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On modeling pollution-generating technologies: 

a new formulation of the by-production approach 

 

Abstract: 

We contribute to the literature on undesirable-output technology modeling by first discussing 

the limits of the recently proposed by-production approach of Murty et al. (2012) (hereafter we 

will refer to these authors as MRL) and second by proposing some possible extensions. We 

identify two theoretical limits and two practical drawbacks when using Data Envelopment 

Analysis (DEA) with this approach. Theoretically, MRL’s by-production model is based on 

estimating two sub-technologies, one representing good outputs and the other one representing 

undesirable outputs. However, MRL assume independence of the sub-frontiers. In our paper, 

by contrast, we discuss the importance and implications of considering that all production 

processes are interconnected and should not be considered separately. Among the three 

extensions proposed, we argue that the introduction of some dependence constraints that link 

the two sub-technologies considered in this framework is very powerful. The two by-production 

approaches, MRL’s and ours, are discussed under the restrictive assumption of fixed levels of 

inputs and under the flexible case of free choice of polluting input quantities. An application to 

a sample of 112 countries reveals that MRL model gives higher inefficiency scores compared 

to our extension with dependence constraints. 

 

Keywords: by-production, cost disposability, factor bands, product couplings, dependence 

constraints, data envelopment analysis 

 

JEL Classification: C61, D24, Q50 



Working Paper SMART – LERECO N°16-06 

 

 
3 

Modélisation non-paramétrique de technologies polluantes :  

une reformulation de l’approche coproduction 

 

 

Résumé : 

Cet article contribue à la littérature sur la modélisation des technologies polluantes en proposant 

tout d’abord une analyse critique de l’approche coproduction récemment présentée par Murty 

et al. (2012) (MRL) et en discutant ensuite trois extensions possibles. Nous identifions deux 

limites théoriques et deux limites pratiques liées à la méthode d’enveloppement des données 

(data envelopment analysis). Théoriquement, le modèle de MRL est basé sur l’estimation de 

deux sous-technologies, une représentant la production des biens désirables et l’autre la 

génération des biens indésirables. Cependant MRL maintiennent une indépendance entre les 

sous-technologies. Dans cet article nous discutons de l’importance et des implications autour 

du fait que les processus de production sont interconnectés et ne devraient pas être considérés 

séparément. A partir des  trois extensions discutées dans cet article, nous argumentons que celle 

basée sur l’introduction de contraintes de dépendance qui lient les deux sous-technologies en 

question est très puissante. Les deux approches, celle de MRL et la nôtre sont également 

discutées empiriquement en utilisant un échantillon de 112 pays. Les résultats montrent que 

l’approche de MRL donne des scores d’inefficience beaucoup plus élevés que notre extension 

avec l’introduction de contraintes de dépendance. 

 

Mots-clefs : coproduction, cessibilité couteuse, couplage des facteurs, couplage des produits, 

contraintes de dépendance, méthode d’enveloppement des données 

 

Classification JEL : C61, D24, Q50 
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On modeling pollution-generating technologies: 

a new formulation of the by-production approach 

 

1. Introduction 

Widespread societal environmental concerns and theory of externalities developments (Mishan, 

1971; Cropper and Oates, 1992) have ushered in a new era in production economics with the 

emergence of multi-type output considerations in methodologies. In addition, the adoption of 

sustainable production behaviors has become key to many policy recommendations. The 

performance benchmarking literature (Tyteca, 1996; Allen, 1999; Zhou et al., 2008; Song et 

al., 2012) has therefore shown a keen interest in including the generation of undesirable outputs 

as by-products in production technology modeling. Following the seminal work produced by 

Pittman (1983), many non-parametric frontier estimation models have been developed (along 

the lines of Data Envelopment Analysis (DEA) where all firms are enveloped by a frontier made 

of the highest performing firms in the sample) to incorporate undesirable outputs into 

technology modeling. These models are based on the standard transformation function, and rely 

on specific disposability assumptions used to capture all the production technology’s potential 

tradeoffs (substitution between inputs and outputs; marginal productivities). Most empirical 

applications treat undesirable outputs as additional inputs (Barbera and McConnell, 1990; Hailu 

and Veeman, 2000, 2001; Hailu, 2003; Considine and Larson, 2006) or work them into the 

technology as outputs, but under the weak disposability assumption (WDA) (Färe et al., 1986; 

Färe et al., 1989; Coggins and Swinton, 1996; Boyd and McClelland, 1999; Oude Lansink and 

Silva, 2003; Kuosmanen, 2005; Piot-Lepetit and Le Moing, 2007; Kuosmanen and Podinovski, 

2009; Färe et al., 2012). Such assumptions should make for a positive correlation between good 

and bad outputs. For example under the weak disposability assumption, it is costly for the firm 

to reduce its undesirable outputs since this implies a proportional reduction in good outputs due 

to the diversion of resources to the mitigation of undesirable outputs. 

The limitations of these models, based as they are on a single functional relationship between 

inputs and outputs, are now well documented (Dakpo et al., 2016). For instance, Førsund 

(2009), takes a profit function and a monetized pollutant damage function to show that, under 

the assumption that bads1 are outputs (freely disposable), the maximal level of these detrimental 

                                                 
1 In this paper the terms bads, bad outputs, undesirable outputs, unintended outputs, detrimental outputs, pollutants 

and residuals are used interchangeably.  
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outputs is zero. Actually, under this situation where the degree of assortment (or freedom of 

assortment) – defined by Frisch (1965) as the degree of freedom with which inputs can be 

directed to the production of any of the outputs – is maximal, all resources can be diverted at 

no cost to the production of the good outputs and thus generate zero levels of bads. This result 

appears to be unrealistic in the light of Ayres and Kneese (1969)’s materials balance idea, 

whereby the generation of pollutants is inevitable because of the use of pollution-generating 

inputs. Similarly, considering residuals as inputs is awkward. As argued by Førsund (2009), 

keeping all other inputs constant, an increase in the level of pollution cannot technically explain 

why a good output increases. Besides, there is no explicit relationship between the common 

production inputs and the residuals, and only some kind of tradeoff between these residuals and 

good outputs is captured. Moreover, no ‘purification possibility’ (pollution control) is 

accounted for. Similarly, Pethig (2003, 2006) takes the materials balance principle to 

demonstrate that bads cannot be treated as inputs since this is a violation of the first law of 

thermodynamics implying mass or energy conservation. In accordance with Frisch (1965), 

Førsund (2009) recommends using ‘product couplings’ and ‘factor bands’ to overcome the 

above-mentioned drawbacks. (Pure) product couplings refer to the introduction of additional 

constraints that depict the link between some outputs (here between the good output and the 

bad output) irrespective of the inputs.2 (Pure) factor bands relate to the relationship between 

inputs regardless of the outputs. Although Førsund (2009) specifies the connection of the WDA 

with the idea of product couplings, this assumption falls down in that some parts of the 

technology boundary exhibit no opportunity costs in the abatement of unintended outputs. This 

is a significant limitation since it means that it is not costly to reduce bads (this situation is also 

investigated by Chen (2014)). Coelli et al. (2007) and Hoang and Coelli (2011) also prove the 

inconsistency of this assumption with respect to the materials balance principle. 

MRL and Murty and Russell (2002) expand on these criticisms by demonstrating the 

irregularities that occur when using a single functional relationship to define a pollution-

generating technology. It is easy to say that these approaches, based on a single feature of the 

production technology, work like black boxes in which the ‘magic’ is misused and hence fails 

to produce an explicit representation of the production processes involved. MRL and Murty and 

                                                 
2 A parametric application of product couplings can be seen in Bokusheva and Kumbhakar (2014) where the 

authors use a translog hedonic specification to link the good outputs to the bads. Previously, Fernández et al. 

(2002) and Fernández et al. (2005) use an output aggregator function based on the constant elasticity of 

transformation defined in Powell and Gruen (1968). 
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Russell (2002) then propose a better alternative, namely the by-production approach, which is 

based on a full description of the production processes and has sound theoretical grounds 

(Murty, 2012). To be more precise, the by-production approach estimates two sub-technologies: 

one for good outputs and the other for undesirable outputs. Theoretically, the overall technology 

should lie at the intersection of the two sub-technologies. However, the practical 

implementation in the case of the non-parametric DEA analysis proposed by MRL is simply an 

estimation of two independent sub-technologies. This independence between the two sub-

technologies is criticized in Dakpo et al. (2016). However these latter authors do not provide 

theoretical and numerical evidence to support their criticism. We believe that the most serious 

drawback of the empirical model proposed by MRL is that no conditions referring to the product 

couplings or the factor band concepts are present in the DEA representation of the technologies. 

In this paper we re-examine the by-production approach by discussing theoretically and 

empirically some solutions to the above-mentioned issues; solutions related to the introduction 

of an interconnection between the two technologies involved into the activity analysis model. 

This connection is set up by means of, first, the mass balance equation, second, a number of 

dependence constraints between the sub-technologies, and third, a direct estimation of a product 

coupling relation. About the dependence constraints solution attempts can be found in Dakpo 

et al. (2014) and Lozano (2015). In both papers, the authors failed to provide some theoretical 

discussion on the dependence constraints. In the former paper the authors have simply displayed 

the dependence constraints and in the latter the author has related to the network DEA literature 

based on the modeling of interconnected sub-processes to justify the incorporation of these 

constraints. In this paper we go a step further in the sense that we provide in a more elaborate 

way the relevance of these constraints using the materials balance theory. We discuss the 

different solutions under the restrictive assumption of fixed levels of inputs and under the 

flexible scenario of free choice of polluting input quantities. In addition, we define how overall 

efficiency can be computed based on our extensions of the by-production approach, using non-

radial distance function estimation. After describing our new model’s theoretical foundation, 

we apply it empirically to a sample of countries using the Enhanced Russell-Based Directional 

Distance Measure (ERBDDM) discussed in Chen et al. (2014). We present the results of the 

two models applied to this data set: (i) the classic by-production model proposed by MRL, and 

(ii) our extension introducing dependence constraints.  

The paper is organized as follows. Section 1 reviews the by-production modeling as developed 

by MRL and discusses some theoretical and empirical limits associated to it. Section 2 
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discusses a theoretical solution to the limit of the MRL approach and presents the three novel 

practical extensions that we propose. Section 3 empirically compares the two by-production 

approaches (the classic one and our extension based on the dependence constraints) using a data 

sample of 112 countries which generate carbon dioxide emissions. Section 4 concludes. 

 

2. The classic by-production modeling of MRL: concepts, model and limits 

2.1.Concepts 

‘In this feverish world of ours, where one wants the economic analyses to produce easily 

understandable results quickly and at the least possible cost, some of us have fallen into the 

habit of assuming for simplicity that the hundreds and sometimes thousands of variables that 

enter into the analyses are linked together by very simple relationships’ (Frisch, 1965 p.v). 

However, ‘single production is a comparatively rare occurrence…’ (Frisch, 1965 p.10). The 

concept of multi-ware production was thus introduced by Frisch (1965) to expound the ideas 

on modeling several connected products. Typically, the multi-ware production can also be 

viewed as a multiproduct case or a multi-technology firm description. By extension, from the 

organizational management literature, firms with several divisions each one associated to a 

specific output can be referred to as the M-form (multi-dimensional form) (Cherchye et al., 

2014). The technology that represents a M-form firm is thereby deemed to verify the ‘almost 

non-jointness’ property since each specific output is associated to a different technology, and 

there are some technology-specific inputs and joint inputs common to all the technologies 

(Cherchye et al., 2014). 

If we consider a system that produce 𝑚 different products which are related by 𝜇 production 

equations, the degree of assortment of the system equals 𝛼 = 𝑚 − 𝜇. In the case 𝜇 = 1, we fall 

into a standard representation of the production technology with a single production relation 

with the maximum degree of assortment. In this situation, the maximal flexibility implies that 

inputs can be directed towards the production of any outputs without generating additional 

costs. In the presence of pure factor bands (relationships between inputs, independently of 

outputs) 𝛼 can be negative. A special case is obtained when the degree of assortment equals 

zero. This situation has been coined factorially determined multi-ware production by Frisch 

(1965). In factorially determined technologies, given the levels of inputs, all the outputs are 

determined. Irrespective of 𝑚, 𝜇, 𝛼, relations involving only product quantities can be present in 

the system. The number of these relations (𝜅) represents the degree of coupling of a multi-ware 
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production. 𝜅 is simply the number of outputs relations that can be deduced from 𝜇 

independently from the production factors. 

 

2.2.The MRL model 

Grounded in ideas put forward by Frisch (1965) and Førsund (1998), the by-production 

approach is then driven by the view that a production system should be described by several 

relations (transformation functions), and that this suits bad output-generating technologies 

particularly well. Murty (2010b) describes the five attributes inherent to these polluting 

technologies. First, the use of pollution-causing goods (inputs or outputs) necessarily triggers 

the nature of the emission generation mechanism. Second, variables aimed at producing 

intended outputs must be clearly separated from the emission-causing goods. The latter verify 

the non-rivalness and jointness properties, i.e., for the inputs, their use in the production of good 

outputs does not exclude them from the generation of pollution. Besides, the use of some 

intended outputs as inputs in the pollution mechanism does not reduce the amounts of these 

good outputs available to the producers.3 Third, pollution-generating technologies violate the 

free disposability in incidental outputs. In general, the BP approach posits cost disposability, 

taken from Murty (2010a), for undesirable outputs. Free disposability is maintained for non-

polluting inputs and some good outputs,4 while pollution-generating goods violate the free 

disposability assumption. According to Murty (2015), intuitively, emission-causing goods can 

no longer be freely disposable since it implies larger amounts of emissions to be generated as a 

response. Murty (2015) proposes the conditional free and cost disposability assumptions for 

pollution-generating goods (and abatement outputs) which appears in both sub-technologies.5 

To be more precise, the approach states that with fixed quantities of some inputs and/or some 

                                                 
3 We can also add the non-exclusiveness property which states that none of the production processes (good and 

bad) can be excluded from the use of the joints inputs (polluting inputs). 

4 This free disposability assumption is clearly described in Murty (2012 p8) as the fact that ‘nature’s emission 

generating mechanism is unaffected by changes in the usage of non-emission causing inputs and outputs. Changes 

in these goods affect only intended production’. 

5 The conditional free disposability refers to the changes in the minimal amount of pollution given that higher 

(lower) levels of polluting inputs (abatement outputs) are feasible under the intended output production. The 

conditional cost disposability assumption implies the opposite, i.e. with lower (higher) levels of polluting inputs 

(abatement outputs) feasible under the emission generating technology, the maximum amount of intended outputs 

has to change consequently. 
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good outputs, a minimal amount of pollution can be simultaneously generated as a by-product 

of the technology. In the presence of inefficiencies, a higher level than this minimal level of 

undesirable outputs may be reached.6 However, this assumption must coexist with the free 

disposability of the good outputs, which expresses that a set of maximal good output vectors 

can be produced if levels of inputs are held fixed (here also the presence of inefficiencies can 

lead to the production of lower levels of these intended outputs).7 The positive monotonicity 

hypothesis (free or strong disposability) states that an increase in input consumption will not 

reduce the production of these good outputs, but will inevitably raise the level of minimum 

attainable bad outputs. Fourth, the correlation between intended and unintended outputs is 

systematic given the previous three attributes. Murty (2010b p8) tones down these trade-offs 

by demonstrating the existence of ‘a positive correlation between the emission and any non-

emission generating intended output when some inputs are the cause of the emission8 and a 

negative correlation between the emission and any non-emission generating intended output 

when some intended outputs are the cause of the emission’.9 Fifth, resources can be diverted 

from the production of intended outputs to the mitigation of incidental outputs. As pointed out 

in Murty (2010b) this comes at the cost of lower production of good outputs. More on the 

axiomatization of the by-production approach is discussed in Murty (2012, 2015). 

Two production technology sets are constructed (see Figure 1): an intended-output production 

technology, which is a standard neoclassical production function, and a residual-generation 

technology, which reflects the nature of the polluting emission. The intended-output technology 

satisfies standard free disposability assumptions and is independent of the level of pollution. 

                                                 
6 As underlined in Murty (2010b) it also makes sense to imagine that there exists a maximal level of by-products 

which can be generated given the fixed levels of all inputs, good and abatement outputs. Nevertheless, as stressed 

in Murty (2012), given the fact that pollution generate external societal negative effects, one is more interested in 

the lower bounds of detrimental outputs. 

7 The case where incidental outputs can generate external effects (positive or negative) that affect the levels of 

intended outputs is not considered here. Murty (2010b) refers to this situation as the weak by-production.  

8 Murty (2015 p245) points out that ‘in standard production theory, input free-disposability and output free-

disposability imply a positive relationship between an input and an output along the production frontier. Hence, a 

positive trade-off between emission and intended output will be true in the input approach to emission generation.’ 

9 Similarly we can also prove the existence of a negative correlation between emissions and non-pollution-causing 

inputs when some inputs are the cause of pollution, and the existence of a positive correlation when some outputs 

are the cause of pollution. 
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Under this sub-technology, a decision making unit (DMU) 𝑛 is dominated by all the observations 

located in the area delimited by arrows 𝑛𝐴⃗⃗⃗⃗  ⃗ and 𝑛𝐶⃗⃗⃗⃗  ⃗. The residual-generation technology satisfies, 

to quote MRL, ‘the polar opposite condition’ that is to say cost disposability, and is independent 

of the good output and the non-material inputs (i.e. non-polluting inputs). For this sub-

technology, 𝐷𝑀𝑈𝑛 is dominated by the points located in the area delineated by arrows 𝑛𝐷⃗⃗⃗⃗  ⃗ and 

𝑛𝐹⃗⃗⃗⃗  ⃗. These dominating observations are characterized by the fact that they use more inputs to 

produce less undesirable outputs. Thereby, the sub-frontier for any inefficient DMU can be 

reached by increasing the consumption of inputs and simultaneously decreasing the generation 

of undesirable outputs. This situation is similar to that described by Sueyoshi and Goto (2010) 

and Sueyoshi et al. (2010) and later termed as ‘managerial disposability’ or positive adaptation 

(Sueyoshi and Goto, 2012a, b, c). The positive adaptation refers to a situation where input 

consumption can be increased and pollution reduced by simultaneously raising the production 

of good outputs. Yet this occurs by means of managerial efforts that lead to structural business 

transformations and the adoption of new technologies such as high quality inputs and other 

innovative technologies that can mitigate the levels of pollution. As pointed out by these 

authors, this concept ties in with the idea developed by Porter and van der Linde (1995) that 

regulation might offer innovation opportunities to secure the production of more good outputs 

and decrease the generation of bad outputs. 

In view of the above, the intersection of these two sub-technologies then violates the free 

disposability assumption for pollution-causing inputs because of their opposite direction with 

regard to the two sub-technologies.10 To understand this situation, it is useful to bear in mind 

that, due to their nature, the levels of good outputs need to be increased while the quantities of 

undesirable outputs are minimized. To sum up, by-production technology modeling has 

essentially three options to reduce the levels of detrimental outputs for a fixed technology: first 

an increase in abatement by means of resource diversion (which is accompanied by a reduction 

in the production of good outputs); second, a reduction in pollution-causing inputs (which 

decreases the levels of intended outputs except in the case of a substitution with non-polluting 

inputs to maintain the same amount of good output production); and third, the use of cleaner 

inputs, i.e. inputs that generate fewer bad outputs and maintain at least the same level of good 

output production. 

                                                 
10 However, it supports the free disposability of non-polluting inputs and good outputs, and the cost disposability 

of undesirable outputs. 
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Figure 1: Good output and undesirable output sub-technologies representation 

 

Source: authors’ own compilation based on MRL 

Formally, MRL divide the input vector 𝑥 into two input sub-vectors, where 𝑥1 (𝑥1 ∈ ℝ+
𝐾1) is the 

sub-vector of non-pollution-causing inputs and 𝑥2 (𝑥2 ∈ ℝ+
𝐾2) is the sub-vector of pollution-

causing inputs. This input breakdown into two groups based on whether or not they generate 

pollution makes perfect sense, especially in a world where pollution is ruled by materials 

balance principle. Actually when we model emission-generating technologies and employ such 

models for empirical works, it is important to distinguish between emission-causing and non-

emission causing inputs. This is required so as to be consistent with the way data on emission 

is collected.  

For generalization, let’s also split 𝑦 the vector of good outputs into the set of non-pollution-

causing 𝑦1 ∈ ℝ+
𝑄1, and the sub-vector or pollution-causing outputs 𝑦2 ∈ ℝ+

𝑄2. Denoting 𝑏 the 

vector of bad outputs (𝑏 ∈ ℝ+
𝑅), 𝑦𝑎 the cleaning up activities which is considered as pollution 

abatement output (𝑦𝑎 ∈ ℝ+
𝑆 ), and 𝑁 the number of DMUs. The general production technology 

Ψ can be theoretically represented following MRL as  
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Ψ = Ψ1 ∩ Ψ2 = [(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ ℝ+

𝐾+𝑄+𝑅+𝑆
 | 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦

𝑎)

≤ 0 ∧  𝑢(𝑏, 𝑥2, 𝑦2, 𝑦
𝑎) ≥ 0 ] 

(1) . 

where 

 Ψ1 = [(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ ℝ+
𝐾+𝑄+𝑅+𝑆

| 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦
𝑎) ≤ 0] (2) . 

 Ψ2 = [(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ ℝ+
𝐾+𝑄+𝑅+𝑆

| 𝑢(𝑏, 𝑥2, 𝑦2, 𝑦
𝑎) ≥ 0 ] (3) . 

and 𝑓 and 𝑢 are both continuously differentiable functions. The cost disposability assumption 

with respect to the undesirable outputs can be expressed as follows: 

 
(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ Ψ2  ∧  𝑏̅ ≥ 𝑏 ∧  𝑥̅2 ≤ 𝑥2   ∧  𝑦̅2 ≤ 𝑦2  ∧ 𝑦̅𝑎 ≥ 𝑦𝑎

⇒ (𝑥1, 𝑥̅2, 𝑦1, 𝑦̅2, 𝑏̅, 𝑦̅𝑎) ∈ Ψ2 
(4) . 

Cost disposability implies that it is possible to pollute more given the levels of 𝑥2 and 𝑦𝑎, i.e. 

that the set of technology Ψ2 is bounded below (Figure 1) (Murty, 2010a). The Ψ1 technology, 

however, satisfies the standard disposability assumptions: 

 
(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ Ψ1  ∧  𝑥̃1 ≥ 𝑥1  ∧  𝑥̃2 ≥ 𝑥2  ∧  𝑦̃1 ≤ 𝑦1  ∧  𝑦̃2 ≤ 𝑦2  ∧  𝑦̃𝑎

≤ 𝑦𝑎  ⇒ (𝑥̃1, 𝑥̃2, 𝑦̃1, 𝑦̃2, 𝑦̃
𝑎 , 𝑏) ∈  Ψ1 

(5) . 

The degree of assortment of the production system in (1) equals 𝛼 = (𝑄 + 𝑅 + 𝑆) − 2. The 

model can be a factorially determined multi-ware production in the case 𝑄1 = 1 ∧ 𝑄2 = 0 ∧

 𝑅 = 1 ∧  𝑆 = 0.11 In their theoretical demonstration MRL propose 𝑄1 = 1 ∧ 𝑄2 = 0 ∧  𝑅 = 1 ∧

 𝐾1 = 1 ∧ 𝐾2 = 1 ∧  𝑆 = 1. In the MRL demonstration, the technology is not factorially 

determined. Using implicit function theorem MRL prove how the positive correlation between 

good and bad outputs is accounted for and all the other trade-offs are consistent with the by-

production.  

Empirically in the DEA framework, the unified technology under variable returns to scale 

(VRS) is represented by model (6) with two intensity variables 𝜈and 𝜉, which represent the two 

different sub-technologies.12 

                                                 
11 Other combinations are possible. However, we simply want to stress here that the MRL approach is a factorially 

determined production technology under some very special cases. 

12 Actually in Murty et al. (2012), the authors assume constant returns to scale (CRS) for both sub-technologies 

while in Murty and Russell (2010) the authors impose decreasing returns to scale (DRS). However these latter 
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Ψ = [(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑏, 𝑦𝑎) ∈ ℝ+
𝐾+𝑄+𝑅+𝑆

| 𝑦1 ≤ 𝑌1𝜈 ;   𝑦2 ≤ 𝑌2𝜈 ;  𝑦𝑎 ≤ 𝑌𝑎𝜈 ; 

 𝑥1 ≥ 𝑋1𝜈 ;   𝑥2 ≥ 𝑋2𝜈 ; 

 𝑥2 ≤ 𝑋2𝜉 ;   𝑦2 ≤ 𝑌2𝜉 ;  𝑏 ≥ 𝐵𝑖𝜉  ;  𝑦
𝑎 ≥ 𝑌𝑎𝜉  ;  𝜈′𝟙 = 1  ;   𝜉′𝟙 = 1  ;   𝜈, 𝜉 ≥ 0] 

(6) . 

where (𝑋, 𝑌, 𝑌𝑎 , 𝐵) denote the matrix of inputs, good outputs, abatement outputs, and 

undesirable outputs of the benchmark of 𝑁 DMUs, i.e. the reference set. 

 

2.3.Limits of the MRL approach 

We discuss the limits of the MRL approach through two lines of thoughts: first, theoretical 

aspects and the formulation in (1); and second, practical features regarding efficiency 

estimation in the DEA framework (model in (6)). 

 

2.3.1.  Theoretical aspects 

 

 Limit 1: Lack of coupling between the good and the bad outputs in the MRL 

approach and the problem of implicit functions theorem 

The coupling between both types of outputs in the system represented in (1) is 𝜅 = 0 since there 

is no equation linking the outputs independently of the inputs (factors) levels. Thus both types 

of outputs can be considered as separable. Frisch (1965) discusses this situation of separable 

outputs represented with two separate substitution regions in the isoquants space (see Fig. 14b.2 

in Frisch (1965 p272)). More clearly, Frisch (1965 p362) states that ‘if the ratio between product 

quantities can be changed by changing the factor quantities, the products are separable’. Yet 

the case of undesirable outputs has met the adhesion of the scientific community on the fact 

that those detrimental outputs can be seen as a joint (coupled) production to intended outputs. 

We use the concrete example proposed in MRL (p123, footnote 17) without the presence of 

abatement output (𝑦𝑎) to show this lack of coupling. We have 𝑦 = 𝑥1
𝛼1𝑥2

𝛼2 and 𝑏 = 𝛽𝑥2,13 and 

the system represented by these two equations is factorially determined. Following Frisch (1965 

                                                 
authors explicitly state that ‘extensions to constant or variable returns can be done in the usual way’ Murty and 

Russell (2010 p22). 

13 (𝛼1, 𝛼2, 𝛽 > 0). 
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p276) the degree of coupling can be derived by the computation of the rank of the matrix of 

marginal productivities of both outputs: 

 

𝜅 = 𝑚 − Rank(𝑀𝑃) = 2 − 𝑅𝑎𝑛𝑘 

[
 
 
 
𝑑𝑦

𝑑𝑥1

𝑑𝑦

𝑑𝑥2

𝑑𝑏

𝑑𝑥1

𝑑𝑏

𝑑𝑥2]
 
 
 

 

𝜅 = 2 − 𝑟𝑎𝑛𝑘 [
𝛼1𝑥1

𝛼1−1
𝑥2

𝛼2 𝛼2𝑥1
𝛼1𝑥2

𝛼2−1

0 𝛽
] 

𝜅 = 2 − 2 = 0 

(7) . 

Another proof of this lack of coupling can be obtained by computing the ratio of good on bad 

outputs: 

 
𝑦

𝑏
=

𝑥1
𝛼1𝑥2

𝛼2

𝛽𝑥2
 =

𝑥1
𝛼1𝑥2

𝛼2−1

𝛽
 (8) . 

From (8), the ratio of the good on the bad outputs cannot be modified without altering the levels 

of both inputs. Thereby in the system example good and bad outputs are both separable outputs 

and not joint (coupled) outputs as it could be expected. Let’s consider now the extreme case 

where the production system runs with only one input (𝑥2). The ratio of good on bad outputs is 

equivalent to 𝑦 𝑏⁄ = 𝑥2
𝛼2−1

𝛽⁄ . This ratio is factor independent if and only if 𝛼2 = 1. Although 

this situation yields a case where coupling is present there are no reasons in practice to believe 

that all the inputs 𝑥2 can be fully transformed into good output: first in that case there is 

physically no room for pollution to be generated from those inputs, and second this one ratio 

between 𝑦 and 𝑥2 simply means that there is no transformation. 

Using implicit function theorem, MRL demonstrate the existence of a positive trade-off 

between good and bad outputs. We argue here that this trade-off is simply a correlation between 

two dissociated variables and not a trade-off as it can be found in the economic literature 

(opportunity cost). For the system example defined above, we can derive the following relation: 

 
𝑑𝑦

𝑑𝑏
=

𝑑𝑦

𝑑𝑥2

𝑑𝑥2

𝑑𝑏
= 𝛼2𝑥1

𝛼1𝑥2
𝛼2−1

×
1

𝛽
= 𝛼2

𝑥1
𝛼1𝑥2

𝛼2−1

𝛽
 (9) . 

The equation in (9) simply indicates the positive relation existing between 𝑦 and 𝑏. From (9) it 

is impossible to derive by how much 𝑦 will change in response to a change in 𝑏 since (9) is not 

independent from the levels of inputs. As argued in Førsund (2009) an explicit introduction of 

product coupling (as a materialization of the jointness between ordinary outputs and residuals 

generation) will result in the social planning problem to a solution where an extra resource cost 

is added (which is absent from the MRL approach). 
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About the use of the implicit function theorem to estimate the trade-off between 𝑦 and 𝑏 it raises 

one concern: the demonstration carried out by MRL suggests the equality between two implicit 

functions, yet this is not clearly stated. Using the good and bad output previous production 

relations, we can derive the following implicit functions for the polluting input 𝑥2 

 𝑥̂2 = (
𝑦

𝑥1
𝛼1

)

1
𝛼2

= ℎ(𝑦, 𝑥1) 

𝑥̂2 =
𝑏

𝛽
= 𝑔(𝑏) 

(10) . 

There is no technical justification for equality between the two functions in (10) since 𝑦 and 𝑏 

are generated under two independent processes (they are also separable given the lack of 

coupling), yet in MRL it is implicitly assumed so.14 

Actually the existence of coupling or a technical interrelation between 𝑦 and 𝑏 implies the 

existence of a relationship of the form 𝐹(𝑦, 𝑏) = 0.15 By differentiating this functional 

representation, we obtain: 

 
𝑑𝑦

𝑑𝑏
= −

𝛿𝐹 𝛿𝑏⁄

𝛿𝐹 𝛿𝑦⁄
 (11) . 

Given that incidental outputs are joint outputs (by-products) of intended ones, they are 

unavoidable. Frisch (1965 p346) defines joint production as the situation where ‘a given set of 

production factors will – if used – necessarily produce more than one kind of production 

simultaneously’. To account for this property of bad outputs, following Førsund (2009) the 

constraints in (12) must be added to (11) 

 
𝛿𝐹

𝛿𝑏
≥ 0 ,

𝛿𝐹

𝛿𝑦
≤ 0  or  

𝛿𝐹

𝛿𝑏
≤ 0 ,

𝛿𝐹

𝛿𝑦
≥ 0 (12) . 

Finally the lack of coupling between good and bad outputs under the MRL approach means that 

what may be identified as a tradeoff between these two types of output is simply a correlation 

(a partial correlation, computed in (9) through the polluting input 𝑥2). 

 

 Limit 2: The problem of positive assortment (not factorially determined multi-

ware production) 

                                                 
14 More evidence on this situation is provided later in the paper. 

15 This coupling relation can be simple or complicated. 
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Before the discussion of this limit, we would like to state the argument put forward by Førsund 

(2009) about factorially determined multi-ware production. He argues that the special case of 

zero (or no) assortment (factorially determined multi-ware production) is of particular relevance 

(‘best suited’) when modeling pollution-generating technologies. 

The case of abatement outputs 

In the system representation in (1), abatement outputs 𝑦𝑎 are represented as part of the intended 

outputs production sub-technology. Let’s recall that in assorted production, ‘ a given set of 

production factors can be used optionally for either one kind of product or for another’ (Frisch, 

1965 p346). In this case abatement outputs are substitutes to intended production, even if there 

is no reason to observe it in reality, especially with end-of-pipe technologies which can be 

considered as a separate activity from the one we have described till now. Besides, the MRL 

approach does not provide explicit information on how those abatement outputs are produced. 

The case of multiple pollutants 

In the MRL representation in (1), all undesirable outputs are treated under the same sub-

technology. Hence, only substitution possibilities between these undesirable outputs are 

considered. However, it is possible to find some examples where bad outputs generated by 

different technical processes are complements rather than substitutes (Moslener and Requate, 

2007). For instance consider the case of livestock farming where methane emissions are 

associated to animal enteric fermentation and nitrous oxide are associated to manure 

management. In this case methane and nitrous oxide are complements since a decrease in the 

number of animals will simultaneously decrease the levels of both incidental outputs. 

Nevertheless this case is somehow excluded from the MRL approach.  

 

2.3.2. Practical considerations (DEA framework) 

 

 Limit 3: Inconsistent benchmark in the DEA representation of the MRL 

approach 

The lack of coupling between good and bad outputs in the MRL approach results in independent 

benchmarks between both sub-technologies involved (practical case of the situation 

summarized in (10)). To prove this inconsistency, we consider the following numerical 

illustration presented in Table 1 where we have considered three polluting inputs, two good 

outputs and one bad output. We do not make any reference to materials balance principle here 
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in computing the bad outputs levels as the data in Table 1 can be associated to a system where 

materials balance principle do not apply (for instance banking system with non performing 

loans). 

Table 1: Data for the first numerical illustration (Data1) 

DMUs 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑏 

A 46 25 12 10 28 13 

B 1 2 2 2 2 2 

C 1 1 1 1 1 1 

D 35 13 34 20 33 23 

E 2 3 5 4 4 10 

F 4 12 4 5 6 1 

G 8 8 7 7 16 3 

H 15 31 66 62 25 18 

I 12 23 10 12 8 19 

J 10 6 9 38 39 17 

K 12 24 11 17 11 18 

L 20 94 55 52 61 16 

M 13 57 10 19 68 20 

N 14 7 13 62 41 19 

O 16 55 103 100 85 22 

Source: authors 

 

To assess the outputs inefficiency we consider the following Enhanced Russell-Based 

Directional Distance Measure (ERBDDM) (Chen et al., 2014): 

 

𝐷⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔 𝑦, 𝑔 𝑏) = max
𝜃,𝜙,ν,ξ

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

2
[
1

𝑄
∑ 𝜃𝑞

𝑛

𝑄

𝑞=1

+
1

𝑅
∑ 𝜙𝑟

𝑛

𝑅

𝑞=1

] 

𝑠. 𝑡.   ∑𝜈𝑖𝑦𝑞𝑖

𝑁

𝑖=1

≥ 𝑦𝑞𝑛 + 𝜃𝑞
𝑛𝑔 𝑦

𝑞
     𝑞 = 1,… . , 𝑄 

∑𝜈𝑖𝑥𝑘𝑖

𝑁

𝑖=1

≤ 𝑥𝑘𝑛     𝑘 = 1,… , 𝐾 

∑𝜉𝑖𝑏𝑟𝑖

𝑁

𝑖=1

≤ 𝑏𝑟𝑛 − 𝜙𝑟
𝑛𝑔 𝑏

𝑟     𝑟 = 1,… , 𝑅 

∑𝜉𝑖𝑥𝑘𝑖2

𝑁

𝑖=1

≥ 𝑥𝑘𝑛2     𝑘2 = 1,… , 𝐾2 

∑𝜈𝑖

𝑁

𝑖=1

= 1   ;  ∑𝜉𝑖

𝑁

𝑖=1

= 1   ;  𝜈𝑖 , 𝜉𝑖 ≥ 0; 𝑖 = 1,… ,𝑁 ;  𝜃, 𝜙 ≥ 0 

(13) . 
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In (13), 𝑔 𝑦, 𝑔 𝑏 represents the directional vectors of good outputs and undesirable outputs 

respectively, and 𝜃𝑞
𝑛, 𝜙𝑟

𝑛 the inefficiency scores associated with the 𝑞-th good output and the 𝑟-

th undesirable output. Following the recommendation by Chung et al. (1997) for directional 

vectors 𝑔 𝑦, 𝑔 𝑏, we use the observed vectors for the different outputs: 𝑔 𝑦 = 𝑦  and 𝑔 𝑏 = 𝑏⃗ . The 

ERBDDM in model (13) is somewhat similar to the Färe–Grosskopf–Lovell (FGL) index 

applied by MRL, except that the results here are expressed in terms of inefficiency. We solve 

model (13) for 𝐷𝑀𝑈𝐷 for instance. IERBDDM
D = 0.877 ; θ1

D = 2.338 ; θ2
D = 0.409 ; ϕ1

D = 0.381. 

The features of the benchmarks (reference sets) associated to the inefficient DMUD are 

summarized in Table 2. 

 

Table 2: Benchmarks features of 𝑫𝑴𝑼𝑫 using the MRL approach 

Variables 𝚿𝟏 𝚿𝟐 

𝒙𝟏 𝟏𝟒. 𝟐𝟓𝟎 𝟑𝟓. 𝟎𝟎𝟎 

𝒙𝟐 𝟏𝟑. 𝟎𝟎𝟎 𝟑𝟏. 𝟑𝟖𝟑 

𝒙𝟑 𝟐𝟒. 𝟐𝟓𝟎 𝟑𝟒. 𝟎𝟎𝟎 

𝒚𝟏 66.750 − 

𝒚𝟐 46.500 − 

𝒃 − 14.235 

Source: authors 

Inefficient 𝐷𝑀𝑈𝐷 is projected onto benchmarks that are dissociated given the optimal levels of 

inputs (opposite direction). This inappropriate handling of the general inputs16 in the MRL 

approach is linked to the disconnection between the good and the bad outputs sub-

technologies.17 Besides, it is hard to believe that 𝐷𝑀𝑈𝐷 can become efficient by being projected 

towards two benchmarks using different levels of inputs: such situation sounds impossible. The 

independence between the two sub-technologies involved in the MRL approach can also be 

                                                 
16 We define as general inputs, inputs that are jointly shared by the two sub-technologies like the pollution-causing 

inputs x2. In the case of factorially determined production system and several sub-technologies we refer to specific 

inputs those only used in one sub-technology. 

17 Actually, in the program (13), the two sub-technologies involved are linked through the objective function. 

However this is not sufficient to connect the benchmarks of the sub-technologies which are still independent from 

each other especially in their use of polluting inputs. 



Working Paper SMART – LERECO N°16-06 

 

 
19 

seen in their FGL efficiency measure formula (p129) (their equation (5.7)), where the efficiency 

score obtained is a weighted addition of two independent (separate) output efficiency scores: 

an operational efficiency score based on Ψ1 and an environmental efficiency score obtained 

from Ψ2. In formula (13) as in formula (5.5) in MRL (p128), the good and bad outputs sub-

technologies are unified in the objective function but not in the constraints, which allows 

efficient use of polluting generating inputs to differ in the two sub-technologies. One may 

conjecture that the introduction of input inefficiencies in the objective function of (13) may 

solve the issue. However as previously discussed, the conditional free and cost disposability 

assumptions might imply two opposite directions for inputs efficiency assessment. For instance 

under the intended outputs sub-technology, an efficient point can be attained by reducing the 

levels of inputs, while under the emission generating sub-technology, to reach an efficient point 

the levels of polluting inputs can be increased (Figure 1). Yet, from a society point of view (or 

normative sense), inputs saving may be viewed as the reasonable situation that preserves the 

nature from pollution emissions (besides, given that the changes in polluting-inputs need to be 

the same under both sub-technologies, only one direction can be retained).  

For that case we consider the following model: 

 

𝐷⃗⃗ (𝑥, 𝑦, 𝑏; 𝑔 𝑦, 𝑔 𝑏) = max
𝜃,𝜙,ν,ξ

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

3
[
1

𝑄
∑ 𝜃𝑞

𝑛

𝑄

𝑞=1

+
1

𝑅
∑ 𝜙𝑟

𝑛

𝑅

𝑞=1

+
1

𝐾
∑ 𝜑𝑘

𝑛

𝐾

𝑘=1

] 

𝑠. 𝑡.   ∑𝜈𝑖𝑦𝑞𝑖

𝑁

𝑖=1

≥ 𝜃𝑞
𝑛𝑔 𝑦

𝑞
 + 𝑦𝑞𝑛     𝑞 = 1,… . , 𝑄 

∑𝜈𝑖𝑥𝑘𝑖

𝑁

𝑖=1

≤ 𝑥𝑘𝑛 − 𝜑𝑘
𝑛 𝑔 𝑥

𝑘    𝑘 = 1,… , 𝐾 

∑𝜉𝑖𝑏𝑟𝑖

𝑁

𝑖=1

≤ 𝑏𝑟𝑛 − 𝜙𝑟
𝑛𝑔 𝑏

𝑟     𝑟 = 1,… , 𝑅 

∑𝜉𝑖𝑥𝑘𝑖2

𝑁

𝑖=1

≥ 𝑥𝑘𝑛2 − 𝜑𝑘2

𝑛  𝑔 𝑥2
𝑘      𝑘2 = 1,… , 𝐾2 

∑𝜈𝑖

𝑁

𝑖=1

= 1   ;   ∑𝜉𝑖

𝑁

𝑖=1

= 1   ;   𝜈𝑖, 𝜉𝑖 ≥ 0; 𝑖 = 1,… ,𝑁 ;  𝜃, 𝜙 ≥ 0 

(14) . 

As previously, we set 𝑔 𝑥 = 𝑥 . Still for 𝐷𝑀𝑈𝐷 we obtain IERBDDM
D = 0.836 ; θ1

D = 2.100 ; θ2
D =

0.242 ; ϕ1
D = 0.776   

and 𝜑1
𝐷 = 0.600 ; 𝜑2

𝐷 = 0.462 ; 𝜑3
𝐷 = 0.618.  

The benchmark features of 𝐷𝑀𝑈𝐷 are summarized in Table 3. 
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Table 3: Benchmarks features of 𝑫𝑴𝑼𝑫 using the MRL approach with input inefficiencies 

Variables 𝚿𝟏 𝚿𝟐 

𝒙𝟏 𝟏𝟒. 𝟎𝟎𝟎 𝟏𝟒. 𝟎𝟎𝟎 

𝒙𝟐 𝟕. 𝟎𝟎𝟎 𝟏𝟕. 𝟗𝟕𝟕 

𝒙𝟑 𝟏𝟑. 𝟎𝟎𝟎 𝟏𝟑. 𝟎𝟎𝟎 

𝒈𝟏 62.000 − 

𝒈𝟐 41.000 − 

𝒃 − 5.146 

Source: authors 

Under the conjecture in (14) the benchmark between good and bad output can still be different 

even when inputs inefficiency is accounted for. However for 𝐷𝑀𝑈𝐷 two of the inputs (𝑥1 , 𝑥3) 

have the same levels under both benchmarks. Nevertheless the difference in input 𝑥2 quantity 

may result in wrong assessment of the good and the bad outputs inefficiency. Actually an 

important implied property of the polluting inputs in the MRL approach is that there are 

nonallocable production factors where the distribution of inputs between good and bad outputs 

is not explicit (or unobservable). Hence the consumption of polluting inputs is known for the 

whole system and not for the specific processes. By analogy to the work in Cherchye et al. 

(2014) and cost minimization objective, we can say that the MRL approach in (13) and (14) can 

be viewed as a non-cooperative inefficiency assessment where each division (here each sub-

technology) chooses the level of the inputs that yield its optimal objective leading thereby to a 

‘Nash-type’ equilibrium where the joint inputs (polluting inputs) are inefficiently allocated. 

 

 Limit 4: Misclassification of efficiency status and overestimation of the 

inefficiency in the DEA framework 

So far we have not considered materials balance, which we do now. We assume that the 

production process that is intended to be modeled by MRL is ruled by materials balance 

principle, on the ground that all physical processes are governed by mass-energy conservation. 

We consider the same numerical example (Data1) as previously, except that the emission 

factors (pollution contents) associated to each of the inputs are respectively 𝑎1 = 0.5 ; 𝑎2 =

0.35 ; 𝑎3 = 0.75 (𝑏 = 𝑎1 × 𝑥1 + 𝑎2 × 𝑥2 + 𝑎3 × 𝑥3).
18 The new data with the resulting new 

pollution level is summarized in Table 4. In this new example, we set the objective as being 

                                                 
18 We do not consider recuperation of pollution by the good outputs. 
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related only to the assessment of the environmental inefficiency (only the bad output 

inefficiency is considered in the objective function - max
𝜙,ν,ξ

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

𝑅
∑ 𝜙𝑟

𝑛𝑅
𝑞=1  -). The 

application of the MRL approach with the data in Table 4 yields an environmental efficiency 

score of one for all the DMUs, i.e. no interior point or no inefficient observation is feasible 

when materials balance is present and inputs levels are fixed. In other words, the output 

orientation in MRL approach is not sufficient for the evaluation of environmental efficiency. 

As underlined in Beattie et al. (1974 p161) ‘for complementarity to arise from the by-product, 

phenomena, the usual assumptions regarding fixity of the resource base and simultaneous 

production periods must be altered’. It is worth noting that in the situation where DMUs do not 

share the same emission factors for the inputs, some environmental inefficiency can be 

identified by the MRL output orientation under fixed levels of inputs. However, this 

inefficiency will simply reflect measurement errors, or inefficiency due to aggregation of inputs 

(generally the case in DEA), or inefficiency in the transformation factors of inputs into good 

and bad outputs (due for instance to lack of maintenance of existing technologies or to the use 

of old technologies). As previously, one may consider situations where inputs minimization is 

introduced as an objective like in program (14). At this point it is worth mentioning that the 

DEA program in (14) is a contribution to the MRL approach which reconciles with input 

measurement inefficiency and makes a choice regarding the directional ambiguity with respect 

to input measurement. In this case materials balance is verified (with constant emission factors 

for all DMUs), the MRL approach yields consistent benchmark. This important result is 

however limited as: (i) it is likely that in practice some DMUs do not share the same emission 

factors (for reasons we have earlier mentioned: input aggregation, old technologies…) and in 

this case the benchmarks are inconsistent like the one in Table 3; (ii) theoretical limit of MRL 

approach regarding the lack of coupling between the good and bad outputs, still holds; (iii) with 

inputs minimization we do not capture the inefficiency associated to different combinations of 

inputs (allocative efficiency). As discussed in Coelli et al. (2007), one way to assess the 

environmental efficiency is to endogenously determine the levels of polluting inputs that 

minimize the volume of pollution. Coelli et al. (2007) propose to solve the model in (15) to 

estimate the environmental efficiency. This efficiency is defined as the ratio of the minimum 

optimal level of pollution divided by the observed level. In (15), the environmental efficiency 

is evaluated by using the mass-energy equation and estimating some kind of iso-environmental 

lines in the same way as iso-cost lines. However the use of model (15) requires knowledge on 

emissions factors. 
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𝐶𝐿𝑉𝑛 = min
𝑥𝑘,𝜆

∑ 𝑎𝑘𝑥𝑘𝑛

𝐾2

𝑘=1

 

𝑠. 𝑡.  ∑𝜆𝑛𝑥𝑘𝑛

𝑁

𝑖=1

≤ 𝑥𝑘𝑛     𝑘 = 1, … , 𝐾 

∑𝜆𝑛𝑦𝑞𝑛

𝑁

𝑖=1

≥ 𝑦𝑞𝑛     𝑞 = 1,… , 𝑄 

∑𝜆𝑖

𝑁

𝑖=1

= 1 

𝑥𝑘, 𝜆 ≥ 0 

(15) . 

To keep in line with the approach developed in Coelli et al. (2007), the MRL model can be 

solved by endogenizing the levels of polluting inputs.  

 

The new objective function is equivalent to (16). 

 max
𝜙,ν,ξ,𝑥

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

𝑅
∑ 𝜙𝑟

𝑛

𝑅

𝑞=1

 (16) . 

 

Table 4: Data for the second numerical illustration (Data2) 

DMUs 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟏 𝒚𝟐 𝒃 

A 46 25 12 10 28 41 

B 1 2 2 2 2 3 

C 1 1 1 1 1 2 

D 35 13 34 20 33 48 

E 2 3 5 4 4 6 

F 4 12 4 5 6 9 

G 8 8 7 7 16 12 

H 15 31 66 62 25 68 

I 12 23 10 12 8 22 

J 10 6 9 38 39 14 

K 12 24 11 17 11 23 

L 20 94 55 52 61 84 

M 13 57 10 19 68 34 

N 14 7 13 62 41 19 

O 16 55 103 100 85 105 

Source: authors 
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The results of (15) and (16) are summarized in Table 5. 

 

Table 5: Inefficiency results using numerical illustration data Data2 

DMUs Materials balance principle 

(Model (15)) 

MRL approach with endogenous level 

of inputs (Model (16)) 

A 0.747 0.961 

B 0.286 0.407 

C 0.000 0.000 

D 0.749 0.966 

E 0.554 0.724 

F 0.651 0.826 

G 0.466 0.867 

H 0.717 0.976 

I 0.778 0.926 

J 0.000 0.884 

K 0.726 0.929 

L 0.495 0.981 

M 0.000 0.953 

N 0.000 0.917 

O 0.000 0.985 

Source: authors 

 

In Table 5, the results show that under endogenously determined levels of polluting inputs, 

some DMUs which are actually efficient (DMUs 𝑀,𝑁, 𝑂, for instance) are deemed inefficient 

under the MRL approach, resulting in misclassification of the efficiency status. Besides, for 

most of the DMUs the inefficiency levels obtained by the MRL approach is higher than the one 

obtained under model (15), implying an overestimation of the inefficiency score.19 Actually in 

this illustration, the MRL model simply considers the DMU with the minimum level of 

pollution (here 𝐷𝑀𝑈𝐶) and evaluates the environmental inefficiency for all the other DMUs 

relatively to this efficient one (𝐷𝑀𝑈𝐶). There is no reason in practice to proceed this way 

especially if VRS are present. Again, the overestimation of the inefficiency scores displayed in 

Table 5 in the case of the MRL approach is a consequence of the absence of coupling between 

good and bad outputs. 

                                                 
19 We borrow here the expression ‘misclassification of the efficiency status’ from Chen (2014). 
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In this section, we have showed and discussed the limits associated to the MRL approach, which 

relate mainly to the lack of coupling between good and bad outputs and to the incorrect way of 

handling generalized inputs within DEA implementation. In the next section we discuss some 

theoretical and practical solutions to the MRL issues. 

 

3. Overcoming the issues associated to the MRL approach: our extensions of the by-

production approach 

3.1. Theoretical approach 

From the previous developments, one of the obvious solutions to the problems identified for 

the MRL approach is the introduction of coupling between good and bad outputs. Førsund 

(2009) argues that the use of factorially determined multi-ware production augmented with 

materials balance conditions is the best alternative in modeling pollution-generating 

technologies. We start from this idea to show how theoretically materials balance principle can 

be used for the coupling of both desirable and undesirable outputs. We consider the following 

general relations: 

 

𝑦𝑞 = 𝑔𝑞(𝑥1, 𝑥2) , (𝑥, 𝑦𝑞) ∈ ℝ+
𝐾+1,

𝑑𝑔𝑞

𝑑𝑥
≥ 0 , 𝑞 = 1, . . , 𝑄 

𝑏𝑟 = 𝑢𝑟(𝑥2) , (𝑥2, 𝑏𝑟) ∈ ℝ+
𝐾2+1

,
𝑑𝑢𝑟

𝑑𝑥2
≥ 0 , 𝑟 = 1, . . , 𝑅 

𝑏𝑟 = ∑ 𝑎𝑘
𝑟𝑥𝑘2

𝐾2

𝑘=1

− ∑ 𝑐𝑞
𝑟𝑦𝑞

𝑄

𝑞=1

, 𝑟 = 1, . . , 𝑅 

(17) . 

In (17) the third type of relations represents the materials balance principle. The difference of 

(17) with the formulation of Førsund (2009) is that in (17) bad outputs are not summed. Each 

undesirable output is represented with its own mass-energy content equation. Besides, we do 

not consider the existence of purification inputs in the incidental outputs representation. 

However for simplicity we now assume for the next developments that 𝑄 = 𝐾1 = 𝐾2 = 𝑅 = 1. 

Hence we have the simplified production system in (18). 

 

𝑦 = 𝑔(𝑥1, 𝑥2) , (𝑥, 𝑦) ∈ ℝ+
3 ,

𝑑𝑔

𝑑𝑥
≥ 0 

𝑏 = 𝑢(𝑥2) , (𝑥2, 𝑏) ∈ ℝ+
2 ,

𝑑𝑢

𝑑𝑥2
≥ 0 

𝑏 = 𝑎2𝑥2 − 𝑐𝑦 

(18) . 
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It is easy to prove that the mass conservation equation (𝑏 = 𝑎2𝑥2 − 𝑐𝑦) is equivalent to the 

functional relationship 𝐹(𝑦, 𝑏) = 0 when 𝑥2 is replaced by the indirect function 𝑥2 = 𝑢−1(𝑏).20 

From (18), the coupling between good and bad outputs is obtained through the materials balance 

relation where good and bad outputs are expressed in the same mass content. As indicated in 

Førsund (2009), the introduction of materials balance in (17) and (18) will results in putting 

some bounds on derivatives (also trade-offs) in the empirical modeling. 

Another solution can be a direct estimation of the technical connection between a good and a 

bad output. Using the properties in (12), the functional relationship 𝐹(𝑦, 𝑏) = 0 can be 

estimated. Additional properties like null-jointness or emission-causing input essentiality can 

also be added for the estimation of 𝐹̂(𝑦, 𝑏). 

 

3.2.Practical solutions in the DEA framework 

Solution 1 

We theoretically proved above how materials balance principle can be used to build coupling 

between products. From the previous discussions (Limit 4), we know that materials balance 

does not allow inefficiency since it is an accounting identity (it is absolute and holds at any 

point of the input-output space, including points located on the frontier (Førsund, 2009)). As 

earlier proposed, one way to assess for instance the environmental efficiency in this situation21 

is to endogenize the levels of polluting inputs. Let’s consider the following model 

 

max
𝜙,ν,ξ,𝑥

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

𝑅
∑ 𝜙𝑟

𝑛

𝑅

𝑞=1

 

𝑠. 𝑡.   ∑𝜈𝑖𝑦𝑞𝑖

𝑁

𝑖=1

≥ 𝑦𝑞𝑛     𝑞 = 1, … . , 𝑄 

∑𝜈𝑖𝑥𝑘𝑖

𝑁

𝑖=1

≤ 𝑥𝑘𝑛    𝑘 = 1,… , 𝐾 

∑𝜉𝑖𝑏𝑟𝑖

𝑁

𝑖=1

≤ 𝑏𝑟𝑛 − 𝜙𝑟
𝑛𝑔 𝑏

𝑟     𝑟 = 1,… , 𝑅 

(19) . 

                                                 
20 By allusion to the situation described in (10) we assume equality between the implicit functions. 

21 It is possible to imagine situations where the materials balance can allow for inefficiency. For example the lack 

of maintenance of an electric heater can create more energy losses. In this case, the inefficiency is related to the 

transformation factor of electricity for instance in heat. 
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∑𝜉𝑖𝑥𝑘𝑖2

𝑁

𝑖=1

≥ 𝑥𝑘𝑛2     𝑘2 = 1,… , 𝐾2 

∑𝜈𝑖

𝑁

𝑖=1

= 1   ;   ∑𝜉𝑖

𝑁

𝑖=1

= 1   ;   𝜈𝑖, 𝜉𝑖 ≥ 0; 𝑖 = 1,… ,𝑁 ;  𝜙 ≥ 0 

Attempts to include mass conservation in the production technology can be seen in Rødseth  

(2015) where the author uses the concept of weak G-disposability to incorporate the materials 

balance using inputs and outputs slacks. However this approach does not consider the existence 

of an unintended output sub-technology. Since the materials balance holds at any point of the 

input-output space, at the optimality the following condition is verified for any bad output 𝑟: 

 𝑏𝑟
∗ = ∑ 𝑎𝑘

𝑟𝑥𝑘2
∗

𝐾2

𝑘=1

− ∑ 𝑐𝑞
𝑟𝑦𝑞

∗

𝑄

𝑞=1

 (20) . 

where ∗ denotes optimal levels of the corresponding variables. Using model (19), (20) can be 

rewritten as: 

 ∑𝜉𝑖
∗𝑏𝑟𝑖

𝑁

𝑖=1

= ∑ ∑𝑎𝑘
𝑟𝜈𝑖

∗𝑥𝑘𝑖2

𝑁

𝑖=1

𝐾2

𝑘=1

− ∑ ∑𝑐𝑞
𝑟𝜈𝑖

∗𝑦𝑞𝑖

𝑁

𝑖=1

𝑄

𝑞=1

 (21) . 

The relation in (21) considers the optimal levels of polluting inputs under the intended outputs 

technology. Since (19) is made of two sub-technologies, the relation is also true for the optimal 

levels of these polluting inputs under the unintended outputs technology. We have 

 ∑ 𝜉𝑖
∗𝑏𝑟𝑖

𝑁
𝑖=1 = ∑ ∑ 𝑎𝑘

𝑟𝜉𝑖
∗𝑥𝑘𝑖2

𝑁
𝑖=1

𝐾2
𝑘=1 − ∑ ∑ 𝑐𝑞

𝑟𝜈𝑖
∗𝑦𝑞𝑖

𝑁
𝑖=1

𝑄
𝑞=1   (22) . 

A practical inclusion of the materials balance in (19) is possible by adding the two equations 

(20) and (21). Using the data in Table 4, we obtain the same results as the materials balance 

model in (15). 

 

Solution 2 

Solution 2 is a simplification of the previous solution and is more general because it can even 

apply to situations where materials balance does not exist. The difference between the relation 

in (21) and the one in (22) is related to the optimal levels of emission-causing inputs. If we 

subtract (22) from (21), we obtain the relation in (23). 

 
∑ ∑𝑎𝑘

𝑟𝜈𝑖
∗𝑥𝑘𝑖2

𝑁

𝑖=1

𝐾2

𝑘=1

− ∑ ∑𝑎𝑘
𝑟𝜉𝑖

∗𝑥𝑘𝑖2

𝑁

𝑖=1

𝐾2

𝑘=1

= 0    ⟺ 
(23) . 
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∑ 𝑎𝑘
𝑟

𝐾2

𝑘=1

(∑𝜈𝑖
∗𝑥𝑘𝑖2

𝑁

𝑖=1

− ∑𝜉𝑖
∗𝑥𝑘𝑖2

𝑁

𝑖=1

) = 0 

Given that 𝑎𝑘
𝑟 ≠ 0 ∀ 𝑟, 𝑘, from (23) we can derive a particular solution which simplifies the 

conditions in (21) and (22). 

 ∑ 𝝂𝒊
∗𝒙𝒌𝒊𝟐

𝑵

𝒊=𝟏

− ∑𝝃𝒊
∗𝒙𝒌𝒊𝟐

𝑵

𝒊=𝟏

= 𝟎   𝒌 = 𝟏,… ,𝑲𝟐 (24) . 

We call the conditions in (24) as the dependence constraints (or interconnectedness constraints) 

which implicitly introduce couplings between bad and good outputs (since it is a simplification 

of the materials balance condition). These dependence constraints state that the efficient 

combination level of the polluting inputs should be equal in both sub-technologies. This 

systematically overcomes the issues identified in Limit 3 and 4 in the previous section and also 

the implicit function theorem situation summarized in (10). The dependence constraints can be 

viewed as the integration of residual production into the overall technology, implying that it is 

not just the production of good outputs that matters, but also the generation of detrimental 

outputs. By adding constraints (24) to model (19), we link up the two sub-technologies 

involved. These dependence constraints implicitly account for the tradeoffs between 

operational and environmental performances (output orientation). Besides, the equality in (24) 

simply transcribes the idea stated by Førsund (2009) that ‘obviously the direction of a coupling 

…is unrestricted in sign, as well as the corresponding direction within a factor band’. Let’s 

stress again here that the dependence constraints are only related to polluting inputs. More 

simply these constraints do not apply to non-polluting inputs because they do not appear in both 

sub-technologies, whereas pollution generating inputs do. 

In terms of dominance, as earlier pointed out, under Ψ1 a DMU 𝑛 is dominated by those DMUs 

that use fewer inputs to produce more good outputs [𝑥 ≤ 𝑥𝑛 & 𝑦 ≥ 𝑦𝑛]. Under the second sub-

technology Ψ2, 𝐷𝑀𝑈𝑛 is dominated by the set of observations that pollute less by using more 

inputs [𝑥 ≥ 𝑥𝑛 & 𝑏 ≤ 𝑏𝑛]. In the by-production model proposed by MRL and reported in model 

(6), these two dominating sets of 𝐷𝑀𝑈𝑛 are treated separately to build an overall efficiency 

score and, therefore, the interaction between the two objectives is ignored. At optimality, the 

model proposed by MRL will result in unexpected different levels of inputs between the two 

sub-technologies. This can be explained by the fact that the model relies on two independent 

benchmarks (Limit 3 and 4). In Figure 1, this independence can result, in the case of sub-

technology Ψ1, in a projection of 𝐷𝑀𝑈𝑛 onto the upper sub-frontier in 𝐵 corresponding to an 

input level 𝑥𝐵. In the case of sub-technology Ψ2, however, 𝐷𝑀𝑈𝑛 is projected towards the lower 
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sub-frontier in point 𝐸 associated with input quantities 𝑥𝐸. It is obvious (graphically) that the 

two optimal levels of inputs are not equivalent (𝑥𝐵 ≠ 𝑥𝐸). By contrast, the introduction of 

constraints (24) can create a unique benchmark (a convex combination of different DMUs) and 

the tradeoff between the two objectives of operational and environmental performance 

improvements can be accounted for. It is important to note that these dependence constraints 

do not deform the initial sub-technologies Ψ1 and Ψ2, but modify the benchmarks in a way that 

coupling is present between good and bad outputs. 

Advantages of Solution 2 over Solution 1 are its generalisation and the fact that no information 

on emissions factor is required for the model to be operated. Besides, equations in (23) can have 

multiple solutions other than the one in (24). Even if the efficiency results are the same the 

independence between the benchmarks makes Solution 1 less powerful than Solution 2. 

Another advantage of Solution 2 over Solution 1 lies in the case where DMUs do not share the 

same mass contents for polluting inputs (and good outputs abatement factors). In this situation, 

Solution 1 can sometimes wrongly identify as benchmarks inefficient DMUs with respect to 

unintended outputs. The benchmark with respect to unintended outputs is obtained in the 

situation where the efficiency is simply evaluated when one only considers the bad output sub-

technology and seeks for a minimization of bad outputs given the levels of polluting inputs. 

This program identifies inefficiency present in mass conservation equation since the 

transformation factors now differ among DMUs. 

 

Solution 3 

As we argued in the theoretical approach, another solution can be the direct estimation of the 

relation 𝐹(𝑦, 𝑏) = 0. Within the DEA framework, we got inspired by the literature on frontier 

eco-efficiency approach (Kuosmanen and Kortelainen, 2005) and we propose to augment the 

program in (19) with some constraints that give a description of 𝐹(𝑦, 𝑏) = 0 and which share 

some properties with the sub-technologies Ψ1 and Ψ2 (convexity, VRS).  

 

 

 

 

 



Working Paper SMART – LERECO N°16-06 

 

 
29 

 

 

The following program can be solved 

 

max
𝜙,ν,ξ,𝑥

𝐼𝐸𝑅𝐵𝐷𝐷𝑀
𝑛 =

1

𝑅
∑ 𝜙𝑟

𝑛

𝑅

𝑞=1

 

𝑠. 𝑡.   ∑𝜈𝑖𝑦𝑞𝑖

𝑁

𝑖=1

≥ 𝑦𝑞𝑛     𝑞 = 1, … . , 𝑄 

∑𝜈𝑖𝑥𝑘𝑖

𝑁

𝑖=1

≤ 𝑥𝑘𝑛    𝑘 = 1,… , 𝐾 

∑𝜉𝑖𝑏𝑟𝑖

𝑁

𝑖=1

≤ 𝑏𝑟𝑛 − 𝜙𝑟
𝑛𝑔 𝑏

𝑟     𝑟 = 1,… , 𝑅 

∑𝜉𝑖𝑥𝑘𝑖2

𝑁

𝑖=1

≥ 𝑥𝑘𝑛2     𝑘2 = 1,… , 𝐾2 

∑𝜇𝑖𝑦𝑞𝑖

𝑁

𝑖=1

≥ 𝑦𝑞𝑛     𝑞 = 1,… . , 𝑄 

∑𝜇𝑖𝑏𝑟𝑖

𝑁

𝑖=1

≤ 𝑏𝑟𝑛 − 𝜙𝑟
𝑛𝑔 𝑏

𝑟     𝑟 = 1,… , 𝑅 

∑𝜈𝑖

𝑁

𝑖=1

= 1   ;   ∑𝜉𝑖

𝑁

𝑖=1

= 1  ;   ∑𝜇𝑖

𝑁

𝑖=1

= 1   ;   𝜈𝑖 , 𝜉𝑖, 𝜇𝑖 ≥ 0; 𝑖 = 1,… ,𝑁 ;  𝜙

≥ 0 

(25) . 

 

The constraints ∑ 𝜇𝑖𝑦𝑞𝑖
𝑁
𝑖=1 ≥ 𝑦𝑞𝑛, ∑ 𝜇𝑖𝑏𝑟𝑖

𝑁
𝑖=1 ≤ 𝑏𝑟𝑛 − 𝜙𝑟

𝑛𝑔 𝑏
𝑟 and ∑ 𝜇𝑖

𝑁
𝑖=1 = 1 are introduced in the 

MRL approach to represent an estimation of the coupling relation 𝐹̂(𝑦, 𝑏) = 0. As regard to 

conditions in (12), we represent the coupling building on the conditions 
𝛿𝐹

𝛿𝑏
≤ 0 ,

𝛿𝐹

𝛿𝑦
≥ 0 to keep 

consistency with the outputs relations in the other sub-technologies. As in the case of Solution 

1, when DMUs do not share anymore the same emission contents the model in (25) tends to 

identify as benchmarks inefficient DMUs in the sense that they are inefficient when we consider 

only the unintended outputs generation sub-technology.22 Again the particular solution in (24) 

offers better alternative under the situation of non-common pollution contents of inputs/outputs. 

                                                 
22 It is worth recalling that the introduction of a coupling relation in the MRL approach does not reshape the 

original sub-technologies (intended and unintended outputs production). 
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For simplicity, all the models considered in Solutions 1 to 3 are not factorially determined. This 

is an easy extension especially in the case of multiple pollutants. 

 

4. An empirical illustration 

In this section we support all our above developments regarding the by-production modeling 

using an existing database of different countries around the world.  

4.1. Dataset description 

The database is made of 112 countries from the different continents independently of their 

income per capita levels (rich and poor countries are simultaneously considered) and observed 

in year 2011. We have retained three inputs for the analysis: labour which is the total labour 

force available in each country, gross capital formation, and fossil fuel energy consumption 

which is considered as the pollution-causing input. Gross Domestic Product (GDP) is the 

desirable output while carbon dioxide (CO2) emissions are the by-products associated to 

burning fossil fuels and the manufacturing of cement. The summary statistics of the sample are 

displayed in Table 6. 

 

Table 6: Summary statistics of the data used (112 countries in 2011) 

Variables Mean Standard 

deviation 

Relative 

standard 

deviation 

Minimum Maximum 

Gross Domestic Product – 

GDP – (billions of US 2005 

constant Dollars) 

463 1,484 3.2 1.1 13,817 

Carbon dioxide emissions 

– CO2 – (kilotons) 

270,890 1,012,941 3.7 520.7 9,019,518 

Labour force (millions of 

people) 

26 88 3.4 0.2 790 

Gross capital formation 

(billions of US 2005 

constant Dollars) 

111 335 3.0 0.1 2,650 

Fuel energy consumption 

(kilotons of oil equivalent) 

85,107 296,783 3.5 166.2 2,428,787 

Notes: The relative standard deviation is the ratio of the standard deviation to the mean. All the data are obtained 

from the world development indicators (WDI) of the World Bank. The list of countries can be found in Annex. Fuel 
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energy consumption is computed using the proportion of this energy consumed in the total energy use, the energy 

consumption per capita and the total population size. 

Source: World Bank (http://databank.worldbank.org/data/home.aspx) 

 

4.2. Models and results 

For the MRL approach we consider the model in (13) under first the fixed levels of pollution 

inputs and second by endogenizing the levels of the emission-causing inputs. We consider this 

latter assumption in light of the materials balance and the discussion in Limit 4. Regarding the 

solutions, we retain Solution 2 because, first, we have no information about the emissions factor 

associated to the solely polluting inputs considered here, and, second, we cannot assert that the 

emission factors are the same among the different countries given that the fuel energy 

consumption is an aggregated input. The main results are summarized in Table 7. 

 

Table 7: Descriptive statistics for ERBDDM inefficiency scores under several models 

Models Type of 

inefficiency 

Minimum Media

n 

Mean Standard 

deviation 

Maximum 

Classic MRL model 

with fixed levels of all inputs 

Overall 0 0.626 0.616 0.355 2.333 

Operational 0 0.641 0.700 0.614 3.842 

Environmenta

l 

0 0.648 0.532 0.237 0.930 

Classic MRL model 

with free levels of polluting 

inputs and 

fixed levels of non-polluting 

inputs 

Overall 0 0.837 0.881 0.360 2.407 

Operational 0 0.702 0.815 0.719 3.842 

Environmenta

l 

0 0.986 0.947 0.110 1.000 

Extension relying on Solution 2 

with dependence constraints 

and fixed levels of all inputs 

Overall 0 0.565 0.568 0.355 2.292 

Operational 0 0.501 0.604 0.591 3.760 

Environmenta

l 

0 0.648 0.532 0.237 0.930 

Extension relying on Solution 2 

with dependence constraints, 

free levels of polluting inputs 

and 

fixed levels of non-polluting 

inputs 

Overall 0 0.701 0.707 0.363 2.360 

Operational 0 0.664 0.753 0.692 3.824 

Environmenta

l 

0 0.712 0.661 0.224 0.944 

http://databank.worldbank.org/data/home.aspx
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Note: The ERBDDM is based on the directional distance function approach, and thus all scores in Table 7 should 

be interpreted as inefficiency levels. The operational inefficiency is inefficiency associated to the good outputs’ 

maximization while the environmental inefficiency is related to bad outputs’ minimization. The overall inefficiency 

is the arithmetic average of both operational and environmental inefficiencies. 

Source: authors 

The first difference between the two by-production approaches - the classic approach by MRL 

based on independent sub-technologies and ours with dependence constraints - is the higher 

level of inefficiency scores obtained with the classic MRL model. However, in the case of our 

empirical available data, the differences are quite small when all inputs are assumed to be fixed: 

for instance, on average, the overall inefficiency score with independent sub-frontiers is 0.616, 

while it is 0.568 when dependence constraints are introduced. This small difference is fairly 

understandable given the low flexibility present in this situation of fixed levels of inputs. For 

robustness check, we run the two-sample Kolmogorov-Smirnov and the Wilcoxon rank sum 

tests which both reveal no differences in the distributions of all inefficiency scores when all 

inputs are held fixed (see also Figure 2 for inefficiency distribution comparison where density 

plots on the left panel, where inputs are held fixed, seem to overlap).  

 

Figure 2: Inefficiency distribution comparison between two by-production approaches 

 

Source: authors 

When the constraints on emission-causing inputs are relaxed so that such inputs can be freely 

chosen, the difference between the two models is clearly accentuated (right panel on Figure 2). 
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The classic MRL model attributes higher inefficiency compared to our extension with 

dependence constraints. This situation can be explained by the inadequate handling of materials 

inputs in the MRL approach. The distribution tests reveal significant differences in the 

distribution of the overall and the environmental inefficiencies. Actually, it seems that the 

classic MRL model results are outliers deriving from the fact that the approach tends to 

cumulatively identify the best performers under each sub-technology independently on where 

those DMUs are located on each frontier. This can explain the higher inefficiency of the MRL 

approach. Still in the case of flexible assumption of free choice of polluting inputs, the classic 

MRL approach indicates that bad outputs management is the major source of inefficiency. By 

contrast, our extended by-production approach with Solution 2 (dependence constraints), 

where the classic MRL model is augmented with dependence constraints, identifies good 

outputs production as the major source of inefficiency. Considering our model (and endogenous 

levels of polluting inputs), the top five best performers are Eritrea, France, Japan, the United 

Kingdom and the United States. The five worst performers are Mongolia, Nepal, Oman, 

Vietnam and Zimbabwe. 

 

5. Conclusion 

This paper proposes practical extensions of the by-production modeling formulated by MRL. 

The MRL approach, based on the estimation of distinct sub-technologies to characterize an 

overall pollution-generating technology, is one of the most promising models for capturing the 

production of undesirable outputs. The main advantage of this approach is that it is based on a 

full description of production processes. The theoretical aspects of this approach are now clearly 

defined (Murty, 2012). However, we argued in this paper that the practical use of DEA proposed 

by MRL fails to unify the two sub-technologies in opposite to what is developed in the theory, 

because of the lack of coupling between outputs. Following this observation, we developed 

three extensions of the MRL by-production approach by including: (i) materials balance 

through the mass-conservation equation; (ii) some dependence constraints; (iii) a direct 

estimation of the coupling relation between good and bad outputs. We also argued that the 

second extension, the one with the use of the dependence constraints, may surpass the other two 

under certain conditions. These additional constraints offer some interesting opportunities to 

theoretically and empirically discuss the nature of regulations designed to integrate detrimental 

output generation into managers’ strategic decisions. Another interesting feature of the by-
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production approach is the possibility of explicitly incorporating abatement outputs in the 

production processes. 

We argued that the introduction of coupling between good and bad outputs does not reshape 

the initial sub-technologies, which can be constructed with different DMUs. Actually solutions 

like Solution 2 (case (ii) above) simply modify the relations between the benchmarks of an 

inefficient observation. Practically this leaves room for discussion on coupling that involves 

relations with the intensity variables (𝜈, 𝜉) in the DEA programming. For instance the relation 

can be set such that, for an inefficient observation, the DMUs that serve as benchmarks under 

the intended output sub-technology are the same under the emission-generating sub-

technology.23 It is however probable that the resulting sub-technologies would be different from 

the original independent ones. The question is therefore what the reality looks like? The choice 

of coupling as the one in our Solution 2 or the one associated to the same benchmark under 

both sub-technologies can be assessed through expert knowledge of the systems that is to be 

represented. As we mentioned earlier a benefit of Solution 2 is its general flexibility. 

One limit is that we have not given much importance to inputs minimization expressly included 

in the objective function (except for the contribution discussed in Limits 3 and 4). First, given 

materials balance conditions, if inputs can be reduced by 𝛼 % so, the bad outputs could be 

reduced by at least the same proportion. Second, by doing so, we do not capture the allocative 

inefficiency associated to the inefficient combinations of the different inputs. Thereby we have 

given much focus on endogenizing the levels of polluting inputs while seeking for the 

minimization of bad outputs. 

Another point that worths more discussion is the returns to scale under the bad output sub-

technology. Considering again that materials balance guides the physical processes, and the 

input essentiality property is maintained it seems intuitive to assume constant returns to scale 

under the bad outputs sub-technology. In other words with zero levels of polluting inputs there 

will be zero levels of pollution and the increase (decrease) in pollution will be proportional to 

the increase (decrease) in polluting inputs. 

Given the sensitivity of nonparametric approaches to outliers, an extension to the estimation of 

robust versions is necessary (Cazals et al., 2002; Aragon et al., 2005; Daouia and Gijbels, 

2011). It is also important to develop algorithms for the estimation of conditional inefficiency 

                                                 
23 Mixed integer linear programming can certainly be helpful in this achievement. 
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scores along with the derivation of statistical inference in light of the discussions by Simar and 

Wilson (2015) and Simar et al. (2013). 
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Annex: List of countries 

Angola; Argentina; Armenia; Australia; Austria; Azerbaijan; Bangladesh; Belarus; Belgium; 

Benin; Bolivia; Botswana; Brazil; Brunei Darussalam; Bulgaria; Cambodia; Cameroon; 

Canada; Chile; China; Colombia; Congo, Dem. Rep.; Congo, Rep.; Costa Rica; Croatia; Cuba; 

Cyprus; Czech Republic; Denmark; Ecuador; Egypt, Arab Rep.; El Salvador; Eritrea; Estonia; 

Finland; France; Gabon; Georgia; Germany; Greece; Guatemala; Haiti; Honduras; Hong Kong 

SAR, China; Hungary; Iceland; India; Indonesia; Ireland; Israel; Italy; Japan; Jordan; 

Kazakhstan; Kenya; Korea, Rep.; Kyrgyz Republic; Latvia; Lebanon; Lithuania; Luxembourg; 

Macedonia, FYR; Malaysia; Mauritius; Mexico; Moldova; Mongolia; Montenegro; Morocco; 

Mozambique; Namibia; Nepal; Netherlands; New Zealand; Nicaragua; Nigeria; Norway; 

Oman; Pakistan; Panama; Paraguay; Peru; Philippines; Poland; Portugal; Romania; Russian 

Federation; Senegal; Serbia; Singapore; Slovak Republic; Slovenia; South Africa; Spain; Sri 

Lanka; Sudan; Sweden; Switzerland; Tajikistan; Tanzania; Thailand; Togo; Turkey; Ukraine; 

United Arab Emirates; United Kingdom; United States; Uruguay; Uzbekistan; Venezuela, RB; 

Vietnam; Zimbabwe. 
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