Welfare Analysis in a Multi-Market Framework: Implications of the Cap Cotton, Maize and Sugar Beet Regime in Greece

Stelios D. Katranidis
E-mail: katranid@uom.gr

Paper prepared for presentation at the Xth EAAE Congress
‘Exploring Diversity in the European Agri-Food System’, Zaragoza (Spain), 28-31 August 2002

Copyright 2002 by Stelios D. Katranidis. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
WELFARE ANALYSIS IN A MULTI-MARKET FRAMEWORK: IMPLICATIONS OF THE CAP COTTON, MAIZE AND SUGAR BEET REGIME IN GREECE

Stelios D. Katranidis

Department of Economics
University of Macedonia
156, Egnatia Str.
540 06 Thessaloniki, Greece

Address all correspondence to: Stelios D. Katranidis, Department of Economics, University of Macedonia, 156 Egnatia Str., 540 06 Thessaloniki, Greece, Tel. (031) 891 772, E-mail: katranid@uom.gr
Abstract

This paper examines the welfare effects of the Common Agricultural Policy (CAP) cotton, maize and sugar beet regimes practiced in Greece after its 1981 entry into the European Union. These markets are considered as horizontally related because there are usually the same farmers that use the same areas to produce various combinations of the relevant products. We use bootstrap techniques to conduct a statistical analysis of the estimated welfare measurements. The welfare analysis indicates that the income amounts transferred to farmers rose significantly in the period between 1981 and 1992. The 1992 CAP reform slowed down this trend, and transfers have remained at an almost statistically constant level since 1992.

Key Words: welfare analysis, Common Agricultural Policy, bootstrapping, Greek cotton, maize and sugar beet production.

1. Introduction

In the EU cotton regime, market intervention operates through a target price that is set annually for cottonseed. Cotton ginners are able to pay the farmer's target price because they receive a deficiency payment equal to the difference between the target price and the world market price. In addition, since the crop year 1986-87, a mechanism of maximum guaranteed quantities (MGQ) coupled with a corresponsibility levy has been in place. The latter is applied whenever national cotton production exceeds the MGQ so as to limit budgetary outlays. Floor prices also are in place for maize, which are supported through a system of export subsidies and import levies. Although in 1992 a market policy reform was introduced, mainly aiming at lower producer prices supplemented by direct income payments, EU prices for maize are still above the world markets price level. Sugar beet floor prices are in order, supported through a system of national production quotas in sugar production. The Greek Sugar Corporation (G.S.C.) determines the desired quantity of sugar beet each year and the price at which it will buy the product. The G.S.C. then signs contracts with producers, specifying two parameters of mutual agreement: a) the area of the land to be used for sugar beet production; and b) the sugar beet price to be paid by G.S.C. Producers know that their production, however large or small, from the predetermined land area will be bought by G.S.C. at the specified price.
Cotton, maize and sugar beet production is a significant part of Greek farming. According to the latest available data (1997) cotton, maize and sugar beet covered 12.3%, 6% and 1% of the total agricultural area. The respective shares in the total value of the national agricultural production were 11.7%, 2.2% and 2.3%. The irrigation facilities and the wide use of chemicals that led to internationally notable high yields have also become the main factor in restricting future expansion in cotton seed, maize and sugar beet production. High production costs make Greek farmers uncompetitive in world markets. Therefore, the future development of both industries will be closely tied to the (high) levels of farmers' income protection. High levels of cotton price support have been realized in Greece mainly after the country's entrance into the EU. Until 1981, Greek cottonseed prices stayed close to world market prices. After 1981 they rose sharply, finally stabilizing at a level more than twice that in world markets. On the other hand, maize prices received by Greek farmers were higher than world prices before Greece joined the EU, and were raised further upon membership. This situation began to change after the 1992 CAP reform, which altered maize prices, moving them closer to the world market level. Finally, prices for sugar beet were lower than their international counterparts before 1981. This situation changed gradually after the entry in EU, and sugar beet prices became after the mid-80's higher than the international ones.

The objective of this paper is to analyze the effects of cotton, maize and sugar beet policy regimes on farmers’ welfare. We consider these three products as potential choices for a substantial part of Greek farmers. The latter are economically and technically able to produce alternatively various levels of cotton, maize and/or sugar beet, mainly depending on the availability of land and on the prices expected for these products. The relevant markets are considered as horizontally related agricultural markets, since the same farmers use the same factors of production, mainly land and labor, in order to achieve the desired level of production. Further more, we test empirically the effects of the entry into the European Union on farmers’ welfare as well as the commonly expressed position that the 1992 C.A.P reform has hurt significantly farmers’ income in industries such as cotton, maize and sugar beet. Although cotton and sugar beet regime were not on the agenda of the 1992 reform, their production may have been affected by it, due to the existing interrelationships between the relevant markets.

The analysis is undertaken in a partial equilibrium framework, and the relevant welfare changes are perceived in terms of changes in producers' surplus. Our approach in evaluation CAP emphasizes the use of a more statistical analysis as suggested in Bullock et. al (1999). We use a bootstrap resampling technique in order to provide our welfare point
estimates with a confidence interval. This enables us to formulate our research questions as statistical hypotheses and test them at various levels of statistical significance. We examine the welfare effects of the C.A.P cotton, maize and sugar beet regime on farmers’ welfare compared to the welfare they would receive if a free trade regime were in order. We test the welfare effects of the C.A.P by dividing the whole period under consideration in four sub-periods. The firsts of them refers to the pre-EU regime (1976-1981), the second refers to the post-entry regime till the reform in the cotton policy in 1986 (1982-1986), the third to the following period till the 1992 C.A.P reform and the forth to the post-reform regime (1993-1997).

2. Theoretical Framework

In this paper we analyze the effects of simultaneous price changes on the welfare of a representative and profit maximizing farmer, who produces the above three products, under the assumption of given input prices, technology, institutional framework etc. We consider these three products as close substitutes in production, i.e. farmers have the technical and physical capability to produce cottonseed, maize and/or sugar beet, at various level of production, according to the expected prices, as they are determined in the context of the C.A.P.

Previous studies measuring the impacts of price changes on representative producers’ welfare are usually evaluated under the assumption that all other output and input prices are constant (Babcock and Foster 1993, Otsuka and Hayami, 1985 and Wallace, 1962). Furthermore, factors such as technology, institutional framework, weather conditions etc. are also considered as given. Constant output prices of the other goods produced is an acceptable assumption as long as price and output of the product under consideration cannot affect prices and output of other products produced by the representative farmer and vice versa. This assumption can obviously not be accepted in cases of joint production, products that are substitutes in consumption etc. Input prices used in the relevant production process can also be considered as given, as long their prices cannot be affected from the level of production of the product under consideration. This is the case, for example, whenever the input quantities demanded are only a very small portion of the total input quantity produced. In our case the fact that, first, the prices of all three products, namely cotton seed, maize and sugar beet, are
determined in the context of the C.A.P. and, second, that they are substitutes in production makes it necessary to consider the changes in their prices simultaneously.

Figure 1 presents the changes in producers’ welfare in terms of changes in producers’ surplus when producer prices are changing. The levels of output and prices of the relevant products are depicted by \(q \) and \(p \), \(w \) is the input prices, and \(T \) refers to the level of technology. The subscripts \(c \), \(m \), and \(b \) correspond to the three products under consideration, namely cottonseed, maize and sugar beet. The upper scripts \(i \) and \(w \) refer to domestic, i.e. prices achieved under the C.A.P. regime, and world market prices, respectively. Finally \(0 \) is set to indicate that the relevant variables are considered as constants.

According to the left panel of Figure 1, which refers to cotton supply \(q_c \), a cotton price increase from \(p_c^w \) to \(p_c^i \) results in an increase in farmers welfare equal to \(\Delta PS = p_c^w p_c^i AB \), under the assumption that the prices of maize and beets are equal to their international counterparts, \(p_m^w \) and \(p_b^w \), respectively. In the case, however, that maize prices are set at their domestic level \(p_m^i \), then the total change in producers’ welfare is equal to the sum of \(p_c^w p_m^i AB + p_m^w p_m^i KI \). Finally, if the sugar beets price is also considered at its domestic level \(p_b^i \), then the total change in producers’ welfare is equal to \(\Delta PS = p_c^w p_c^i AB + p_m^w p_m^i KI + p_b^w p_b^i PS \). This result is the outcome of a certain path, which we assumed has been followed with respect to the changes in the prices of the three products under consideration. The path that we followed is a change in price of cotton, followed by a change in price of maize, and the last change was in the price of beets. However, the same result is obtained in the case of another path. If, for example, we assume that the change in prices was first in maize, then in cotton and finally in sugar beets, then the change in producers’ welfare would be equal to \(\Delta PS = p_m^w p_m^i \Theta H + p_b^w p_b^i PS \). This result has to be equal to the one obtained previously, which was equal to \(\Delta PS = p_c^w p_c^i AB + p_m^w p_m^i KI + p_b^w p_b^i PS \) i.e. it has to be path independent in relation to the order that the changes in prices have taken place.

This problem can be set in mathematical terms in the following manner, departing from a profit function \(\Pi \) (Just et. al. 1982) of the representative farmer, which is equal to

\[
\Pi(p_c, p_m, p_b, w^0, T^0) = p_c q_c(p_c, p_m, w^0, T^0) + p_m q_m(p_c, p_m, w^0, T^0) + p_b q_b(p_c, p_m, w^0, T^0) - w^0 x
\]
where \(\Pi \) are the profits and \(x \) the quantities of the inputs. All other symbols have been explained previously.

If we assume, that all three prices change from \(p^w \) to \(p^i \), then the change in farmers’ profits will be equal to:

\[
\Delta \Pi = \Pi(p^i_c, p^i_m, p^i_b, w^0, T^0) - \Pi(p^w_c, p^w_m, p^w_b, w^0, T^0)
\]

(2)

And respectively equal to the following line integral (Just et. al., 1982):

\[
\int_L \left[\frac{\partial \Pi}{\partial p_c}(p_c, p_m, p_b, w, T)dp_c + \frac{\partial \Pi}{\partial p_m}(p_c, p_m, p_b, w, T)dp_m + \frac{\partial \Pi}{\partial p_b}(p_c, p_m, p_b, w, T)dp_b + \right. \\
\left. \frac{\partial \Pi}{\partial w}(p_c, p_m, p_b, w, T)dw + \frac{\partial \Pi}{\partial T}(p_c, p_m, p_b, w, T)dT \right]
\]

(3)

where \(L \) a certain path of integration according to the order we assume that change in producer prices has taken place. Path \(L \) is defined with respect to the relevant supply and derived demand functions, as well as to the changes in output and input prices.

The above line integral is path independent in the case that the profit function \(\Pi \) has continuous partial derivatives. Under this assumption it equals the following definite integrals:

\[
\Delta \Pi = \int_{p_c}^{p'_c} \frac{\partial \Pi}{\partial p_c}(p_c, p_m, p_b, w^0, T)dp_c + \int_{p_m}^{p'_m} \frac{\partial \Pi}{\partial p_m}(p'_c, p_m, p_b, w^0, T)dp_m + \]

\[
+ \int_{p_b}^{p'_b} \frac{\partial \Pi}{\partial p_b}(p'_c, p'_m, p_b, w^0, T)dp_b + \int_{w}^{w^0} \frac{\partial \Pi}{\partial w}(p'_c, p'_m, p_b, w, T)dw + \int_{T}^{T^0} \frac{\partial \Pi}{\partial T}(p'_c, p'_m, p_b, w^0, T)dT
\]

(4)

Given, that input prices, technology and all other factors mentioned previously are considered as constant, i.e. \(dw \equiv dT \equiv 0 \), the last two terms are equal to zero. Furthermore, and according to the Hotelling’s lemma:

\[
\frac{\partial \Pi}{\partial p_c}(p_c, p_m, p_b^w, w^0, T^0) \text{ is the supply of cotton } q_c(p_c, p_m, p_b^w, w^0, T^0)
\]

\[
\frac{\partial \Pi}{\partial p_m}(p'_c, p_m, p_b^w, w^0, T^0) \text{ is the supply of maize } q_m(p'_c, p_m, p_b^w, w^0, T^0)
\]

(5)

(6)
\[
\frac{\partial \Pi}{\partial p_i}(p^i, p^m, p^b, w^0, T^0) \text{ is the supply of sugar beets } q_b(p^i, p^m, p^b, w^0, T^0) \quad (7)
\]

Therefore, the change in producers’ quasi rents from a change in all three prices of the products under consideration is equal to:

\[
\Delta \Pi = \int q_c(p_c, p_m^w, p_b^w, w^0, T^0)dp_c + \int q_m(p_c^i, p_m, p_b^w, w^0, T^0)dp_m +
\]

\[
+ \int q_b(p_c^i, p_m^i, p_b, w^0, T^0)dp_b
\]

The right hand terms of the above equation give the change in producers’ surplus of the representative farmer according to \(p_c^i, p_m^i AB \), \(p_m^w p_m^i KI \) and \(p_b^w p_b^i \Sigma \) of Figure 1. Their sum gives the total change in farmers’ welfare when the prices received of all three products change simultaneously.

3. Statistical results

Our welfare estimates were based on the estimation of the relevant supply functions for the products under consideration. The supply function for cotton seed contains as explanatory variables the price of cotton seed received by farmers in the previous year, \(p_{c,t-1} \), the prices of maize and sugar beets received by farmers in the previous year, \(p_{m,t-1} \) and \(p_{b,t-1} \) respectively, as well as the quantity of cotton supplied lagged by one period, \(q_{c,t-1} \) (Nerlove, 1958).

The supply function for maize depends on the prices of cotton seed, maize and sugar beets received by farmers in the previous year, \(p_{c,t-1}, p_{m,t-1} \) and \(p_{b,t-1} \). The quantity of maize supplied lagged by one period, \(q_{m,t-1} \) (Nerlove, 1958), and a time trend to take into account remarkable technological changes that took place in Greek maize production in the time period between the late 70’s and the late 80’s.
Finally the supply of sugar beets has been considered as a function of the prices of cotton seed, maize and sugar beets received by farmers in the previous year, \(p_{c,t-1}, p_{m,t-1}, p_{b,t-1} \) and the quantity of sugar beets supplied lagged by one period, \(q_{b,t-1} \) (Nerlove, 1958). In order to estimate the parameters of these functions we used the SUR method with constraints (Greene, 1997).

The estimated functions were:

\[
Q^c_t = a_0 + a_1 p_{c,t-1} - a_2 p_{m,t-1} - a_3 p_{b,t-1} + a_4 q_{c,t-1} \quad \text{(supply of cotton seed)} (9)
\]

\[
Q^m_t = \beta_0 + \beta_1 p_{c,t-1} - \beta_2 p_{m,t-1} - \beta_3 p_{b,t-1} + \beta_4 q_{m,t-1} + \beta_5 \text{TIME} + \beta_6 \text{TIME2} \quad \text{(supply of maize)} (10)
\]

\[
Q^b_t = \gamma_0 + \gamma_1 p_{c,t-1} - \gamma_2 p_{m,t-1} - \gamma_3 p_{b,t-1} + \gamma_4 q_{b,t-1} \quad \text{(supply of sugar beets)} (11)
\]

The necessary and sufficient condition to be the line integral:

\[
\int q_c(p_c, p_m, p_b, w^0, T^0) dp_c + q_m(p_c, p_m, p_b, w^0, T^0) dp_m + q_b(p_c, p_m, p_b, w^0, T^0) dp_b \quad (12)
\]

path independent, is according to Young’s theorem, that:

\[
\frac{\partial q_i}{\partial p_j}(p_c, p_m, p_b) \equiv \frac{\partial q_j}{\partial p_i}(p_c, p_m, p_b) \quad (13)
\]

where \(i = c, m, b \) and \(j = c, m, b \) and \(i \neq j \).

Therefore, the constraints under which our model has been estimated are:

\[
\alpha_2 = \beta_1, \quad \alpha_3 = \gamma_1, \quad \beta_3 = \gamma_2
\]

These constraints are necessary and sufficient conditions for path independence, i.e. the obtained welfare estimates are independent from the order we assumed that the changes in producer prices have occurred.

The welfare measures are obtained by fixing the lag component of the supply, aggregating it to the intercept, and evaluate the definite integrals in (8) for the prices in the
previous period. The producer surplus is further adjusted for possible price changes from year t-1 to year t (Janssen, 1992).

The data used in all equations are annual and cover the period 1972-1998. For cottonseed the data were obtained from the Hellenic Cotton Board’s publication Annual Cotton Report. For maize and sugar beets, the data have been obtained from the Ministry of Agriculture and the National Statistical Service of Greece. Prices have been deflated by the Consumer Price Index, which has been set 1982=100. The estimated results are reported in Table 1 in the Appendix. The estimated equations are, according to the presented R² and standard errors statistics, adequate in fitting the data. The supply of cotton depends rather weakly on its own price, since the estimated cotton price coefficient is statistically significant only at the 20% level. On the other hand, its relationship to the price of maize is very strong indicating the importance of maize prices for cotton production. The opposite holds for the price of sugar beets. The estimated coefficient is not statistically significant. The supply of maize dependent on all three prices at a statistically significant level, i.e. from its own price as well as from the prices received for cotton and sugar beets. Finally, the supply of cotton is affected by its own price and the price for maize, while its relationship to the price of cotton is of no statistical significance. These results indicate the central role of maize prices for all three products under consideration. Furthermore, we must account for the relationships between cotton supply and price for sugar beets on the one hand, and between supply of sugar beets and price for cotton on the other, have been found as practically non-existent.

4. Welfare analysis and bootstrapping control

The effects of the C.A.P. cotton, maize and sugar beets regimes on farmers’ welfare have been measured in terms of changes in producer’s surplus. They are presented in Table 1 and Figure 2 in mil. Greek drachmas per year and in Greek drachmas per year and ha at 1982 prices and cover the period 1976-1997. According to them, the realized transfers showed an upward trend until 1992. Since then they remain at the level of the early 90’s, with an upward trend.

In a second step and in order to evaluate the statistical reliability of our estimates, we used non-parametric bootstrap techniques to obtain standard errors for the point estimates of the economic welfare effects. The idea behind the bootstrap is to generate “pseudo-values” for the parameters of interest. The variability of an estimator and its confidence interval can be determined by examining the variation within the observed data, rather than through
parametric assumptions (Efron, 1979). The mean value and the standard error of the bootstrap
distribution is then used as an approximation or estimate of the mean value and the standard
error of the relevant variable, in our case of the relevant welfare measures.

For purposes of illustration, let $\hat{\beta}$ be the SUR estimate of the system of equations in
(9)-(11) and $\hat{W} \equiv W(\hat{\beta})$ be the corresponding welfare statistic from (8). The bootstrap
procedure may be outlined as follows:

- **Step 1**: generate a "bootstrap sample" of size N by sampling the estimation data set
 randomly with replacement ;
- **Step 2**: compute the SUR estimate for this bootstrap sample β^*_r and obtain
 $W^*_r \equiv W(\beta^*_r)$;
- **Step 3**: repeat steps 1 and 2 R times to obtain R bootstrap estimates
 W^*_r, $r = 1, 2, \ldots, R$.

To construct bootstrap confidence intervals for $W \equiv W(\beta)$ we use the percentile method
of Efron and Tibshirani (1993). The percentile-method (1-2α) equal-tail bootstrap confidence
interval for the welfare measure $W(\beta)$ is given by :

$$
(W^*_{R\alpha}, W^*_{R(1-\alpha)})
$$

(14)

where $W^*_{R\alpha}$ and $W^*_{R(1-\alpha)}$ are respectively the $\lfloor (R+1)\alpha \rfloor$th and
$\lfloor (R+1)(1-\alpha) \rfloor$th ordered values of \hat{W}_r^*, $r = 1, \ldots, R$, where $\lfloor c \rfloor$
denotes the integer part of any real number c. Here R was set equal to a 1,000 bootstrap replications, while the original sample consists of $N = 27$
observations. As R increases the distribution of the normalized bootstrap SUR estimator β^*
converges to the distribution of the normalized SUR estimator $\hat{\beta}$, i.e.,

$$
\text{Pr}(\sqrt{N}(\beta^* - \hat{\beta}) \leq z) \rightarrow \text{Pr}(\sqrt{N}(\beta - \hat{\beta}) \leq z)
$$
in probability uniformly in z.

Since $W(\beta)$ is a smooth function of β, it follows that the distribution of normalized
bootstrap welfare measure W^* converges to the distribution of the normalized welfare
measure \hat{W}, i.e.,

$$
\text{Pr}(\sqrt{N}(W^* - \hat{W}) \leq s) \rightarrow \text{Pr}(\sqrt{N}(\hat{W} - W) \leq s)
$$
in probability uniformly in s. In fact, the normalized SUR estimator $\sqrt{N}(\hat{\beta} - \beta)$ is, under mild conditions, asymptotically
normal (see Green, 1993), and since the welfare measure W considered here is a continuous
and smooth function of β, it is easy to show that the normalized statistic $\sqrt{N}(\hat{W} - W)$ is also
asymptotically normal (see Amemiya, 1985). This observation justifies our choice of equal-
tail confidence intervals for $W(\beta)$ and leads us to expect that the bootstrap will provide a
better finite-sample approximation to the distribution of the test statistic than first-order asymptotic theory alternatives like the δ-method (see Beran 1988; and Hall 1986, 1992).

The results presented in Table 2 refer to bootstrap mean values that almost coincide with the estimations obtained from the original sample. The values in parentheses are standard errors, obtained through the resampling procedure. The results refer to the periods: 1976-1981 (the period directly before the Greek entry into the European Union), 1982-1996 (the first years after the entry, till the introduction of co-responsibility levies in cotton production in 1996), 1986-1992 (the following period till the 1992 C.A. P. reform) and finally the period that followed the reform, till 1997 (the last year for which data are available). Since standard error estimations are available, we formulated our research questions as statistical hypotheses and tested them at various levels of statistical significance. First, we tested the hypothesis that the changes in the average income transfers across periods were different against the null that they were the same. In a further step, we replicated the same statistical procedure to find out the statistical significance of the differences in the per ha transfers.

In Figure 3, box- and-whiskers plots are used so as to present the entire bootstrap distribution of the relevant welfare measures. Bootstrap confidence intervals can be easily read from these graphs.

The welfare measures along with their 90% bootstrap confidence intervals are presented in Figure 3, using box-and-whiskers plots. Box-and-whiskers plots (Tukey, 1977) provide a way of visualizing the entire distribution of a random variable. The bootstrap distribution of every welfare measure is represented by five values: $\{W_\alpha | \alpha = 0.05, 0.25, 0.50, 0.75, 0.95\}$, i.e., the 5, 25, 50, 75, and 95% quantiles of the bootstrap sample. The 25th and 75th quantiles define a “box” and the median (50th quantile) is represented by a line inside this box, while the extreme 5th and 95th quantiles trace out the “whiskers” of the plot. In each of the graphs in Figure 1, the horizontal axis marks the three sample periods singled-out for separate treatment in our analysis, while the vertical axis plots the welfare measure. The (bootstrap) median estimates of the relevant welfare measure are also reported along the vertical axis for easy reference. The mean estimates, as well as the estimates using the original sample, were in all cases indistinguishable from the reported median estimates and are therefore omitted here. This is due to the fact that all of the bootstrap distributions were, as expected (see discussion above), very normal-like. Finally, it is worth noting that the procedure of constructing these graphs is entirely non-parametric and consistent with the definition of percentile bootstrap confidence intervals given above.
CAP policies significantly affected farmers' income as indicted by upper part Table 2 and the left panel of Figure 3. Accordingly, during the last twenty years cotton, maize and sugar beets producers realized an uninterrupted increase in their average annual incomes. Directly after entry into the European Union, i.e. in the years between 1982-1986, the relevant annual transfers stood eight times higher than those of the period before the entry, 1976-1981. This difference is statistically significant at 1% level. The same situation continued in the second half of the 80’s, with an amount equal to 35,424 mil. Greek drachmas on an average annual basis. These transfers doubled those of the previous period with the relevant difference being statistically different than zero at 1%. Finally, the average annual transfers after the 1992 C.A.P. reform amounting to 39,750 mil. Greek drs., were again higher than those of the average of the previous period, although the difference in these transfers between 1987-1992 and 1993-1997 was statistically different from zero only at the 10% level. Hence, one can argue, that there is no strong statistical evidence that the transfers realized to cotton-maize and sugar beets farmers were higher than those realized in the previous period. On the other hand, the hypothesis that the 1992 C.A.P. reform has led to income decreases for the relevant farmers can be clearly rejected.

The lower part of Table 2 as well as the right panel of Figure 3 present the estimated average annual transfers per ha of cultivated land. These estimates indicate that the entry into the European Union has positively affected the per ha transfers to cotton, maize and sugar beets producers. The differences among the relevant sub-periods were statistically significant at 1% level until the introduction of the 1992 C.A.P. reform. Comparing the estimates of the two sequential periods, 1987-1992 and 1993-1997, the difference between the estimated averages were statistically non different than zero.

5. Conclusions

This paper is based upon the hypothesis, that cotton, maize and sugar beets are substitutes in production in the sense that one considers them as three alternative choices for a main part of the Greek farmers. This hypothesis is very close to the reality of Greek farming, since the great majority of these farmers posses the technical and physical ability to allocate land, labor and capital available to them, according to expected prices, in cotton, maize and sugar beets production.

The impact of simultaneous price changes in producers’ welfare can be presented in the form of a line integral with a certain path of integration. This line integral is path
independent if we assume that farmers operate with a profit function that is continuous and
differentiable in its domain. Hence, it can be transformed in a sum of definite integrals.
According to Hotelling’s lemma, one may easily demonstrate that the sum of these integrals
gives the change in producers’ economic quasi rents. The latter are obtained according to the
estimated supply functions. In the analysis of these changes we used a bootstrap resampling
technique, which provided standard errors and confidence intervals for our estimates. This
enables us to formulate our research questions as statistical hypotheses and test them at
various levels of statistical significance.

Our statistical analysis shows that the C.A.P cotton, maize and sugar beets price policy
regimes significantly affect farmers’ welfare. According to the obtained outcome, the main
results of this study are: first, entry into the European Union and implementation of the C.A.P.
led to an immediate and remarkable increase in annual transfers, which occurred in favor of
cotton, maize and sugar beets producers. These transfers - calculated as average annual
transfers in mil. of Greek Drachmas, as well as in Greek Drachmas per ha of cultivated land,
each time at constant 1982 prices - were statistically different compared to those realized
before the entry at any level of statistical significance, as usually used in applied economic
analysis.

Second, the increase in farmers’ quasi rents continued into the second half of the 80’s. The
realized transfers in this second period after the entry were greater than those of the first, the
relevant difference between them was again statistically different from zero at the typically
used levels of statistical significance. This statement holds for both, i.e. the average annual
transfers in absolute terms as well as for the transfers realized per ha of cultivated land. It
confirms that farmers received significant amounts for all periods across the 80’s, which
should, ceteris paribus, have remarkably affected their economic welfare.

Third, the 1992 C.A.P. reform seemingly stopped the increases in farmers’ quasi rents of the
previous decade. The realized transfers remained since then at a relatively constant average
level. The respective amounts in absolute terms, i.e. annual averages, as well as in relative
terms, i.e. annual averages per ha, are statistically different than in the pre-reform period.
Thus, the position that C.A.P reform has led to income losses for farmers involved in cotton,
maize and sugar beets production cannot be verified according to the obtained results. One
may finally conclude, that C.A.P reform did not reduce farmers’ welfare compared to that of
the 80’s, but rather has stopped the trend of the increases that were directly introduced, after
entry into the European Union.
References

Figure 1: Effects of cotton, maize and sugar beet price changes on farmers welfare.
Table 1: Income transfers to farmers (ΔPS) per year, and per year and stremma, in 1982 prices.*

<table>
<thead>
<tr>
<th>Year</th>
<th>ΔPS per year in mil. drs</th>
<th>ΔPS per year in drs</th>
<th>Year</th>
<th>ΔPS per year in mil. drs</th>
<th>ΔPS per year in drs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>-6,019</td>
<td>-19,952</td>
<td>1987</td>
<td>32,968</td>
<td>66,346</td>
</tr>
<tr>
<td>1977</td>
<td>3,595</td>
<td>10,847</td>
<td>1988</td>
<td>33,519</td>
<td>63,255</td>
</tr>
<tr>
<td>1978</td>
<td>3,095</td>
<td>10,276</td>
<td>1989</td>
<td>30,467</td>
<td>56,451</td>
</tr>
<tr>
<td>1979</td>
<td>1,355</td>
<td>4,731</td>
<td>1990</td>
<td>37,915</td>
<td>74,916</td>
</tr>
<tr>
<td>1980</td>
<td>-72</td>
<td>-221</td>
<td>1991</td>
<td>38,614</td>
<td>76,966</td>
</tr>
<tr>
<td>1982</td>
<td>19,311</td>
<td>55,812</td>
<td>1993</td>
<td>39,325</td>
<td>65,971</td>
</tr>
<tr>
<td>1983</td>
<td>12,017</td>
<td>30,455</td>
<td>1994</td>
<td>33,374</td>
<td>53,986</td>
</tr>
<tr>
<td>1984</td>
<td>16,450</td>
<td>35,973</td>
<td>1995</td>
<td>46,215</td>
<td>69,865</td>
</tr>
<tr>
<td>1985</td>
<td>22,121</td>
<td>45,034</td>
<td>1996</td>
<td>42,603</td>
<td>64,248</td>
</tr>
<tr>
<td>1986</td>
<td>21,423</td>
<td>44,612</td>
<td>1997</td>
<td>37,573</td>
<td>56,679</td>
</tr>
</tbody>
</table>

* 1 ha = 10 stremma
Figure 2: Income transfers to farmers (ΔPS) per year (a) and per year and stremma (b) in 1982 prices.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income transfers on</td>
<td>683.1</td>
<td>18,225.5</td>
<td>35,424.6</td>
<td>39,749.6</td>
</tr>
<tr>
<td>average per year (ΔPS per year) in mil. drs.</td>
<td>(657.8)*</td>
<td>(882.9)</td>
<td>(1,480.1)</td>
<td>(2,165.2)</td>
</tr>
<tr>
<td>Income transfers on</td>
<td>2,039</td>
<td>42,258</td>
<td>67,726</td>
<td>62,337</td>
</tr>
<tr>
<td>average per year and</td>
<td>(2,010)</td>
<td>(2,107)</td>
<td>(2,752)</td>
<td>(3,377)</td>
</tr>
<tr>
<td>stremma (ΔPS per year and stremma) in drs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* prices in parentheses are standard errors.
Figure 3: Income transfers to farmers per year, and per year and stremma, in 1982 prices.

Time periods
(a) Income transfers to farmers on average in mil. drs and 1982 prices

Time periods
(b) Income transfers to farmers per stremma in drs. and 1982 prices
Appendix

Table 1: Estimated parameters of the supply functions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cotton supply</th>
<th>Maize supply</th>
<th>Sugar beet supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>98.124</td>
<td>-901.870</td>
<td>949.825</td>
</tr>
<tr>
<td></td>
<td>(140.47)*</td>
<td>(524.04)</td>
<td>(811.06)</td>
</tr>
<tr>
<td>P_c</td>
<td>2.626</td>
<td>-12.603</td>
<td>-5.058</td>
</tr>
<tr>
<td></td>
<td>(2.03)</td>
<td>(3.90)</td>
<td>(7.44)</td>
</tr>
<tr>
<td>$P_{m,t-1}$</td>
<td>-12.603</td>
<td>88.228</td>
<td>-140.721</td>
</tr>
<tr>
<td></td>
<td>(3.90)</td>
<td>(34.58)</td>
<td>(38.22)</td>
</tr>
<tr>
<td>$P_{b,t-1}$</td>
<td>-5.058</td>
<td>-140.721</td>
<td>921.739</td>
</tr>
<tr>
<td></td>
<td>(7.44)</td>
<td>(38.22)</td>
<td>(220.11)</td>
</tr>
<tr>
<td>$Q_{c,t-1}$</td>
<td>0.929</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{m,t-1}$</td>
<td></td>
<td>0.930</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>$Q_{b,t-1}$</td>
<td></td>
<td></td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.12)</td>
</tr>
<tr>
<td>TIME</td>
<td>95.793</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(27.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME2</td>
<td>-1.933</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>R^2</td>
<td>0.90</td>
<td>0.94</td>
<td>0.61</td>
</tr>
</tbody>
</table>

* prices in parentheses are standard errors.