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Abstract
This paper analyses the potential and limitations of airborne remote sensing systems for detecting crop growth variability
and weed infestation within paddocks at specified capture times. The detection of areas of crop growth variability can
help farmers become aware of regions within their paddock where they may be experiencing above and below average
yields due to changes in soil or management conditions. For instance, the early detection of weed infestation within
cereal crops is crucial for lessening their impact on the final yield.

Transect sampling within a canola paddock of a broad acre agricultural property in the South West of Western Australia
was conducted synchronous with the capture of 1m spatial resolution DMSI. The four individual bands (blue, green, red
and near- infrared) of the DMSI were correlated with LAI and weed density counts collected in the paddock.

Statistical analyses show the LAI of canola had strong negative correlations with the blue (-0.93) and red (-0.89) bands
and a strong positive correlation was found with the near-infrared band (0.82). The strong correlations between the
canola LAI and selected bands of the DMSI indicate that this may be a suitable technique for monitoring canola
variability to derive information layers that can be used in creating meaningful “within-field” management units. Likewise,
DMSI could be used as a non-invasive tool for in season crop monitoring.

The correlation analysis with the weed density (e.g. self sown wheat, ryegrass and clover) attributed to only one negative
weak correlation with the red band (-0.38). The less successful detection of weeds is attributed to the minimal weed



density within the paddock (e.g. mean 34 plants m-2) and indistinct spectral difference from canola at the early time of
imagery capture required by farmers for effective variable rate applications of herbicides.

Keywords: LAI, remote sensing, crop density, vegetation indices, weed mapping.

Introduction
Precision Agriculture (PA) has been defined as ‘observation, impact assessment and timely strategic response to fine-scale
variation in causative components of an agricultural production process’, and thus may cover a range of agricultural
enterprises, and can be applied to pre- and post-production aspects of agricultural enterprises (Australian Centre for
Precision Agriculture, 2002). Site-specific crop management (SSCM) is one facet of precision agriculture and is defined as
‘matching resource application and agronomic practices with soil and crop requirements as they vary in space and time
within a field’ (Whelan and McBratney, 2000). The detection of crop growth variability can help farmers become aware
of regions within their paddock where they may be experiencing above and below average yields.

Vegetation amount and condition may be measured based on the analysis of remote sensing spectral measurements
(Goel and Norman, 1992). Often the goal is to reduce the multiple spectral band data down into a single value per pixel
that can assess canopy characteristics such as biomass, leaf area index (LAI), and / or percent vegetation ground cover
(Larsson, 1993)

Remote sensing applications for distinguishing between agricultural crop types and internal crop characteristics have
been extensively researched during the past decade (Wiegand et al., 1991; Cloutis, et al., 1996; Thenkabail et al.,
2000; Metternicht et al., 2000). The trends being developed between specific crop types, maturity, nutrient levels and
their reflectance values in spectral bands and relationship to vegetation indices (VI), are becoming well known and useful
when limited ground truth data is available (Senay et al., 2000), or when extensive areas need to be mapped in a short
time span.

A common approach in remote sensing for measuring or monitoring crop growth is the correlation of vegetation indices
with such crop variables as percentage of vegetation cover and LAI (Moran et al., 1997). There are several algorithms
used to extract such information from remotely sensed data and collectively are referred to as Vegetation Indexes (Jensen,
1996). A Vegetation Index (VI) is a mathematical combination of several bands and utilises the significant differences in
reflectance of vegetation in the blue, green, red and near-infrared wavelengths. The index is typically a sum, difference,
ratio or other linear combination that reduces multi-band observations to a single numerical index (Wiegand et al.,
1991).  Moran et al. (1997) suggest that measurements of crop properties at sample sites combined with multi-spectral
imagery could produce accurate, timely maps of crop characteristics for defining precision management units. By



exploring the relationship of DMSI with canola attributes such as LAI, one can assess weather it is an appropriate remote
sensing technology to incorporate into the infrastructure of image-based remote sensing for precision crop management.

The applicability of remote sensing for determining the spatial distribution of weeds within arable fields has been
examined for satellite (Fitzpartrick et al., 1990) airborne (Lamb, 2000a; Lamb, 2000b; Lamb et al., 1999; McGowan,
2000) and field scanner (Robins, 1998) systems. For the remote sensing technology to be successful in the detection and
subsequent mapping of weeds, Lamb (2000b) suggests two requirements: (1) There are suitable differences in spectral
reflectance or texture between weeds and their background soil or plant canopy; and (2) The remote sensing instruments
have appropriate spatial and spectral resolution to detect the presence of weed plants. In regards to the spatial
resolution, Rew et al. (1997) comment that as a general "rule of thumb" a resolution of less than the minimum expected
size of the weed patches is required, and this may be sub-metre.

For the information about weed detection and extent to be delivered to farmers, the option of following such a
requirement is overpowered by time constraints and the cost of acquiring such high spatial resolution imagery. In order
for the farmer to make appropriate management decisions, weed detection and extent must be mapped prior to the time
when the weeds will hinder the crop’s growth, so that a suitable eradication process can take place. It is therefore
important to investigate practical applications of remote sensing and determine what, if any, information about the
weeds can be extracted from these data, considering the above-mentioned requirements. This paper explores the
relationship of DMSI and derived image transformation techniques with canola attributes such the LAI, and weed density;
to assess whether this is an appropriate remote sensing technology to incorporate into the infrastructure of image-based
remote sensing for precision crop management.



Data Sets and Study Area

The DMSI system
The field selected for the study falls in the northern region of the shire of Wickepin, located in the South West of Western
Australia (Figure 1). The DMSI was captured using SpecTerra Services Digital Multi-Spectral Camera (DMSC), which is
comprised of four 12 bit digital CCD cameras recording 1024 pixels of 1024 pixels per line. Four interchangeable
narrow band-pass interface filters (25nm) were used to generate imagery in the blue (450nm), green (550nm), red
(650nm) and near-infrared bands (750nm) (Specterra Systems, 1999a). The imagery was captured over a paddock sown
with canola in mid July 2001 (10 weeks after planting) at a spatial resolution of one metre.

Figure 1. Study area location.

Field data collection
During the seeding operations for cereal crops, generally, a constant seed rate is set for the entire paddock. The number
of plants established depends on factors such as soil moisture, surface crusting, seedling vigour, sowing depth, fertiliser



level, disease and insect attack (Madin et al., 1993). According to existing literature (Campbell and Bowyer 1990; Moore
et al., 1998; Atherton et al., 1999; Dolling et al., 2000) soil properties such as soil texture, organic matter, pH and
electrical conductivity are thought to influence crop growth. Thus variability in growth (e.g. changes in crop density) and
subsequent yield can occur. An optimal sampling design would be required to cover areas of variable crop growth and
weed infestation. The spatial variation of crop growth and extent of weeds within a paddock can change from year to
year. Therefore, an appropriate method for determining the area within the paddock for sampling variable conditions
would be established with advice from the property manager.

With guidance and assistance of the property manager a 310m transect was located across areas of variable crop
growth and weed infestation within the field, using guidance stakes and a 100m tape measure. For correct geographic
location of the transect, 3m2 white reflectors, constructed from white aerial plastic, were placed at each end of the
transect and secured to the ground prior to the capture of DMSI. These were clearly visible from the air and would reflect
strong contrast in the imagery. Crop attributes (height, density, plant cover) were recorded in 1m2 quadrants (Figure 2) at
10m intervals marked with pegs with reference to the 100m tape measure. The quadrants were aligned to the seeding
rows as shown in Figure 2.

Figure 2.  Quadrants of the field transect: a) Sample site C5 showing high density of
canola and weeds; b) Sample site C14 showing low density of canola and weeds.



Figure 3 displays two samples collected within the canola field displaying the degree of variability in crop growth. Figure
3 (a) and (b) are the samples collected at position C5 and C14 respectively and corresponds with Figure 2 (a) and (b)
above.

Figure 3.  Transect field samples: a) Sample C5 showing an average canola height of 20cm;

b) Sample C14 showing and average canola height of 4cm.

The field data was collected synchronous with the capture of DMSI. The canola density at 30 sample locations was
determined using either the row crop or the randomly distributed plants method described in Table 1, within the 1m2

quadrant. While the weed density was determined using the randomly distributed plants method (Table 1). The LAI was
determined following the method described by Cihlar et al. (1987). The average leaf area of 10 randomly selected
canola plants within the 1m2 quadrant was calculated using a leaf area meter at seven sample locations. This was
converted to a LAI utilising the density calculated at the each corresponding location.

Table 1. Crop density methodology.

Crop Cover Visual
density

Count Method Density m-2

Row Crops N/A Pm = No. of stems per 50cm
         row x 2 rows.

            P m x100         .
Seeder row spacing
(cm)

Randomly High P25 = No. of stems in 25cm 2 P25 x 16



Medium P50 = No. of stems in 50cm 2 P50 x 4distributed
plants Low P1 = No. of stems in 1m 2 P1

Table 2 lists the weeds that were identified in the canola transect providing their botanical and common names, as
indicated by Dodd et al. (1993) and Cummins and Moerkerk, (1997), and average density of plant m-2 across the entire
transect to give an indication of the dominant weed.

Table 2. Weed Identification and average density (m- 2) across transect.

Transect C Canola  Sample 1-30 Paddock 16
Common Name Botanical Name mean density m -2

Wheat Tritcum aestivum 25.33

Clover Trifolium spp. 8.13
Annual ryegrass Lolium rigidum 0.40
Erodium Erodium botrys 0.13

The DMSI was imported into a GIS for data processing and analysis. The transect reflector end plates constructed in the
field before the capture of DMSI were clearly visible in the imagery. The centre pixel of each end plate reflectance was
used to locate the field transect end point coordinates, and a transect line strung between the points. The sample
locations were interpolated at 10m intervals along the transect line from the northeast to southwest, coinciding with the
direction of field data collection (Figure 4).



Figure 4. Interpolated transect line within the canola field

Methodology
Computation of vegetation indices and ratios
There is a wide range of image transformation techniques available for remotely sensed data. Five transformations have
been investigated in this project and are described below.



1. Normalised Difference Vegetation Index (NDVI).
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3. Soil-Adjusted Vegetation Index (SAVI)
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The L factor chosen depends on the density of the vegetation cover being analysed. Huete (1988) suggests using a L
factor of 1 for very low vegetation density, L= 0.5 for intermediate and L=0.25 for higher vegetation density.

4. Photosynthetic Vigour Ratio (PVR)

RED

GREEN
PVR =                               (SpecTerra Systems, 1999b)(Equation 4)

5. Plant Pigment Ratio (PPR)

BLUE

GREEN
PPR =                                (SpecTerra Systems, 1999b)(Equation 5)



Equations (1) to (5) were applied to the DMSI data and the output images stored in a GISystem.

Extraction of Spectral Data
Within the GIS, digital numbers were extracted from the DMSI for the 1m2 sample locations in a 3 x 3 neighborhood
window (9m2) using the four individual bands (1-4) and five transformations namely, NDVI, NDVI-green, SAVI (with
L=0.5), PVR, PPR which have been described in the preceding section. A summary of the minimum, maximum, mean
and standard deviation values from the 30 sample sites is provided in Table 3.

Table 3.  Summary of vegetation attributes and spectral digital numbers.

Vegetation
Sample 1-30

Mean Standard
deviation

Coefficient of
Variation

Distribution

Total Weed density m -2 34.00 40.15 1.18 Normal
Crop density m -2 55.87 37.97 0.68 Normal

Band 1 115.19 4.33 0.04 Normal
Band 2 99.03 6.26 0.06 Normal
Band 3 72.49 8.20 0.12 Non-parametric
Band 4 154.63 8.03 0.05 Non-parametric
NDVI 0.36 0.06 0.21 Normal
NDVI-green 0.21 0.04 0.21 Non-parametric
SAVI 0.54 0.09 0.21 Normal
PVR 1.51 0.21 0.13 Non-parametric

July
2001

PPR 0.86 0.05 0.06 Normal
Vegetation
7 Samples

Mean Standard
deviation

Coefficient of
Variation

Distribution

Leaf Area Index 0.54 0.53 0.99 Normal
Band 1 114.30 7.86 0.07 Non-parametric
Band 2 99.08 5.17 0.05 Non-parametric
Band 3 72.05 25.41 0.35 Non-parametric

July
2001

Band 4 158.76 26.15 0.16 Non-parametric

Correlation analysis
Histograms of the canola LAI, mean digital numbers for individual bands, vegetation indices and ratios were plotted to
check for normality, so that the appropriate statistical technique for correlation analysis could be determined (e.g.



Pearson’s for normally distributed data and Spearman’s for non-parametric data). The distributions are displayed in
Table 3.

Correlation analysis was performed between the total weed density and the mean digital number extracted for bands 1
to 4, and the vegetation transformations from the 30 sample locations. The LAI calculated at the seven sample sites was
correlated with bands 1 to 4, and the correlation coefficients obtained as results are displayed in Table 6.

Results and Discussion

Vegetation Sampling
Figures 2 and 3 provide a visual display of the degree of variability in canola growth and weed infestation along the
transect. It is important to note here that neither of these quadrants were placed in a headland, thus they represent the
same seeding rate and date. The sample (C5) in Figure 2(a) and 3(a) has a density of 88 canola plants m-1 with an
average height of 20cm and total weed density of 44 plants m-1, while the sample (C14) in Figure 2(b) and 3(b) has a
density of 20 canola plants m-1 with an average height of four cm and total weed density of 4 plants m-1. Table 4
presents the field data and laboratory analysis for the samples C5 and C14 pictured in Figures 2 and 3.



Table 4.  Samples C5 and C14 field data and laboratory results.

Samples Transect C: Canola C5 C14 Difference
Total Weed density m -2 44 4 40
Crop Density m -2 88 20 68
Leaf Area (10 plants) cm 2 1490 63 1427
Leaf Area Index 1.31 0.01 1.3
Dry Weight (10 plants) grams 11.09 0.44 10.65

The results in Table 4 provide a clear indication of the difference in crop density, growth and weed infestation that was
evident in the canola transect, while Table 5 provides a summary of the crop height, density and total weed infestation.
This also supports the evidence that the sample strategy has depicted the variability in crop growth and presence of
weeds.

Table 5.  Transect vegetation summary.

Transect C : Canola
Sample 1-30

Minimum Maximum Mean Standard
Deviation

Coefficient of
Variation

Avg Crop Height 3.6 19 9.38 4.21 0.45
Crop Density m -2 16 96 45.54 21.17 0.46
Total Weed density m -2 0 180 36.92 41.76 1.13

Correlation Analysis
The correlation coefficients, using either Pearson’s or Spearman’s technique, as described in Selvanathan et al. (2000)
and Steel and Torrie (1980), derived from the analysis between field data collection of weed density, LAI and DMSI are
displayed below in Table 6 and discussed hereafter.

Table 6.Correlation coefficients (r) for July 2001 DMSI.

July 2001 Total Weed density m -2 Leaf Area Index

Blue (B 1) mean -0.294 -0.929*

Green (B 2) mean -0.287 -0.714



Red (B 3) mean -0.379 * -0.893*

NIR (B 4) mean 0.321 0.821*

NDVI mean 0.267

NDVI-green mean 0.362

SAVI mean 0.267

PVR mean 0.320

PPR mean 0.021

Values followed by * are significant at 0.05 confidence level.

Total Weed Density and DMSI
From the correlations performed there was only one negative significant correlation between the total weed density m-2

and the red band (-0.38). This may be due to the fact that the dominant weed present was self sown wheat while other
weeds, such as clover, were only present under the leaf canopy of the canola. Wheat is a very thin leaved plant while
canola is broad-leaved. This is clearly visible in Figure 3 (a), which displays canola and wheat plants collected at sample
site C5. Using the samples that were collected in transect C, which accounts for growth variability, the results of the leaf
area calculations show that, on average, a canola plant has a leaf area of 74cm2, wheat is 12cm2 and clover is 3cm2. It
also must be considered that the broad leaf canola spreads its leaves as opposed to the wheat standing tall and thin.

Lamb et al. (1999) achieved correlations of up to 71% between the NDVI and SAVI with the density of wild oats (Avena
spp.) in a cropped field. The authors' research investigated image resolution from 0.5 to 2m with six differing L factor
values used within the SAVI equation, ranging from 0.1 to 1.  When analysing their NDVI results from an image
resolution of 1m (i.e. same as this research) the correlation coefficient was 0.687. The SAVI correlations, using an L factor
of 0.5 (i.e. same as this research) resulted in 0.602 and 0.702 for 2 and 0.5m resolution respectively. These results are
significantly higher than the correlations with NDVI and SAVI achieved from this research. A non-significant positive
correlation of 0.267 was calculated for both the NDVI and SAVI. It is thus important to determine why such a difference
in correlation coefficients was achieved between the two studies.

As discussed earlier, there is high variability in crop growth and weed infestations within transect C. As shown in Table 5
the total weed density within transect C ranged from 0 to 180 plants m-2 in conjunction with the canola density ranging
from 16 to 96 plants m-2. Figure 3 (a) and the preceding paragraph highlight the difference in the average leaf area for



a canola plant (74cm2) to that of the dominant weed self sown wheat (12cm2).   Within Lamb et al. (1999) research, the
crop and predominant weed had a similar leaf shape (thin) and were at similar growth stage (two- to five-leaf stage). The
mean crop density was 36 plants m-2 and the weed density ranged from 0 - 1750 plants m-2. In this manner, the
research by Lamb et al. (1999) has performed correlations with a much higher maximum density of weeds, in addition to
reducing the number of variables that would influence the reflectance, such as crop growth attributes, of the target scene
to the factor of weed density. Thus, the opportunity for better correlations was improved. Variability in weed infestation
was not the sole objective of the vegetation sampling strategy performed in this research. The timing of DMSI capture in
this research was based on on-farm herbicide application. Thus, it stands that the influence of other factors, such as the
difference between crop and weed leaf area, crop growth variability within the target scene, and the timing of DMSI
capture will affects the success of the correlation between DMSI and weed density.

Canola LAI and DMSI
The canola LAI had significant correlations with three of the four DMSI bands. Significant (α=0.05) negative correlations
were found with the blue band (-0.93) and red band (-0.89), while a significant positive correlation was found with the
near-infrared band (0.82).

The strong positive correlation with the near-infrared band is similar to that found by Cloutis et al. (1996). Cloutis et al.
(1996) performed a linear correlation at the 99 percent level between the LAI of canola and 13 spectral bands captured
using a Compact Airborne Spectrographic Imager (CASI) with an average spatial resolution of 5m. Though the authors
found no significant correlations with the individual bands, the near-infrared bands provided the highest correlation
coefficients.

Likewise, Senay et al. (2000) performed correlations between the LAI of soybeans and corn, from the temporally pooled
data sets (i.e. 4 and 3 flights respectively) with six bands of the multispectral scanner captured with a 1m2 resolution. The
results for the soybeans showed good negative correlations (-0.59 to -0.73) for the wavebands that correspond to that of
the green and red DMSI, and a good positive correlation (0.71) was found with the equivalent near-infrared band.  The
corn LAI was less successful, and only the near-infrared band showed a significant good positive correlation (0.47).

These results indicate that simple high resolution remote sensing based approaches can be applied to detect crop growth
variability at an early stage of crop development, so that corrections to improve yield can still be implemented, if the
farmer judges that corrective measures are cost-effective.  Other approaches such as yield meters can detect crop
variability as well.  However, the output results (e.g. within field yield variability maps) cannot be used for improving crop
production within a growing season.



Conclusions

The findings of the research can be summarised as follows:
•  The leaf area index showed strong correlations with the blue (-0.929), red (-0.893) and near-infrared (0.821)
bands;
•  These correlations indicate that the blue, red and near infrared bands were suitable for early detection of canola
growth variability using leaf area index;
•  The DMSI individual bands and transformation techniques did not show significant correlations with weed density,
for weed counts less than 180 plants m-2 , therefore failing to detect accurately the presence of weeds at a stage early
enough for farmers to undertake an eradication procedure;
•  Utilising the field data and the knowledge of the strength of the correlations, image classification techniques
(supervised or unsupervised) could be implemented to sort the image into spectral categories. Thus combining DMSI in
the infrastructure of image based remote sensing for precision crop management by delineating within-field
management units;
•  The success of the correlation results between DMSI and LAI offers initial suggestion that this remote sensing
system could be implemented into crop growth models;
•  Lastly, it is recommended conducting further research to increase the number of sample sites where the LAI is
determined, to enhance the justification of its success.
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