental impacts while maintaining profitability.



sequence indexed by j. For example, assuming a second-order Markov process, the probability of

producing alfalfa in t-1 and grain in ¢ is given by Yy (t—=1)X vy, (6). Now, let T'(t) be the
(K" x K" ) Markov transition matrix associated to land use in district i for period ¢. T J’j gives the

probability of passing from any state j e {1...,K r} at date 7 to any state j'e {1. K ’} at date ¢+1. The
transition probabilities satisfy the two following properties:

T} 20V’ )

g =
DT =1V, (5)
J'
Given this notation, the probability of being in state j’ in #+1 is given by:
J
gyt +1)=2q" (0)-Tj(0), Vj'e {I,....,J} and vVt e {r,.... T -1}. (6)
=
and the probability of producing crop & in ¢#+1 is given is:
J
v+ =3 > q%0)- T} (1) 7)

J=1j'e¥ (k)

where W (k) is the set of Markov states for which crop & is produced at the last period.

We cannot directly estimate the r-order non-stationary transition Markov matrix at the district-
level as, by assumption, we do not have data at this level’. Thus, the approach we follow is:

e Estimate a stationary r-order Markov process at the regional-level.

e Disaggregate land use at the district-level using a Generalized Maximum Entropy (GME)
framework. Regional transition probability estimates are used as priors at the district-level. We
then use the information in the regional level land allocations for a given year to calculate
estimates of how the district-level land allocations must differ from the aggregate priors in order

to be compatible with the regional-level land allocations for that year.

® Estimating a r-order Markov process would require at least +/ periods of observations and we assume we only have 7-

periods at the district-level.



2.2.2 Estimating a stationary r-order Markov process at the regional-level

We now define the dynamic land-use model at the regional-level. We assume that land use at

the regional-level for a given period ¢ depends only on the » previous periods in a stationary way.
Assumption 2: Land use at the regional-level follows a finite stationary r-order Markov process.

Two main reasons support the stationary assumption of the regional Markov process. The first
reason is that, by aggregating over districts, we are loosing some spatial heterogeneity. Aggregate data
should be more stable than disaggregate data. The second reason is that we want to disaggregate data
from regional-level to the district-level in a dynamic framework. Specifying a stationary Markov
process at the regional-level allows us to omit the additional exogenous variables that may be needed

to predict land use at the regional-level.

Keeping the same notation as used for district-level, the Markov process at the regional-level is

defined on the Markov space , . States are indexed by je {1,...,] } with J =K". The probability

associated with any state j at time ¢ is denoted Q;(¢). It is computed as the product of probabilities

Y, (t) corresponding to the crop sequence indexed by j. T is the (K" xK") stationary Markov
transition matrix associated with land use in district i for period 7. The number of possible outcomes
for any state is K and at most K" x K transition probabilities are strictly positive. Moreover, as the

sum of transition probabilities must be equal to one , K" x (K —1) transition probabilities have to be

considered. As we have 7 —r >0 periods of observation at the regional-level, K" x(T —r)

observations can be used.

When 7-r>K -1, T can be estimated using various classical statistical methods such as
least chi-square, maximum likelihood and Bayesian methods. When 7 —» > K —1 does not hold, there
are more parameters to be estimated than available moment conditions and the problem is ill-posed.

Using a maximum of entropy method (ME) allows a unique optimum solution to be achieved despite



this situation’. In the following section, we proceed by estimating the regional stationary r-order

Markov transition matrix.

Let us first add an error term e;(7) to equation (6) which is defined at the regional-level.
Following the ME formalism we reparameterize parameters to be estimated, namely 7, and e (?),

in terms of unknown probability distributions.

¢ By definition, T, is between zero and one. It follows that we can define a set @'= {a)1 ) M} of

M 22 points with z, =0, z,, =1 and a probability distribution {T iteees L j].,M} such as

M
Tp=>w, T

m Jji'm *

e The unknown disturbances e (#) may be treated in a similar way. By denoting the error support

values V' = {vl,...,vN} with N > 2 and defining {e @)y (t)} as the associated probabilities,

N
we have: e (?) = ZV,, €, (1)
n=l1

The problem of recovering the transition probabilities can be formulated in a standard generalized

maximum entropy framework (GME). We want to estimate the probability distribution {T e L }

Vvj,j' and {ejyl(t),...,e.,N(t)}, Vj',t solution of:

J J M J N T-1
Max H(T,e)= 32 > 3T, 10g(T )+ 22D 3 0)-logle 1) ®)
’ j=1 j'=1m=1 j'=1n=1t=r
subject to :
J M N
Qp(t+1) = Z{Qj(t)-Zwm -T,y~m}+2vn e (1) V'Vt ©)
j=1 m=l1 n=l1
J M
2.2 On Tym =1Y) (10)
j'=Im=1
M
T, =1and T, €[0,1] v}, /' (11)
m=1

7 Maximum entropy is an effective tool for estimating a large number of parameters with limited data. Moreover, it
eliminates problems associated with data endogeneity and collinearity. See Golan et al. (1997) for a complete description

of maximum entropy methods and Howitt and Reynaud (2001) for estimating Markov transition metrics using ME.

10



ﬁ:e () =1and e, () €[0,]V}",¢ (12)

n=l1
We seek to maximize the entropy of the probability distributions {T sl z‘f'M} vj,j' and
{ejyl (0),--r€;y (t)} Vj',t under constraints (9)-(12). Constraint (9) defines land use at the regional-

level as a stationary r-order Markov process. Constraints (11) and (12) ensure that the parameters

{T iseees ] jj‘M} and {ej,l(t),...,ejw (t)} to be estimated are defined over probability distributions.

Finally, constraint (10) corresponds to the second property of transition probabilities, equation (5). It

states that, for any initial Markov state, the sum of transition probabilities must be equal to 1.

The optimization program (9)-(12) consitutes a standard GME problem. As this program is

convex, it has a unique solution. The interested reader may consult Golan, Judge and Miller (1996) for

a complete and detailed derivation of this program’s solution, 7,

m and e, (7). Point estimates both

for transition probabilities and error term defined in equation (9) are recovered from the GME

probability estimates f" m and €, (¢). More formally we have:

g

N
Ty=> 0, T, =1Yj,j and &.(t)=> v, &,,(1) V' (13)
m=1

n=l1
At this point of the analysis, we have estimated the transition matrix of a Markov process using

aggregate data.
2.2.3 Disaggregation at the district-level

Disaggregation of land use at the district-level requires two more steps. First, it requires
estimating for each period a r-order non-stationary Markov metric at the district-level by a

Generalized Cross-Entropy method (GCE). Then, using the transition probability estimates, we

compute land use distribution at the district-level.

a- Estimation of the district-level non stationary r-order Markov process

11



At each period, the allocation of land between crop at the district-level must be compatible
with the observed allocation of land at the regional-level. This data-compatibility constraint, first

described by equation (3), can be rewritten as:

Z(Z Zq’,-(t)-T&(r)]-s’+ek<r>=5k(t+1) Vk=1,....K (14)
i=1 \_j=1 j'e¥ (k)

The data-compatibility constraint states that at each period the total expected land predicted to produce

crop k in all districts must be equal to the observed surface allocated at the regional-level to crop &, S,

plus an error term e, . Notice that, given we only observe land use at the district-level for the r first
periods, the probability of being in state j in district i at time ¢, ‘]i (¢), can initialy only be computed

for t=r.For t =r+1,...,T, this probability is endogeneously computed from period to period.

Estimating a r-order non-stationary Markov matrix at the district-level can be formulated as a
special generalized cross-entropy framework (GCE)®. For a given period’, we have to solve the

following nonlinear optimization program:

I J o K N
Min H(T,e) =3 3 377 tog(r?, /7,)+D° ey, -logley, ) (15)
ThnT ennegy 0=l j=1 =1 k=1 n=1
subject to :
1 J ) . . N
2|2 24 Ty |s'+ 28, e, =S, Vk (16)
i=1\_j=1 j'e¥(k) n=1
J
M'Th=1Vi=1...,I and T}, €[0,]] (17)
j'=1
N
e, =1Vk=1,....K and ¢, €[0,]] (18)
n=1

where { Lseerl N} with N >2 is the support associated with probabilities {ekl,...,ekN} such as

N
e, = ZQ” . €m Vk. We seek to minimize the cross-entropy of the probability distribution for the

n=l1

¥ The cross entropy between two distributions p and ¢ is: (g, p) = Zipl. -log(p, /q;) . It was first introduced by Kullback

(1959) but was explicitly called cross-entropy by Good (1963). The cross-entropy measures the distance between two
distributions. The cross-entropy is minimized when the two distributions are identical.

? For reasons of simplicity we omit the time index in the following program.

12



Markov transition matrixes and the entropy for the error term. Constraints (18) ensure that

{ei1s....euy | is a probability distribution. Constraint (17) corresponds to the second property of

transition probabilities, equation (5). Constraint (16) is the data-compatibility constraint.

The intuition of this program is the following. Let’s first consider the problem without the data-

compatibility constraint (16) holding. The solution of this relaxed program is 7 ]’] = f" i Vi, j,Jj' and

e, =1/N Vk,n. Without any district heterogeneity, the estimated district-level transition

probabilities are given by the stationary regional Markov matrix and the error distribution for each
crop is uniform with an expected value of zero. Suppose we now impose condition (16). If there is
some district heterogeneity, transition and errors probabilities must be changed from the previous
solution to satisfy the data-compatibility constraint. In this case the optimal parameter estimates the
tradeoff between deviations from the priors and information recovery. It can be shown, as previously,

that this non-linear optimization program has a unique solution in (7,e), see Golan, Judge and Miller

(1996).

The result of this step is that we obtain for each district and for a given year, a Markov
transition matrix associated with land use at the district-level and a point estimate of the error term in

equation (12):

N
n=l

Finally we should mention that this ME approach provides an easy way to take into account
out-of-sample information. Out-of-sample information may either consist of additional constraints in
the optimization program or in particular priors for the Markov transition metrics. For example, some
specific physical constraints (quality of soil, water availability, agronomic constraints) may prevent
farmers in a given district from producing particular crops. This information may be added to the
disaggregation program with additional constraints. In the same way, we could have out-of-the sample
information on transition probabilities for a specific district. This information may be added to the

model via a change of transition probability priors.

b- Land use at the district-level

13



From the previous estimates we can recover land use at the district-level. The probability of

producing crop k in ¢+1 in district i and the expected land allocated to this crop are respectively given
by:

P+ =2 D g5 (1) Tj () and §;(t+1) = P (t+1)-s' (20)

J=1j'e¥ (k)
c- Dynamic district-level land use

The disaggregation program is solved year by year. Since we have observed land use at the

district-level for years 1 to », we can compute the probability associated to each Markov state for year

r q;. (r) Vi, j. The optimization program (15)-(18) can then be solved for year +/ and the solution

defined by (20) allows us to compute the probability associated with each Markov state in year r+1:

Q' (r+1)Vi, .
. J . A .
gpr+)=2.4" () Tp(r) ' 21)
j=1

For periods r+1 to 7, a closed-form loop solution for the Markov state probabilities is obtained in the
same way using the previous year’s estimates. Hence for each period the program (15)-(18) is
completely defined. The data disaggregation from the regional to district scale can therefore be

performed year by year. In the next section, we apply this framework to a sample of Californian data.

3. An application of the disaggregation method to California

In California, the Department of Water Resources the US Bureau of Reclamation has
developed a regional model of irrigated agricultural production that simulates the decisions of
agricultural producers in the Central Valley of California. The Central Valley California Model
(CVPM) is implemented as part of an integrated analysis with surface water hydrology, groundwater,
agricultural economics land use and water transfer analysis. The model includes 21 production regions
and 26 categories of crops. However, many water management issues require a smaller scale-level
analysis. Often water issues are analyzed by the DWR at the Detailed Analysis Unit (DAU) level,

which is generally defined by hydrologic features or boundaries of organized water service agencies.

14



In the major agricultural areas, a DAU typically includes 100,000 to 300,000 acres. A typical CVPM

region is made of four to five DAUs.

Disaggregation of CVPM regions to the DAU level is of great interest as it would allow the

agricultural production model and the hydrologic water models to interact more effectively.
3.1 Data

We apply our disaggregation procedure to a set of Californian data. The area considered is
CVPM region 13 located in Central Valley of California (See Map 1 and Table A.1 in Appendix A).
This region 1s made of six Detailed Analysis Units (DAU): Merced, Merced Stream Group, El Nido-
Stevinson, Madera-Chowchilla, Adobe - Valley Eastside and Gravelly Ford. We selected this region as
it has more DAUSs than others and because the DAUs are quite heterogeneous both in terms of size
and cropping patterns. This makes the disaggregation procedure more interesting and also more

difficult.

We consider eight possible crop groups, namely: Alfalfa, Cotton, Field, Grain, Melon,
Tomatoes, vegetables and subtropical. In what follows, the first letter indexes each crop. Therefore,

we have k e {A,C, F.G,M,T ,V,S}. Eleven years of data on land use at the regional-level (1988 to

1998) are available. In order to perform in-sample and out-of-sample estimates, we only use years
1988-94 to estimate the Markov transition matrix at the aggregated level. In terms of the notation in
the previous section, we have 7=7 and K=8. Eleven years of data on land use at the DAU level were
also available. We use observations for year 1988 and 1989 to define the initial Markov probabilities
at the DAU level and assume that land use at the DAU-level can be described by a second-order

Markov process.

The objective of the disaggregation procedure is to recover land use at the DAU-level for years
1990 to 1998. Observation of the actual land use from 1990 to 1998 allows us to test the accuracy of
the disaggregation procedure. See Table A.2 in appendix A for a complete presentation of DAU-level
data.

15



Figure 2: Location and characteristics of CYPM region 13

40.00

095 mM96 197 m98

30.00 ]

X 20.00 ~

10.00 +
b 0.00 - —JIHMTI]IL‘Z'I%
Pa To Ve Su

3.2 Regional stationary second-order Markov matrix estimate

Data in Table A.1 in Appendix A are used to estimate the stationary second-order Markov
process at the regional-level. A Markov state is a pair of crops observed during two consecutive years.

As a consequence, there are 64 possible states each year. States are indexed in the following way: state
kk _, observed in ¢ means that crop k’ was produced in ¢/ and crop k in ¢ for

k,k'e {A,C,F, G,M,T, V,S}. As we have T —r < K —1, the problem is ill-posed and use of ME for

estimating the Markov matrix is justified.
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Table 1: Transition probability estimates T j’j at the region-level

AtiAc CitAr FriAe GrtAr MetAc TinnAr VerAe SeA AiCt¢ Cii1Ci FeiCi Ger1Ci MiiCi Tis1Ci VeCe SenCy

AAc4 0.00 050 020 0.00 030 0.00 0.00 0.00 CiA¢4 0.50 0.00 0.19 0.00 0.16 0.00 0.15 0.00
ACq 0.00 026 000 050 0.11 0.00 0.13 0.00 CiCi4 0.00 0.00 0.00 050 041 0.00 0.00 0.09
AFiq 0.08 0.06 012 0.06 041 0.05 0.09 0.14 CiFes 0.05 0.12 011 0.05 052 0.05 0.08 0.03

E AGi.1 0.00 023 000 060 0.17 0.00 0.00 0.00 5 C:Gi1 0.00 0.72 0.00 0.22 0.00 0.06 0.00 0.00
E AM,.4 091 000 000 0.00 0.00 0.10 0.00 0.00 ECtMM 043 0.00 0.00 057 0.00 0.00 0.00 0.00
< ATu 020 012 010 011 008 012 011 016 © CiTes 0.16 0.19 0.11 0.16 0.08 0.13 0.11 0.07
AV 032 010 0.08 0.09 0.04 0.12 0.08 0.16 C¢V4 024 018 0.09 021 0.03 013 0.08 0.04
A:Stq 0.17 013 010 0.12 0.09 0.12 0.11 0.16 CiSuq 0.5 0.19 0.11 0415 0.10 0.12 0.12 0.07
AwiFt  CuiFt  FuaFe GuiFt MuiFe TeiFe VeaFre SwaFy Aw1Gt CiiGt FiiG: GGt MiiGt TGt ViiGi SiniGy

FiAc1 022 026 007 026 0.00 006 0.08 005 GgA 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
FCi1 022 025 006 030 005 0.00 0.07 0.05 GC 0.30 0.00 0.15 041 0.00 0.09 0.00 0.06
FiFi.4 017 018 010 020 0.09 0.08 0.10 0.08 G4 0.06 0.03 0.18 0.05 0.50 0.03 0.09 0.07

3 FGt1 0.09 0.14 000 0.28 050 0.00 0.00 0.00 Z2 GGt 0.00 041 0.00 050 0.00 0.00 0.09 0.00
E FiM¢.4 022 027 010 029 0.06 0.06 0.00 0.00 g GiM.4 0.10 050 0.00 0.24 0.16 0.00 0.00 0.00
FiTeq 015 015 011 0.15 0.11 011 0.12 010 GTy4 0.12 023 0.10 0.15 0.07 0.12 0.12 0.11
FViq 015 016 011 017 0.09 010 0.11 010 GiVeq 0.12 032 0.07 0.18 0.03 0.12 0.08 0.07
F:St 015 015 012 0.15 0.11 011 0.12 0.10 GSis 0.12 020 0.10 0.16 0.08 0.12 0.13 0.11
AwiM; CeeiMy FioaM¢ GestMy MipaM¢ TeraM; ViesMy SeqMe ATt CeTe FeuaTe Gt Tt M Te TewaTe VTt SewrTe

MA:.1 0.00 000 000 089 000 0.11 0.00 0.00 TAus 0.14 016 0.09 0.28 0.14 0.07 0.07 0.06
MC¢.1 025 024 013 038 0.00 0.00 0.00 0.00 TCes 015 029 0.04 034 012 0.06 0.00 0.00
MF .4 012 0.09 015 0.09 034 0.04 010 0.07 ¢ TiFeq 0.14 014 012 0.15 0.14 0.10 0.11 0.10

g MG 032 041 000 000 0.14 0.00 0.09 0.04 IéJTtGM 024 022 000 028 016 0.00 0.05 0.05
E MM 012 022 005 011 050 0.00 0.00 0.00 g TiM. 0.15 0.17 010 0.20 0.14 0.08 0.09 0.07
M;Te.q 0.5 0.16 0.10 0.14 0.11 0.11 0.12 0.1 8 TiTtq 013 014 012 014 013 012 0.11 0.12
MVi4 0.15 017 008 020 0.08 0.10 0.11 0.11 TiVea 0.13 0.14 0.12 0.14 0.14 011 011 011
M;S¢1 0.15 0.16 0.10 0.14 0.11 0.10 0.13 0.11 TiSea 013 014 012 0.14 013 012 0.11 0.12
AutVe  CeaVe FeVe GeaVe MeqVe TeqVe ViV SV A4St Ces1S¢ FruaSt GaSt MuaSt TSt VierSe SeaSy

ViA¢q 0.17 018 0.09 031 0.19 0.06 0.00 0.00 SiA.. 015 017 009 021 0.14 0.08 0.10 0.08
ViCi4 0.16 031 000 041 012 0.00 0.00 0.00 :‘.‘»tCM 0.15 026 0.00 0.34 0.13 0.06 0.00 0.06

@ ViFi4 0.14 015 011 0.16 0.14 0.10 0.10 0.11 gStFM 0.14 015 011 0.16 013 0.10 0.11 0.10
2 VG4 022 024 004 027 016 0.00 0.08 0.00 % S¢Gt1 021 024 0.09 029 0.18 0.00 0.00 0.00
E VM4 0.16 0.17 0.08 0.19 0.14 0.08 0.08 0.09 EStMM 0.16 0.16 0.09 0.20 0.14 0.08 0.10 0.07
g ‘A 0.14 013 012 014 013 011 0.12 0.12 a STt 013 013 011 014 0413 012 012 011
ViViq 0.14 014 011 0.15 0.13 0.11 011 012  SViq 0.13 0.14 0.11 015 0.13 0.11 012 0.11
ViSi.1 013 013 012 014 013 012 0.11 0.12 S¢S 013 013 012 014 013 012 012 0.2

Note: Table 2 gives transition probabilities of passing from one Markov state to another. For example, the transition probability of producing
Cotton in ¢t after having produced Alfalfa in t and Grain int-1 is 0.23. It corresponds to the probability of passing from state AG to state CA.

Before solving the non-linear optimization program (8)-(12), we have to choose support values

for the errors and parameters. The natural bounds for the @'= {a)l,...,a) M} terms are zero and one.

Still there remains the choice of the number M of support values. Since previous studies have shown
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that increasing the support space from 3 to 5 points has little effect on the estimates'’, we fix M equal

to 3. Then @'= {0,0.5,1}. The choice of error support v'= {vl,...,vN} is subject to more controversy

and clearly depends on properties of errors e. By reference to the Chebyshev’s inequality, some
authors determine the bounds using a 3o rule, Golan, Judge and Miller (1996). This is the rule
followed here. The number N of values for error support is 3. The non-linear optimization program

(8)-(12) is solved using GAMS.

Table 1 shows the point estimates of the Markov process transition probabilities. The
probability of growing a crop differs according the crop patterns of the two previous years. For
example, the average probability of producing COTTON in ¢+/ goes from 0.17, if SUBTROPICAL is
produced in ¢, to 0.22 if GRAIN is produced in ¢. Moreover, given that ALFALFA has been produced in ¢,
the probability of growing COTTON in ¢+/ varies from 0, if MELON is produced in #-/, to 0.5 if
ALFALFA is produced in #-/. These results support our land use specification at the regional-level as,
first a dynamic process and second, a second-order Markov process. In order to evaluate the Markov
matrix, we compare the predicted crop shares from 1988 to 1998 with the observed aggregate shares.
Table 2, presents closed-loop simulations of the Markov matrix''. For out-sample simulations, we
assume that we can observe the true distribution of land use at the DAU-level for years 1993 and

1994.

Table 2: Simulated land use shares per crop Y, . (¢) at the regional-level (in %)

90® 91® 92 93@ 94 95® 96™ 7™ 98™
Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre
182 181 186 187 179 180 188 185 196 179 209 178 21.0 18.0 21.7 181 220 182
20.7 221 233 220 225 226 239 219 225 224 220 224 206 220 182 222 153 223
6.7 53 47 53 44 53 45 53 51 53 48 52 48 52 52 51 61 5.2
276 281 27.0 276 30.0 285 29.0 285 29.6 286 266 29.0 284 289 30.8 28.8 324 285
184 164 169 164 156 152 142 153 134 151 144 151 13.6 153 127 151 127 151
24 31 27 32 26 33 34 34 36 34 46 33 47 33 46 33 48 3.4
36 42 45 42 46 43 37 43 37 44 46 43 49 44 49 44 438 4.3
25 27 23 26 24 28 25 28 24 29 20 28 20 28 20 29 18 29

Notes: Obs and Pre respectively give the observed and the predicted land use shares.
@ for in-sample estimates ® for out-sample estimates

n<H4=20mT0>»

' See for example Golan, Judge and Miller (1996). These authors have shown that passing from 2 points to 3 substantially
decreases the mean-square-error of estimates. More increase in M is shown to only result in a smaller improvement.

' Given aggregate land use for 1988 and 1989, the Markov metric gives a prediction of land use shares for 1989. Then
given observed land use share in 1988 and predicted in 1989, we estimate land use for 1990. Finally, land allocation in

1991 is based on predicted land use shares in 1989 and 1990...
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The Markov metrics performs quite well, both in term of the level of prediction and a measure
of prediction variation. Let us define the Percentage Absolute Predicted Error (PAPE) for a given crop

k as:

Yk _YAk

PAPE, = *100 (22)

k

where Y, and Y . respectively represent the observed and estimated probability of producing crop £.

The average crop Percentage Absolute Predicted Error (PAPE) for in-sample years 1990 to
1994 is 10.40%. For out-sample, the average PAPE is 19.04%. If we do not take into account
subtropical crops, for which the PAPE is high but only represents a small proportion of total surface,
the average out-of-sample PAPE is 14.46%. It increases from 9.80% in 1995 to 21.41% in 1998.
Hence, the Markov metrics enable us to recover the aggregated surfaces allocated to crops in a precise

way.
3.3 Disaggregation at the DAU level

In this section, we present the final results of the disaggregation method, namely the

distribution of land use per DAU and per year.

As the total agricultural land use varies from year to year at the regional-level, Table A.l
Appendix 1, the data-compatibility constraint (14) must slightly be modified allowing the DAU size to

vary from year to year:

> Zq’j )Ty (@) |-s' (D +e () =S, (t+) Vk=1,....K . (23)

i=1 \_j=1 j'e¥ (k)
In equation (23), we add some more information at the DAU level, namely the total agricultural area
of each DAU at each date, s' (). In a more complex framework this variable could be endogenously

predicted.

Since, in this empirical example, we also observe the true land distribution at the DAU level,
we can evaluate the accuracy of the DAU disaggregation procedure. Figure 2 presents a comparison of

land use shares resulting from the disaggregation procedure with the observed land use shares at the
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DAU level for the out-of-sample years 1995 to 1998. The disaggregation framework is initialized

assuming that we observe DAU land use in 1993 and 1994. Complete disaggregation results are also

reported in Table B.1, Appendix B.

Figure 2: Observed and predicted crop shares f/;( (t) at DAU level for year 1995-98
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For each district, Figure 2 compares the out-of-sample observed and the predicted crop shares

for years 1995, 96, 97 and 98. The disaggregated crop shares are on average close to the observed

shares. This is especially true for four DAUs: Merced, El Nido-Stenvinson, Adobe Valley-Eastside

and Gravelly Ford. It is interesting to notice that for Merced, El Nido-Stenvinson and Adobe Valley-

Eastside, some long-term trends such as the grain share increase, are predicted well. The accuracy of

the disaggregation for Merced Stream Group and Madera-Chowchilla seems to be less precise. The
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main reason is that, for these two DAUSs, there is an important exogenous change of grain land shares
between 1994 and 1995'%. The stationary regional Markov process does not capture this change and
the departures from the aggregate priors are not large enough to adjust the DAU transition
probabilities. We should notice that specifying a non-stationary Markov process at the regional level
would not improve predictions for these two DAUs as cropping patterns at the regional level do not
exhibit drastic changes between 1994 and 1995. However, if the modeler is aware of such an

exogenous change occurring, they can easily modify the transition probability priors.

Another useful measure of prediction errors is given by the Weighted Percentage Absolute

Predicted Error (WPAPE) for each DAU and at the regional-level. For DAU i, the WPAPE is defined

by:
) K ) yi _ _j)i
WPAPE' ="y -|+—+ (24)
k=1 Yk
and at the regional-level by:
1 i
WPAPE =~ . WPAPE' (25)

i=1

The DAU Weighted PAPE is the sum of crop PAPE weighted by the land allocated by each crop. The
regional weighted PAPE is the sum of DAU PAPE weighted by the size of each DAU. Weighted
PAPE results are presented in Table 3.

Table 3: DAU-level and regional weighted PAPE (in %)
90 91® 92@ 93® 94® 95 9™ 97® 98™

Merced 51 194 220 301 325 105 102 120 150
Merced Stream Group 4.9 7.6 41 163 283 547 581 523 404
El Nido-Stevinson 53 135 128 170 203 96 107 10.2 8.3
Madera-Chowchilla 8.7 6.3 168 142 273 282 280 411 332
Adobe - Valley Eastside 88 253 296 311 276 369 314 251 266
Gravelly Ford 8.6 7.9 8.6 8.2 9.3 120 114 123 177
CVPM Region 13 68 129 153 180 220 153 154 172 164

Notes: @for in-sample estimates ®T for out-sample estimates

Both for in-sample and out-of-sample data, the weighted PAPE values show a reasonable level of

precision given the inherent difficulty of data disaggregation. The weighted PAPE increases from

12 For Merced Stream Group the proportion of land allocated to grain goes down from 51.5% in 1993 and 57.7% in 1994 to
35.8% in 1995. For Madera-Chowchilla, it goes from 22.8% in 1993 and 18.2% in 1994 to 28.7% in 1995.
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1990 to 1994 and from 1995 to 1998, as the predictions are done in closed-form loop. The high
weighted PAPE for the Merced Stream Group DAU should be considered in context with its small size
(less than 3% of the regional area in 1988).

3.3.2 Measuring information recovery

Finally we want to measure the information gains from the disaggregation procedure. We need
to define a quantitative measure of information change due to disaggregation. This measure should
have the following properties.

1. The measure of potential gain increases monotonically with the heterogeneity of the disaggregated
sample.

2. The gain from disaggregating a uniform set of samples is zero.

3. The measure is invariant to changes in the number of disaggregated samples and the variability of
the aggregated sample.

4. The measure has an information theoretic interpretation.

Let us define the cross-entropy between the aggregate observed land shares, y,, and the true

disaggregate land shares, y}, as:

CE=YS .h{y_f;J (25)
ik Vi

and the cross-entropy between the disaggregate estimate land shares, 7;, and the true disaggregate

land shares, y,i, as:
CE=YS 7 h{y—k] (26)
ik Vi
First assume that we do not have any information at the district level. The disaggregation procedure

would result in attributing the aggregate land share distribution y, to each district. CE, which is an

aggregate entropy-measure of the distance between the distributions y, and y;, measures how far we

are from the actual district shares when we attribute the aggregate land use distribution to each

district. Now assume that we use our disaggregation procedure to calculate the district land use

distributions from the aggregated distribution. CE is an aggregate measure, in term of entropy, of how
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far the posteriors 7} are from the true distributions y; . Hence, the Disagregation Informational Gain
(DIG) from the disaggregation procedure is defined by:
Sym

' _CE

DIG=1-—"* Y _q 27)

CE
220 -ln[y'ZJ
ik Vi

The DIG is a measure of the proportion of district-level heterogeneity that is recovered. In case of a

perfect disaggregation where $, =y, Vk,i, the DIG is equal to 1. In such a case, we are recovering
100% of the heterogeneity at the district level. In the case of no disaggregation procedure, we have
= V. Vk,i and the DIG is equal to 0, and we recover no information at the district level. In all
other cases, the DIG is between 0 and 1. The DIG measure increases as the district posteriors get

closer to the true district land use distributions y} .

As an illustrative empirical example, we compute the Disaggregation Informational Gain for
the out-of-sample years 1995 to 1998. The DIG are respectively equal to 56.34%, 69.03%, 62.08%
and 65.54% for years 1995 to 1998. This means that the disaggregation procedure recovers a
substantial part of the district heterogeneity (on average 63.75%). Moreover, it is interesting to notice
that the proportion of information recovered does not decrease with time, as might be expected, since

the disaggregation is calculated annually in a closed-loop form.

4. Conclusion

In this paper, we have addressed the issue of dynamic data disaggregation in agricultural
economics. We have developed a data-consistent method to estimate cropping choices by farmers at a
disaggregate level (district-level) using data from a more aggregate (regional-level) source. Our
disaggregation procedure requires two steps. The first step consists of specifying a model of crop
allocation and estimating it using aggregate data. In the second step, we disaggregate outcomes of the

regional-model using maximum of entropy (ME). Two points should be noticed:
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e First, we explicitly model aggregate cropping pattern choices as a dynamic process by using a

Markov process. We believe that farmer’s crop choices are dynamic per se

e Second, we use a ME approach for downscaling data. The ME approach gives an optimal solution
using the Kullback-Leibler cross-entropy criterion in cases where traditional inversion methods do

not result in identifying a set of parameters.

The resulting disaggregate data are consistent with priors, given by the Markov metrics, and with

the data, given by the aggregate land use shares.

We have applied our disaggregation procedure to a sample of Californian data. The sample
includes six districts for which we want to recover land use for eight possible crops, namely: Alfalfa,
Cotton, Field, Grain, Melons, Tomatoes, Vegetables and Subtropical. Eleven years of cropping
patterns are available, from 1988 to 1998. A second-order Markov process is specified as representing
aggregate crop choices. The estimate of the aggregate Markov process is based on the years 1988 to
1994. This allows us to have in-sample crop predictions for years 1990 to 1994 and out-of-sample
predictions for the rest of the periods. We have shown that the quality of predictions at the
disaggregate level is relatively good. For out-sample estimates, the regional-level weighted PAPE is
between 15.3% and 17.2% according to the year considered. These results show that, the district-level
behavior inferred from aggregate data with our disaggregation approach, are consistent with the

observed behavior.

The disaggregation approach partially bypasses one of the most significant obstacles to
progress in agricultural production: the lack of better and more detailed data, Just and Pope (1999-b).
Aggregate agricultural production data are now available in most of countries'. They can be
disaggregated using this procedure. This is especially interesting as substantial site-specific data (soil-
surveys, GIS data, satellite images) are becoming increasingly available. Disaggregation of economic
data permits economic analysis at the most disaggregated level. It enables the combination of

biophysical models, defined at this scale, with economic models. Moreover, the ME approach is

" In the U.S., aggregate data may be found in the annual publication of the U.S. Department of Agriculture, Agricultural
Statistics. There also are available in the Census of Agriculture published every 5 years. Most of country-level aggregate

data are compiled by the Food and Administration Organization (FAO) and are easily available.
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flexible enough to take into account out-of-sample information. Any specific out-of-sample
information may be added to the disaggregation program via additional constraints. Any out-of-the

sample information on transition probabilities may be added to the model via specification of priors.

Finally, as mentioned in the introduction of this paper, a valid disaggregation method is of
interest in many other fields. The lack of high quality disaggregate data is a recurrent problem faced

by many applied researchers.
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Appendixes

A. Data

Table A.1: Regional land use per year and per crop for CYPM 13

88 89 90 91 92 93 94 95 96 97 98

Acres % Acres% Acres% Acres% Acres% Acres% Acres% Acres% Acres% Acres % Acres %

A 602 175643 19.7 59.7 18.2 63.5 18.6 61 17.9 63.1 18.8 65.8 19.6 67.74 20.9 69.2 21.0 71.4 217 69.9 220
C 733 213618 19.0 68 20.7 796 233 764 225 804 239 755 225 71.37 22.0 68.1 20.6 59.9 18.2 48,6 153
F 307 89 258 79 22 6.7 162 47 15 44 153 45 171 51 1557 48 158 48 173 52 194 6.1
G 96.5 28.1 892 274 90.7 27.6 92 27.0 101.9 30.0 97.6 29.0 99.3 29.6 86.26 26.6 93.8 28.4 101.4 30.8 103 324
P 619 18.0 614 189 60.5 184 57.7 169 532 156 47.6 142 449 13.4 46.74 144 449 136 419 127 405 127
T 64 19 71 22 78 24 91 27 88 26 114 34 119 36 1501 46 155 47 15 46 154 4.8
vV 861 25 83 25 118 36 153 45 157 46 124 37 125 3.7 15.06 46 163 49 16 49 154 48
S 61 18 78 24 82 25 77 23 82 24 85 25 82 24 651 20 65 20 67 20 56 18
T

ot. 343.7 325.7 328.7 341.1 340.2 336.3 335.2 324.3 330.1 329.6 317.8

Table A.2: Land use shares per year and crop at the DAU level

88 89 90 91 92 93 94 95 96 97 98

Merced

A 6.50 6.70 581 788 792 869 862 778 772 767 7.62
(o 1.20 1.00 1.07 531 530 6.02 850 687 7.00 6.60 549
F 5.60 4.50 448 238 238 342 292 259 211 321 3.68
G 21.80 2080 2120 17.31 18.27 18.07 19.78 18.27 18.69 20.00 23.00
P 2190 2190 2190 18.00 16.02 14.47 13.82 13.51 13.51 13.52 13.18
T 2.50 3.10 341 400 4.02 652 6.09 482 482 459 472
\'} 4.70 4.50 511 750 6.88 478 361 627 639 7.11 6.78
S 0 0.10 013 013 0.12 0.12 013 012 0.12 0.19 0.13

Merced Stream Group

A 1.10 1.10 090 110 1.00 1.00 100 030 030 030 0.30
Cc 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
F 0.30 0.20 020 030 020 0.10 010 O 0 0 0

G 4.30 3.80 400 390 421 500 641 290 270 320 4.00
P 3.40 3.40 340 390 370 320 320 340 340 340 3.30
T 0 0 0 0 0 0 0.80 0.80 0.80 0.80
v 0.30 0.30 0.30 040 040 030 030 050 050 050 0.50
S 0 0 0 0 0 0 0 0.10 0.10 0.20 0.10
El Nido-Stevinson

23.30 24.00 20.03 21.99 21.09 21.39 21.34 2525 25.09 2511 24.74
21.00 18.20 20.79 21.99 2294 2295 2285 20.06 20.14 19.17 15.96
12.40 11.00 959 963 9.02 668 673 7.15 576 898 10.14
28.00 26.20 28.54 2538 28.05 32.75 37.00 31.59 32.23 36.15 41.32
2210 2210 22.08 2297 20.54 20.50 20.53 18.91 18.88 18.92 18.56
3.20 4.00 442 503 467 468 545 865 875 873 8091
2.00 2.00 226 241 250 234 220 381 414 425 421
0 0 0 0 0 0 0 0 0 0 0
Madera-Chowchilla

8.00 8.80 9.02 877 842 10.01 1140 954 989 10.60 10.30
19.40 19.00 21.02 23.93 2151 19.92 16.81 17.06 16.02 13.09 10.42
4.40 3.30 121 202 228 369 402 127 190 1.08 1.19
15.70 11.50 12.00 1248 17.18 12.02 8.72 1349 1549 18.60 14.30
5.90 5.70 529 501 472 469 460 437 399 240 222
0 0 0 0.11 011 021 038 005 0.10 0.09 0.12

n<-=4TOTMOD>

- TGO MO >
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Adobe - Valley Eastside

Nn<=- TEOETMO >

Gravelly Ford

Nn< - TEOETMOD>

0.40 0.40
0.60 0.50
2.30 2.50
3.10 2.00
2.60 2.30
8.20 7.60
2.10 2.00
0.70 0
0.81 0.70
5.50 7.20
19.00 21.20
28.50 21.50
5.40 4.50
18.50  19.30
6.50 6.30
0 0
0.40 0.40
0 0

1.1
0.81

2.50
1.99
1.89
7.71
1.89

1.89
7.31

21.51
22.97
4.62
17.32
5.87

1.10
0

1.09
1.09

2.50
2.39
0.60
10.80
1.90

2.50
6.50

21.16
25.91
1.32
22.10
5.91

1.40
0

1.02
1.71

2.39
2.31
0.39
11.20
2.00

3.1
6.39

20.22
24.26
0.69
22.97
6.33

1.83
0

0.90
1.32

1.99
2.39
0.50
8.70
1.09

2.61
6.40

20.02
28.99
0.92
21.02
3.61

1.53
0

0.72
1.29

2.10
2.19
0.79
8.20
0.49

2.70
6.80

21.32
25.06
2.57
19.18
2.28

3.01
0

0.47
0.80

1.23
1.35
0.62
3.40
1.07
0.18
0.16
5.51

23.71
25.87
4.01
16.58
5.53
0.56
3.85
0

0.49
0.78

1.31
0.90
0.70
4.30
0.99
0.20
0.30
5.50

24.92
23.91
5.29
20.39
4.11
0.84
4.53
0

0.38
0.80

1.40
1.00
0.40
5.01
0.60
0.20
0.20
5.51

26.27
19.93
3.62
18.50
3.10
0.60
3.47
0

0.40
0.71

1.30
0.80
0.41
5.00
0.50
0.20
0.20
4.70

25.73
15.91
3.93
15.37
2.78
0.68
3.32
0
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B Disaggregation results

Table B.1: Simulated land use shares per crop j/,’{ (t) versus observed at the DAU-level (in %)

90® 91® 92® 93® 94 95" 96" 97" 9™

Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre Obs Pre
Merced
A 92 99 126 103 130 99 140 108 13.6 114 129 135 128 134 122 141 118 144
Cc 1.7 16 85 19 87 18 97 21 134 21 114 124 116 117 105 109 85 9.6
F 71 63 38 48 39 45 55 49 46 55 43 43 35 43 51 46 57 52
G 33.6 33.0 27.7 327 30.0 354 29.1 36.2 312 369 30.3 284 310 29.7 318 31,5 356 324
P 347 340 288 323 26.3 30.1 233 284 218 26.7 224 226 224 218 215 20.3 204 19.8
T 54 52 64 59 66 57 105 70 96 71 80 114 80 116 73 110 73 111
v 81 99 120 122 113 125 77 105 57 104 104 73 106 76 113 75 105 75
S 02 00 02 00 02 00 02 00 02 00 02 00 02 00 03 00 02 00
Merced Stream Group
A 10.1 123 11.3 125 104 124 103 126 90 127 37 89 38 89 35 90 33 90
Cc 11 11 10 11 10 11 10 12 09 12 12 08 13 08 12 08 11 038
F 22 20 31 20 21 20 10 20 09 21 00 08 00 08 00 08 00 038
G 449 428 40.2 428 43.8 43.3 515 434 57.7 435 358 57.6 342 57.7 37.6 58.0 44.0 58.0
P 38.2 38.2 40.2 379 385 374 33.0 37.1 28.8 36.7 42.0 29.3 430 29.1 40.0 28.7 36.3 28.5
T 00 00 00 00 00O OO OO 00O 00 00 99 00 101 00 94 00 88 00
Vv 34 36 41 37 42 38 31 37 27 38 62 27 63 27 59 27 55 28
S 00 00 00 00O 00O 00O 00O OO 00O 00O 12 00 13 00 24 00 11 00
El Nido-Stevinson
A 18.6 20.0 20.1 20.7 194 198 192 211 184 225 219 191 218 189 20.7 20.4 20.0 211
Cc 19.3 193 201 226 211 212 206 239 19.7 227 174 179 175 16.0 158 13.7 129 10.7
F 89 82 88 50 83 44 60 47 58 55 62 53 50 52 74 59 82 73
G 265 249 232 240 258 284 294 271 319 277 274 280 280 30.8 29.8 343 334 36.0
P 20.5 20.2 210 181 189 164 184 136 17.7 120 164 200 164 188 156 16.2 15.0 154
T 41 42 46 50 43 49 42 63 47 64 75 67 76 70 72 63 72 64
Vv 21 33 22 46 23 49 21 33 19 32 33 30 36 33 35 32 34 31
S 00 00 00 00 00O OO OO 00 00 00 00O 0O OO OO 00O 00 00 o0
Madera-Chowchilla
A 179 169 16.1 17.0 14.8 16.7 19.0 16.8 23.8 174 20.3 24.0 20.3 243 225 250 26.0 257
C 417 40.6 43.9 434 37.8 421 378 436 351 427 36.3 336 329 325 27.8 30.7 26.3 288
F 24 59 37 46 40 44 70 44 84 48 27 81 39 81 23 86 3.0 94
G 238 234 229 227 302 249 228 239 182 242 287 172 318 182 395 19.0 36.1 19.7
P 105 113 92 106 83 101 89 91 96 87 93 101 82 100 51 95 56 95
T 00 00 02 00 02 00 04 00 08 00 01 08 02 08 02 08 03 09
Vv 22 09 20 10 18 11 17 09 15 09 10 18 10 19 08 20 1.0 20
S 16 10 20 07 30 08 25 13 27 13 17 45 16 41 17 45 18 40
Adobe — Valley Eastside
A 99 99 92 107 86 103 84 98 9.0 100 91 87 92 87 98 87 99 90
Cc 79 84 88 93 83 90 101 86 94 86 100 89 63 89 70 86 6.1 86
F 75 89 22 84 14 80 21 76 34 79 46 32 49 32 28 33 31 35
G 30.6 31.0 39.7 326 40.3 33.1 36.7 30.5 352 30.6 251 33.0 30.3 336 350 33.6 38.1 34.2
P 75 81 70 84 72 80 46 72 21 71 79 19 70 20 42 20 38 20
T 00 00 00 00O 00O 00O 00O OO 00O 00O 13 00 14 00 14 00 15 00
v 75 31 92 37 112 37 110 32 116 32 12 118 21 120 14 118 15 120
S 29.0 30.5 239 269 23.0 28.0 27.0 33.0 29.2 32.6 408 325 387 316 385 32.0 359 308
Gravelly Ford
A 29.3 269 272 270 265 26.1 26.3 26.7 29.0 27.8 29.6 30.5 29.7 305 348 31.8 38.0 33.0
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313 321 333 352 318 33.6 38.1 357 341 344 323 327 285 304 264 274 235 244
63 52 17 36 09 34 12 35 35 39 50 32 63 32 48 35 58 40
23.6 26.7 284 256 30.1 28.7 276 272 261 275 20.7 245 243 265 245 282 227 295
80 84 76 77 83 72 47 62 31 57 69 34 49 33 41 30 41 30
00 00 00 00 00O 0O 0O 0O 0O 0O 07 00O 10 00O 08 00 10 0.0
15 07 18 09 24 09 20 07 41 07 48 57 54 61 46 60 49 6.0
00 00 00 00O 00O 0O OO OO 0O 0O 0O 0O 0O 00O 00O 00 00 o00

n <-4 TvT e TO

Notes: Obs and Pre respectively give the observed and the predicted land use shares.
@ for in-sample estimates for out-sample estimates



