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Abstract.  

The understanding of the drivers of technological progress and their impact on food 

security is still limited. The paper contributes to the lacking empirical evidence on the 

speed of technical change affecting various sectors and production factors differently, 

which leads to contradicting projections of food demand in the global ex-ante 

assessment models. The aim of the paper is to quantify endogenous factor-augmenting 

technical change driven by R&D investments in a panel of 13 OECD countries over 

1987-2006.  

A CES framework with cost minimization behavior was chosen to derive the system of 

equations that were estimated by GMM system estimator. Statistically significant 

effects of domestic and foreign manufacturing R&D were found on labor-augmenting 

technical change in manufacturing, agriculture, transport and retail sector. The 

results of this study provide a starting point for incorporating endogenous factor-

biased technical change in impact assessment models aimed at policy analysis of food 

security. 
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1. Introduction  

Food security is one of the largest challenges facing mankind in the next half century (as 

acknowledged for instance by UNDP, 2012 and UNEP, 2012). Since the price shocks of 2007 and 

2008, agricultural markets have experienced larger price fluctuations than ever before, illustrating 

the fragility of the world food supply system. Moreover, the projections of population growth warn 

that by 2050 the agricultural sector will have to feed 9 billion people, which requires doubling the 

current levels of food production. However, satisfying expected increases in food demand by a 

proportional increase in food supply will be limited due to the constrained availability of additional 

agricultural land. To overcome these challenges, technical progress is required that will drive 

agricultural productivity and therefore will make an important contribution to future improvements 

of global food security. 

 Yet, the understanding of the drivers of the technological progress and their impact on food 

security is still limited. It may be argued that there is convincing empirical evidence that cumulative 

domestic R&D and knowledge stocks are important determinants of agricultural (see Alston et al., 

2000 for a meta-analysis). However, all the mentioned studies aim at quantifying the neutral 

technical change, assuming that all factors benefit equally from the innovation efforts. 

Nevertheless, some production factors benefit from technical change more than others: technical 

change is factor-biased, as shown by Acemoglu (2002) and Acemoglu and Aghion et al. (2012). 

Factor-biased technical change might result from induced innovation that directs technical change 

towards a scarcer production factor (for instance in Japan, specific crop varieties were developed 

that increased the productivity of land, as explained in Hayami and Ruttan, 1970). Acemoglu (2002) 

shows that factor-biased technical change can be also directed to the more abundant production 

factor if the elasticity of substitution between production factors is larger than one.  

This significant progress in the theoretical understanding of the direction of technical change has 

not been sufficiently reflected in empirical studies. For instance Carraro and De Cian (2013), 

highlight a “total absence of empirical studies on the drivers of factor productivities” leading to 

weak empirical foundation of key technology parameters. This is confirmed by Robinson (2013) 

who argues that “in most global CGE models total factor productivity (representing a measure of 

neutral technical change) is calibrated residually with rather ad hoc assumptions on future 

productivity change and furthermore homogenously across different countries and sectors”. By 
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neglecting the endogeneity of technical change, crucial dynamics in the factor markets are not 

accounted for which leads to contradicting projections in the global impact assessment models
1
. 

Similar conclusion was derived by Von Lampe et al. (2013) who point out that the “black box of 

macro and sectoral technical change”, referring to the lacking empirical evidence on the speed of 

technical change affecting various sectors and production factors differently, leads to contradicting 

projections of food prices and demand in the key global ex-ante assessment models. As a result, 

their ability to guide policy makers in defining long-term food security strategies is weakened.   

To elaborate this notion in greater detail, it is well known that food security is a multi-dimensional 

problem with food availability and accessibility being the key dimensions. How much will be 

produced (food availability) and at what prices (food accessibility) depends largely on advances in 

productivity, i.e. on technical change. However, the usual treatment of technical change purely as a 

Solow residual to predict future production and prices is insufficient. First, technical change does 

not come as manna-from-heaven, but it is provoked by various technology drivers, such as the R&D 

investments. Second, technical change might be directed to production factors differently, as for 

instance advances in agricultural machinery are usually labor-saving, whereas advances in 

fertilizers are land-saving. The factor-bias in technical change consequently affects production 

factor markets and price transmission mechanism. Third, technical change affects various industries 

differently and these industries benefit from large spillover effects. In this respect, the productivity 

growth of agriculture might be well driven by technological advances in other industries outside of 

agriculture. Ignoring these spillover effects would underestimate the evolution of productivity in 

agriculture and would cause a bias in food security predictions. To summarize, we need to 

understand better how R&D and other technology drivers affect technical change and how technical 

change varies across production factors and across all sectors in the economy. 

This paper aims at contributing to the lack of empirical evidence on the understanding of 

endogenous technical change related to R&D investments
2
. On a macro-level, there has been a 

“revival of the CES production function” with corresponding advances in estimation techniques 

aiming to quantify simultaneously the elasticity of substitution and factor-bias, however, without an 

explicit link to technology drivers such as R&D or human capital. On the sector-level, the number 

                                                           
1
  In an experiment performed by Robison et al. (2013), under higher labor-saving technical change in agriculture 

compared to manufacturing and services, agricultural prices are rising, whereas under a uniformly distributed labour  

augmenting technical change, projected prices are stable. 
2 The paper contributes to Marie Curie Project METCAFOS which aims at investigating the links between drivers of 

technical change and sectoral growth that will be integrated into a global CGE model MAGNET with the purpose of 

improving projections of food security. 
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of studies that quantify biased technical change is even more limited and with a predominant focus 

on manufacturing industries. The contribution of this study is that it estimates the endogenous 

factor-biased technical change in a panel data framework including all sectors of the economy. The 

timeliness of this research is supported by the availability of high quality data provided by the 

KLEMS project where capital and labor are expressed as services flows and corrected for 

differences in labor and capital quality, and the availability of R&D datasets for major OECD 

countries
3
. 

The main objective of the paper is to quantify the relationship between R&D stocks and parameters 

representing technology in the CES function for eight aggregated sectors of the economy. 

Partial goals were defined as: 

 To quantify the endogenous elasticity of substitution between capital and labor and to assess 

whether technical change on a sector level has been neutral or factor-biased.  

 To analyze whether selected categories of  R&D stocks are significant in explaining factor-

augmenting technical change related to capital and labor, i.e. to prove the endogeneity of 

technical change. 

 To compare the speed of factor-augmenting technical change across different industries. 

2. Review of approaches to estimate factor-biased technical change in CES framework  

In the macro literature, researchers have long time favored the assumption of a Cobb-Douglas 

functional form for the aggregate production function with unitary elasticities of substitution and 

Hicks-neutral representation of technology (based on seminal work of Berndt, 1976, cit. in Antras, 

2004). However, Antras (2004) showed that restricting the analysis to Hicks-neutral technological 

change biases results towards the Cobb-Douglas production function and argued, that a Cobb-

Douglas specification of the U.S. aggregate production function may be misleading. This has 

spurred a revival of aggregate CES production function research in the macro-economic literature 

and the stimulated discussion on how to reliably estimate the substitution elasticity and factor-

biased technology parameters together and overcome the identification problem. A similar 

conclusion was derived in a recent study by León-Ledesma (2013) who showed analytically that, 

imposing Hicks-neutrality leads to biases towards Cobb–Douglas when the true nature of technical 

progress is factor-augmenting. The authors followed-up on Klump et al. (2007) who made a 

significant contribution to empirical research on CES functions by estimating a normalized 

                                                           
3

 KLEMS project is funded by the European Commission and aims to create a database on measures of economic 

growth, productivity, employment creation, capital formation and technological change at the industry level for all 

European Union member states from 1970 onwards: www.euklems.net. 

http://www.euklems.net/
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production function in a supply-side system of the US economy from 1953 to 1998. The authors 

compared the evolution of factor-augmenting technical change and found an asymmetrical pattern 

where the growth of labor-augmenting technical progress is almost exponential, while capital-

augmenting technical progress is hyperbolic or logarithmic. 

Dong et al. (2013) contributed to the discussion about factor-biased technical change and the 

appropriateness of Cobb-Douglas in a study on China and argued that factor-biased production 

functions are more suitable that neutral. The authors found that in most of the periods of 1970-2010, 

technical change derived from CES function was biased towards capital, at the rate of 3.6%. Only in 

selected periods, technical change was labor-augmenting, which is related to institutional measures 

that motivated workers for higher productivity.   

The approach of Antras for the United States was followed by Young (2013), who estimated factor 

biased technical change both on aggregate and sector level in the US economy from the first-order 

conditions associated with a CES production function. Using data on 35 industries from 1960 to 

2005, he found that technical change in the aggregate appears to be net labor-augmenting and on the 

industry level, certain sectors might be net capital-augmenting.  

Another evidence of a factor biased technical change on industry level is provided by Van der Werf 

(2008) who addresses the issue of missing empirical foundation of substitution elasticities in 

climate policy models. Using industry-level data from 12 OECD countries, the author found 

evidence for factor-specific technological change and concludes that some climate policy models 

may find a bigger effect of endogenous technological change on mitigating the costs of climate 

policy. 

The approach of Van der Werf was used recently in Dissou et al. (2012), who focused on ten 

Canadian manufacturing industries for the period 1962-1997 and estimated seemingly unrelated 

regressions for each industry. However, their results on biased technical change were not 

conclusive. 

Juselius (2008) provided a novel approach to test for Cobb-Douglas or CES specification using 

quarterly data on Finish manufacturing with a time series approach. Juselius argued that in studies 

with short periods, prices might not be equal to marginal products due to market imperfections such 

as labor regulations. To prevent biased estimates, he derived elasticity parameter from long-term 

negative relationship between wages and capital-labor share.  
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Another innovative approach of modeling technical change is presented in Jorgenson (2010). He 

proposed a more flexible alternative to the exponential function that is commonly used to quantify 

factor-biased technical change (he points out that the constant time trends might rule out the fact 

that technical change may be capital-using at one point of time and capital-saving at another). 

Jorgenson quantified the factor-biased technology parameter from a latent variable that was isolated 

from using a Kalman filter, in a system of equations derived from a translog specification of 

production function. The novel econometric approach was applied to 35 sectors of the US economy 

in 1960 – 2005.   

All the above mentioned approaches consider factor-biased technical change exogenously 

determined by alternative trend functions. However, factor biased technical change as well as 

elasticity of substitution might be endogenous, i.e. they might be influenced by technology drivers 

such as R&D investments, education or imports of technologies. Whereas multiple empirical 

evidence that links R&D to TFP exists in the literature, so far only one available study attempts to 

link R&D to factor – biased technical change, which is the study of Carraro and de Cian (2013) who 

estimate factor augmenting technical change considering three endogenous drivers for 

manufacturing industry in 13 OECD countries.  This paper follows the approach of Carraro and de 

Cian, but it concentrates on R&D stocks that are distinguished in various types. Moreover, the 

estimates are carried out using a KLEMS dataset with longer time horizon and they include all 

major sectors of the economy.  

3. Data and Methodology  

3.1 Description of the dataset  

The dataset used in this study contains observations for the period 1987 – 2006 for the following 13 

OECD countries: Austria, Belgium, Canada, Denmark, Spain, Finland, France, Germany, Great 

Britain, Ireland, Italy, Japan, the Netherlands and USA.  

Data characterizing the production process for each industry was obtained from the KLEMS 

database (2011), ISIC Revision 3, March 2011 update. This study focuses on a broad set of 

production sectors that span the whole economy, at the cost of higher aggregation. The choice of 

aggregation is in line with the availability of the R&D datasets. Ideally, the availability of business 

R&D expenditures would be corresponding to sector-level economic data, but such detail of R&D 

expenditures is often not available. The classification of aggregated production sectors used in the 

analysis is provided in Table 1.  
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In order to obtain a homogenous dataset, all nominal values were first expressed in constant prices 

of 2005 and consequently converted to US dollars using sector-specific purchasing power parities 

(PPPs) (Inklaar and Timmer, 2014). The use of sector-specific PPPs is strongly recommended in an 

analyses of international productivity at the sector level. Aggregate GDP PPPs and currency 

exchange rates are not appropriate as conversion factors because of differences in relative prices 

between tradable and non-tradable sectors will introduce a bias (Sørensen, 2001; Sørensen and 

Schjerning, 2008).  

3.2. Construction of R&D stocks  

The study focuses on R&D stocks as the major technological driver that can be linked to sector-

level technical change (other important drivers such as education and human capital are not 

considered). The R&D stocks are further classified into four R&D categories: 

R&D stocks in agriculture: It is assumed the R&D stocks in agriculture have direct productivity 

effects, i.e. they drive technical change in agriculture. Examples are inventions in seeds varieties 

developed during the Green revolution, or GMO technologies of respective agricultural crops, that 

are hardly adopted in other industries.  

R&D stocks in manufacturing: They represent the most substantial part of R&D investments. As 

described in Roeger et al. (2008), manufacturing R&D is mostly patented and supplies a large 

amount of innovative goods that are used in other industries. In relation to new technologies 

supplied by the manufacturing sector, organizational changes occur that stimulate productivity of 

services (as occurred for instance in retail, wholesale and banking due to ICT investments in the 

USA). Therefore, it is assumed that R&D stocks in manufacturing affect not only productivity of 

manufacturing itself (intra-industry effects), but also productivity of other domestic industries 

(inter-industry effects) and foreign sectors (foreign inter-industry spillovers).  

R&D stocks in services: A study by the European Commission (2008) points out that R&D in 

services is still a relatively unknown area. However, the importance is not negligible as around 80 

% of science and technology jobs are located in services sectors. For instance, services sector with a 

high content of knowledge are financial, insurance and retail sectors, where typical R&D activities 

include insurance and financial mathematics or IT systems development. Business and legal 

services, wholesale and retail on the other hand invest in R&D oriented towards socio-economic 

and customer research. Transportation services, such as airlines also carry out R&D, which is 

designed towards logistics simulation and system management. Based on this evidence, R&D in 

services is considered as a specific R&D category in the paper. 
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Total Business R&D stocks: Total Business R&D stocks are included as a separate category for two 

reasons. First, they capture the aggregated effect of R&D spending of private businesses and they 

can be understood as a technological frontier of the respective country, built from private funds. 

Second, they provide a representative value of R&D for sectors with inadequate availability of 

R&D data such as mining or construction. It is assumed that total R&D stocks affect productivity 

both of domestic and foreign industries.  

Total Public R&D stocks: Total public R&D stocks are considered as the last R&D category. They 

are represented by total governmental budget appropriations and their positive effect on 

productivity captures the public goods nature of R&D.  Foreign spillover effects are considered as 

well as in case of private R&D stocks. 

Data on business R&D expenditures (total and manufacturing) were obtained from the OECD 

ANBERD Database (2014a). Values are provided in constant prices of 2005 expressed in PPP 

dollars. Data for Belgium, Spain and Ireland were adjusted due to the occurrence of structural 

breaks or missing observations. Regarding public R&D expenditures, given that GERD datasets by 

sector and field of sciences (OECD 2014b) are incomplete, the indicator of Governmental Budget 

Appropriations for R&D was used as a proxy for total public R&D expenditures and agricultural 

R&D expenditures (OECD 2014c). Multiple structural breaks were removed by approximating the 

growth rate from the past. As for Italy, values between 2002 – 2005 were calculated taking growth 

rates of GERD from the OECD database.  

Values of R&D expenditures were used to calculate R&D stock categories (equation 1) using the 

Perpetual Inventory Method (PIM) (originally proposed by Griliches, 1979), where RD_stock 

represents accumulated R&D expenditures (RD_exp) corrected for depreciation (dep). The 

depreciation rate was set at 0.05 following common practice in the literature. 

𝑅𝐷_𝑠𝑡𝑜𝑐𝑘𝑡 = (1 − 𝑑𝑒𝑝). 𝑅𝐷_𝑠𝑡𝑜𝑐𝑘𝑡−1 + 𝑅𝐷_𝑒𝑥𝑝𝑡        (1) 

The initial value of R&D stock was calculated from the steady-state condition taking into account 

the compound growth rate of R&D expenditures (RDgr) calculated over 1987 – 2007: 

𝑅𝐷_𝑠𝑡𝑜𝑐𝑘𝑡0 =
𝑅𝐷_𝑒𝑥𝑝𝑡0

(𝑅𝐷𝑔𝑟+𝑑𝑒𝑝)
            (2) 

 

Calculation of manufacturing R&D spillovers 

It is assumed that manufacturing R&D has inter-industry effects. However, each industry absorbs 

different types of R&D. For instance, agricultural productivity might be stimulated mostly from 

R&D in machinery and chemical industry, whereas productivity in services might be boosted by 

R&D in ICT technologies. In order to capture this difference, R&D manufacturing stocks were 



8 

adjusted using shares of intermediate consumption of individual manufacturing subsectors in the 

aggregated 7 sectors of the economy (Table 2), following the approach of Keller (2002) and other 

scholars:  

𝑚𝑎𝑛𝑅𝐷_𝑠𝑡𝑜𝑐𝑘𝑖,𝑟,𝑡 =
𝐼𝐶𝑖,𝑗,𝑟,𝑡

∑ 𝐼𝐶𝑖,𝑗,𝑟,𝑡𝑗
. 𝑚𝑎𝑛𝑅𝐷_𝑠𝑡𝑜𝑐𝑘𝑗,𝑟,𝑡  ,      (3) 

where manRD_stock represents inter-sectoral manufacturing R&D stocks in reporting country r, 

aggregated sector i and time t, IC represents flow of intermediate consumption of aggregated sector 

i from manufacturing subsector j. 

Intermediate consumption figures were obtained from the STAN input-output database (OECD 

2014d). The values are reported in million USD for three periods. The observations of R&D 

manufacturing in 1986-1999 were adjusted using input-out structure of mid1999s, the observations 

of 2000-2003 were adjusted using structure of beginning 2000s and the remaining observations 

2004-2007 were adjusted using data of the period mid-2000s. Since each production sector has a 

different structure of intermediate consumption, the R&D manufacturing stock series differ per 

sector. 

 

Calculation of foreign R&D spillovers 

There are various ways to measure foreign R&D spillovers. Typically it is assumed that R&D is 

embedded in trade flows and the transaction matrices composing of input-output and bilateral 

import shares are used to calculate foreign spillovers. This approach was first adopted by Coe and 

Helpman (1995) and modified later by Lichtenberg and van Pottelsberghe de la Potterie (1998). 

Consequently, Keller (1998) showed that the simple sum of the foreign R&D stock performs better 

than the import-weighted sum used in Coe and Helpman.  

As already pointed out by Van Meijl (1995), not all technological innovations lead to user-producer 

relationships and thus the real magnitude of pure knowledge spillovers might be underestimated 

when using the transaction flow matrices. Thus, various scholars proposed alternative approaches to 

measure R&D spillovers rather than trade channels such as technology proximity based on patents, 

FDI or geographic proximity (for instance Verspagen, 1997, Cincera, 2005 or Krammer, 2010). 

Nevertheless, significant evidence of trade-embodied R&D spillovers on productivity cannot be 

denied. For instance Keller (2002) concludes that the input-output specification performs better than 

the technology flow matrix adopted from Evenson (1994). In line with this finding, Scherer (2003) 

suggests that the R&D spillover measured by patent matrices can be replaced by a combination of 

intermediate goods and capital flows matrices (cited in Cerulli and Potti, 2009). Krammer (2010) 

finds that imports remain the main channel of diffusion for developing and developed countries, 

while FDI, although statistically significant, has a lower impact on productivity of the recipients. 
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Recently, Ang and Mandsen (2013) consider six channels of international knowledge transmission 

and conclude that knowledge spillovers through imports are the most significant variables for TFP 

growth in the Asian miracle economies. Based on the strong evidence in favor of trade-embodied 

knowledge spillovers, R&D spillovers are calculated using trade flows in this paper. Moreover, in 

sectors with low level of internal R&D, such as mining or construction, knowledge spills over 

mostly via inputs that embody R&D.  

Two alternatives to calculate knowledge spillover are considered: the Coe and Helpmans approach 

using bilateral import shares (CH approach) and the approach using Lichtenberg Potterie’s ratio of 

imports to value added (LP approach). Using the CH approach, own-sector foreign knowledge 

stocks of reporting country r in time t (fRD_stock_CH) are calculated as a weighted sum of R&D 

stocks of partner countries p. The import shares mrpt are calculated from bilateral imports designed 

for intermediate use, as reported in the STAN Database (OECD 2014e).  

𝒇𝑹𝑫_𝒔𝒕𝒐𝒄𝒌_𝑪𝑯𝒓,𝒕 = ∑ 𝒎𝒓,𝒑,𝒕𝒑 . 𝑹𝑫_𝒔𝒕𝒐𝒄𝒌𝒑,𝒕        (4) 

Alternatively, own-sector foreign knowledge stocks are calculated using the LP approach 

(fRD_stock_CLP) where weights are calculated as share of imports (Mr,p,t) in value added of the 

partner country (VAr,p,t), obtained from the STAN Structural Database (OECD 2014f). 

𝒇𝑹𝑫_𝒔𝒕𝒐𝒄𝒌_𝑳𝑷𝒓,𝒕 = ∑
𝑴𝒓,𝒑,𝒕

𝑽𝑨𝒓,𝒑,𝒕
𝒑 . 𝑹𝑫_𝒔𝒕𝒐𝒄𝒌𝒑,𝒕        (5) 

The own-sector foreign knowledge stocks are consequently used to calculate inter-sectoral foreign 

manufacturing knowledge spillovers using the input-output structure as described in equation 3. 

3.3. Theoretical framework and derivation of the econometric model  

Among the state-of-the-art modeling techniques that estimate CES function there are at least four 

different approaches: (i) estimation of first order conditions (FOC) derived either from profit 

maximization or cost minimization; (ii) a joint estimation of FOC together with the CES function; 

(iii) a Kmenta linearization (1967),  and (iv) a non-linear estimation of the original functional form. 

Whereas the Kmenta linearization method only considers neutral technical change parameters, 

nonlinear estimations of the direct CES often do not converge (Leon-Ledesma, 2010). Therefore, 

the most common approach to estimate CES function jointly with factor-biased technical change is 

the estimation of the system of FOCs, which is also adopted in this paper.  

A cost minimization framework with a CES production technology and constant returns to scale is 

chosen here to derive the first order conditions for capital and labor. This is in line with the 
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producers’ behavior embedded in CGE models, which ensures the consistency of the empirical 

estimates with their consequent incorporation into the CGE model.  

The functional form of CES with factor-specific technology parameters (for simplicity, sub-indices 

for sector i, country r and year t were omitted) is written as:  

𝑌 =  [𝛼𝐾 . (𝐴𝐾 . 𝐾)(
𝜎−1

𝜎
) + 𝛼𝐿 . (𝐴𝐿 . 𝐿)(

𝜎−1

𝜎
)]

(
𝜎

𝜎−1
)

        (6) 

Where Y, K, and L represent production, capital and labor, respectively. Furthermore, αK and αL are 

distribution parameters corresponding to factors share, σ represents a sector-specific elasticity of 

substitution and AK and AL represent sector-specific factor-augmenting technology parameters. 

Under the assumption of cost minimization, the first order condition for capital and labor can be 

expressed as (for detailed derivation, see Appendix):   

𝑙𝑛
𝐾

𝑌
= 𝜎. 𝑙𝑛𝛼𝐾 + (𝛿 − 1). 𝑙𝑛𝐴𝐾 + 𝜎. 𝑙𝑛

𝑃𝑌

𝑃𝐾
           (7) 

𝑙𝑛
𝐿

𝑌
= 𝜎. 𝑙𝑛𝛼𝐿 + (𝛿 − 1). 𝑙𝑛𝐴𝐾 + 𝜎. 𝑙𝑛

𝑃𝑌

𝑃𝐿
         (8) 

where PY is the output price, PK the input price of capital and PL the input price of labor, 

respectively. Following Carraro and de Cian (2013), it is assumed that the factor-biased technical 

change parameter AK can be linked to various categories of R&D investments, which represents the 

endogenous part of technical change. As not all technical change can be explained by R&D stocks 

(other drivers that are not captured in this paper might be relevant, such as human capital) the 

remaining part of technical change is exogenous and represented by a time vector. Equation 9 

describes the relation of factor-augmenting technical change to R&D stocks : 

𝐴𝐾 = 𝐴𝐾0. 𝑒𝛿𝑡.𝑡. ∏ 𝑅𝐷𝑗
𝛿𝑗𝑗

1             (9) 

where RDj is the respective j-th category of R&D stocks, t stands for a time vector and parameters δj 

indicate the elasticity of factor-augmenting technical change with respect to R&D stock category. 

Expressing equation (9) in growth rates shows that growth of factor biased technical change 

consists of an autonomous part (exogenous) and an endogenous part, which is dependent on R&D 

(where R&D stocks are represented in growth rates rdj).  

𝑎𝑘 =  𝛿𝑡 + ∑ 𝛿𝑗𝑟𝑑𝑗
𝑗
1      (analogically for labor aL)   (10) 

Substituting aK from equation (10) into the demand equation for capital (7) expressed in growth 

rates yields: 

(𝑘 − 𝑦) = (𝜎 − 1). 𝛿𝑡 +  (𝜎 − 1). 𝛿𝑗. 𝑟𝑑𝑗 + 𝜎. (𝑝𝑦-𝑝𝑘) (analogically for labor demand)  (11) 
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In order to reflect the panel character of the data, country dummies were added to the equation to 

account for the heterogeneity. The final specification of the system of equation that is estimated 

separately for each production sector is:  

𝐹𝑂𝐶𝐶𝑎𝑝𝑖𝑡𝑎𝑙 ∶  (𝑘 − 𝑦) = ∑ (𝜎 − 1). 𝛿𝐾𝑖. 𝐷𝑖
13
1 + (𝜎 − 1). 𝛿𝐾𝑗 . 𝑟𝑑𝑗 + 𝜎. (𝑝𝑦- 𝑝𝑘)      (12)  

𝐹𝑂𝐶𝐿𝑎𝑏𝑜𝑟:  (𝑙 − 𝑦) = ∑ (𝜎 − 1). 𝛿𝐿𝑖. 𝐷𝑖
13
1 + (𝜎 − 1). 𝛿𝐿𝑗. 𝑟𝑑𝑗 + 𝜎. (𝑝𝑦- 𝑝𝑙)        (13) 

Where (k-y) is calculated as D.ln(K) - D.ln(Y) and represents  difference of growth rates of capital 

services and real value added, expressed in 2005 international PPP dollars,  (l-y) is calculated as 

D.ln(L) - D.ln(Y) and represents the difference of growth rates of labor services and real value 

added, expressed in 2005 international PPP dollars. Analogically, price indices of value added, 

labor and capital were used to calculate the differences of growth rates of variables (py-pk) and (py–

pL). Price of capital was calculated by dividing nominal capital compensations by capital services, 

analogically for labor. rdj represents growth rates of j
th

 R&D stock categories D.ln(RD_stock). 

Finally, country dummies Di represent 13 individual country intercepts. 

Regarding the parameters in the system (12) and (13), σ indicates the elasticity of substitution 

between capital and labor, parameters δKi and δLi represent country specific exogenous rate of capital 

and labor augmenting technical change and parameters δKj and δLj indicate the elasticity of capital 

(labor) augmenting technical change with respect to selected R&D category. The total rate of 

capital (labor) augmenting technical change can be calculated by substituting the mean rate of 

exogenous technical change δK (δL) and the elasticities δKj (δLj) to equation (10). The Cobb-Douglas 

technology can be verified by testing if the elasticity of substitution is equal to one. Rejecting the 

null hypothesis confirms the correctness of the CES technology specification. 

In case of a neutral technical change, parameters δKi  in the capital demand equation are equal to δLi 

in the labor demand equation. The presence of a neutral technical change can be tested by a Wald 

test : 

H0: δKi (FOC_Capital) = δLi (FOC_Labor)   

 

3.4 Econometric approach 

There are several econometric methods that could be used to estimate the system of equations (12) 

and (13), such as the method of Seemingly Unrelated Regressions (SUR) that takes into account the 

fact that the residuals in both FOC are correlated and enables to impose the constraint of equal 

substitution elasticities in each equation, or a non-linear version of SUR (NLSUR) that enables to 

estimate a direct structural form of the equations instead of a reduced form that is obtained by SUR. 
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In this paper, the Generalized Method of Moments (GMM) system estimator was applied as it 

provides the advantages of NLSUR and it also enables to deal with a potential endogeneity problem 

that might be present due to high aggregation of the dataset. The procedure for dealing with 

endogeneity in the paper was the following: at first, a default version of the model was estimated 

using two-step GMM with heteroscedasticity-autocorrelation consistent standard errors (Newey and 

West algorithm). Consequently, a modified version of the model with lagged ratio of prices  by one 

and two periods (l1.log(py/pk) and l2.log(py/pl)) was applied as instruments for the py_pk and 

py_pl variables (in most cases, the Breusch-Godfrey test rejected the presence of autocorrelation in 

the model). The endogeneity problem was tested by comparing the overidentifying restriction test 

statistics (Hansen's J Chi
2
) of this model with the test statistics of a model with instrumental 

variables including the potential endogenous variables py_pk and py_pl. Provided that there is an 

endogeneity problem, the overidentifying restrictions test in the model with included endogenous 

variable will strongly reject H0. In this case, the default GMM estimates might not be consistent and 

instead, parameters obtained from GMM with instrumented prices are reported.  
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4. Results  

4.1. Descriptive statistics - growth of output, input, prices and R&D stocks in OECD countries 

Positive values of growth rates of k_y and l_y variables reported in Table 3 indicate increasing 

intensity of input uses in the production process in the last two decades. It is observed that capital 

deepening occurred in most sectors, with largest rates recorded in mining and construction. 

Contrary to capital, most of the sectors reported a declining use of labor in value added, with the 

largest negative growth occurring in agriculture and the public utilities sector. Only in the 

construction sector, growth of labor input was moderately positive, which can be complementary to 

higher capital intensification. It can be noted that in case of agriculture and public utilities, both 

capital and labor input shares declined which can be a sign of a neutral technical progress.  

Observing the evolution of prices, it is found that in most sectors, the ratio of output and input 

prices declined, suggesting a decline of producer margins. Regarding capital prices, only in 

financial services, the price of output grew quicker than that of capital. In the remaining sectors, 

relative prices of capital increased. Besides, capital prices exhibit very high variation, especially in 

the construction, agriculture and retail. This is associated with volatility of capital compensations 

that were even negative in specific years. As for labor, growth rates of output to labor prices were 

negative for all sectors except for construction, suggesting that relative prices of labor increased 

over the whole period in the selected OECD countries.  

The descriptive statistics of R&D stocks used in the analysis is provided in Table 4. It can be noted 

that business expenditures to research and development grew moderately with a rate of 1% annually 

in the period of 1987-2006. The most dynamic R&D category was R&D in business services, where 

growth rates reached almost 4%. This justifies the increased interest of policy makers in the role of 

R&D services in the economy, as pointed out in the European Commission Report cited above. 

A closer look at the R&D stocks growth across OECD countries is shown in Figures 1-4. It is 

apparent that countries that contributed the most to growth of R&D stocks were Ireland, Australia, 

Finland, Spain, Canada and Japan. According to the Innovation Union Scoreboard (EC, 2014), 

Finland belongs to the innovation leaders and Ireland is leading in the economic dimension of the 

Scoreboard. Particularly striking is the growth of R&D in Irish services, which reached 15%. On the 

other hand, R&D investments in agriculture (from public sources) remained rather low and most 

countries reported growth less than 1%.  
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Growth rates of calculated foreign R&D spillovers are provided in Table 5. Whereas total domestic 

R&D stocks grew by 1.2%, the growth of foreign R&D spillovers was either very low as in case of 

the LP approach (0.08%) or even negative as in case of the CH approach (-0.23%). This shows that 

only a negligible proportion of domestic knowledge can potentially be spilled over abroad via 

imports of intermediate goods. The main reason for this is the fact that countries that are highly 

active in R&D are not important exporters or, large exporters are not strong innovators.  

Figures 5-6 show country detail of foreign R&D spillovers calculated by the CH and LP 

approaches. Whereas the CH method assigns the highest weight to the R&D stock generated by the 

largest trading partner, the LP method assigns the highest weight to the R&D stock generated in the 

country that trades the highest proportion in domestic production. This leads to considerable 

differences in ranking of R&D spillovers (e.g. compare Germany vs. Spain). 

Table 5 also reports growth rates of inter-industry manufacturing R&D spillovers for each sector. 

The positive values indicate that growth of domestic manufacturing R&D stocks has a higher 

potential in spilling abroad to other industries via imports of intermediate consumption.   

 

4.2. Estimation of the system of equations 

The results of the GMM estimates of the first order conditions of capital (FOC_K) and labor 

(FOC_L) for all aggregated sectors are reported in Table 6. The estimated elasticities of substitution 

are highly significant. The parameters range from 0.18 in the whoselale/retail sector to 0.53 in the 

construction sector and are statistically different from unity, confirming the appropriateness of the 

CES specification over a restrictive C-D specification. Concerning agriculture, the unconstrained 

estimates provided highly inconsistent substitution elasticities (σFOC_K=0.01, σFOC_L=0.15). This 

might be related to a measurement error in capital stock due to exclusion of land in KLEMS 

database, leading to biased estimates for the capital equation. Therefore, only the FOC of labor was 

estimated for agriculture. The disadvantage is that the results only allow to quantify the role of 

endogenous drivers on labor augmentation, but they cannot be used to assess whether technical 

change in agriculture was neutral or factor-biased. Most of the exogenous labour-augmenting 

technical change parameters are positive and significant. The positive values imply that the 

exogenous component of technical change in agriculture was labor-saving. Concerning the 

endogenous drivers of technical change, only domestic manufacturing R&D stocks are found to be 

significant in explaining labor augmentation. However, no evidence was found for the agricultural 

R&D to improve labor productivity, which is not in line with our expectations and it may be related 

to the construction of agricultural R&D stocks (distributed lagged forms would be probably more 
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appropriate, as used by Alston et al. (2008) or Thirtle et al. (2008). Regarding the role of foreign 

spillovers, the results show that labour augmenting technical change in agriculture was declining 

due to foreign manufacturing R&D stock, which is also not in line with the prevailing evidence. 

Concerning the mining sector, from all considered R&D stock categories, only total foreign R&D 

spillovers proved to significantly affect labor-augmenting technical change in mining. This 

confirms the assumption that sectors with lower own R&D activity benefit mostly from 

international spillovers transported via imported intermediate consumption. Regarding 

manufacturing, multiple exogenous augmenting technical change parameters were significant in the 

direction of labor saving. Concerning the endogenous drivers, both domestic manufacturing and 

foreign R&D manufacturing stocks significantly improved productivity of manufacturing industries. 

This provides a positive evidence on the role of business R&D expenditures in industrial 

productivity. The estimates for the public utilities sector show that manufacturing R&D investments 

proved significant in explaining capital augmenting technical change. On the other hand, labor-

augmenting technical change in public utilities was positively stimulated by R&D in services , but it 

was not found to be significant. Regarding the construction sector, the estimates are less reliable 

due to data issues related to capital prices. The unconstrained estimates provided inconsistent 

substitution elasticities and if estimated separately by OLS, the elasticity of substitution in the 

capital equation was not significant. Thus, similar to agriculture, only the equation of FOC labor is 

reported, which produces a reliable value of the substitution elasticity. None of the R&D stock 

categories were proven to be significant in explaining labor-biased technical change in construction, 

although the total R&D stocks had at least the expected direction. Regarding the sector of 

wholesale, retail and hotels, the test of over identifying restrictions rejected H0 indicating a 

possible endogeneity problem in the model. Therefore, GMM with instruments of lagged price 

ratios was applied. The results show that most of the exogenous rates of technical change are 

significant in direction of labor-saving technical change but the effect of R&D investments is 

dubious – only foreign R&D spillovers proved significant, but in form of labor-using rather than 

labor-saving effect. Concerning the transport, storage and communication sector, the original 

moment conditions of GMM were also invalid according to the over-identifying restrictions test and 

therefore, the results are reported for GMM with instrumented prices. Similarly as in other sectors, 

the rates of exogenous technical change were indicated as labor-saving. Manufacturing R&D stocks 

were identified as important drivers of labor-saving technical change in this sector. As for the sector 

of finance, insurance and real estate it was not possible to relate labor-augmenting technical change 

to any of the R&D drivers. Contrary to the expectations, R&D stocks in services were not proved 

significant in explaining factor augmenting technical change 
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4.3. Explaining factor-biased technical change 

The test of neutral technical change was applied to the estimates testing if the 13 country specific 

rates of exogenous technical change differ across the FOC equations. In mining, manufacturing, 

wholesale and retail and transportation sectors, the evidence of neutral technical change was 

rejected in most cases. However, in public utilities the evidence was mixed – in some countries, 

technical change exhibited neutral rates, which is in line with the descriptive statistics which 

showed that the share of both inputs declined along the period. For financial services, the 

hypothesis of neutral technical change in most cases cannot be rejected, which is probably related to 

the insignificant rates of factor augmenting technical change in both equations, implying that in 

most countries, technical change in financial services did not occur or was negligible.  

Figures 7-12 report how exogenous labor augmenting technical change rates vary across the OECD 

countries. Regarding manufacturing, almost all countries report significant evidence of exogenous 

labor augmenting technical change, with the highest rate recorded in Ireland (6%), Finland (4.5%) 

and Japan (3.4%). Significant evidence is also found in the transport and communication sector, 

where rates of technical change reached up to 5% in case of Germany and Finland. High rates of 

labor augmenting technical change are also observed in agriculture, particularly for Germany (5%), 

Finland (4.5%) and Spain (3.4%). The sectors of financial services and construction are not reported 

because of limited evidence of labor-augmenting technical change. 

For calculating the endogenous part of technical change, the elasticities of augmenting technical 

change are multiplied with mean growth rates of respective R&D drivers. The ranking of the 

elasticities is reported in Table 7. The elasticities range between 0.69% in mining to 0.02% in 

financial services. It is observed that the domestic manufacturing R&D stocks were the most 

common drivers of productivity, where 1% growth of domestic R&D stimulated labor augmenting 

technical change by 0.49% in agriculture and 0.40% in the transport and communication sector. In 

case of the public utilities and financial services sectors, manufacturing R&D positively affected the 

productivity of capital.  

Finally, Table 8 reports the decomposition of total factor augmenting technical change on 

endogenous and exogenous drivers. The exogenous rates were computed as an average over the 

individual country rates. It is observed that the rates of endogenous technical change are 

considerably smaller than the exogenous rates, which is related to low dynamics of R&D 

expenditures in the past two decades. 
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5. Discussion 

The estimated technology parameters can be only partially compared with other works, as there is 

limited evidence on endogenous technical change in the empirical literature. Regarding the 

substitution elasticities, the results are in line with other estimates. For instance Young (2013) finds 

substitution elasticities less than 0.5 for major US industries. Using industry-level data for 12 

OECD countries, Van der Werf (2008) estimated σKL for 7 manufacturing sub-sectors  in range of 

0.2 – 0.6. Carraro and de Cian (2013) estimated the endogenous elasticity of substitution in a nested 

production function including energy to 0.38 for the aggregated manufacturing industry, which is 

almost identical to our estimate (0.34). 

The estimated technology parameters showed that in most sectors, the technical change was biased 

towards labor with labor-saving and capital-using effects. This finding is consistent with other 

works, for instance Van der Werf (2008) finds rates of labor-augmenting technical change around 

3% and negative rates of capital-augmenting technological change. Furthermore, it is consistent 

with Jorgenson (2010) who concluded that technical change for most sectors of US economy was 

labor-saving and capital-using, except for services where it is slightly capital-saving, which 

corresponds to the capital-saving effect of the R&D manufacturing spillovers on financial services 

found in our study.  

The role of endogenous R&D drivers in explaining technical change seems to be small, as it 

captures only small part of the exogenous factor-biased technical change. This finding can be most 

directly compared with Carraro and de Cian (2013) who estimated factor augmenting technical 

change considering three endogenous drivers for manufacturing industries in 13 OECD countries.  

Carraro and de Cian find aggregated R&D stocks to be significant drivers of capital productivity, 

which is in contrast to our findings that show evidence of labor augmentation. They also found 

larger R&D effects (with an elasticity of 0.94% compared to 0.37%  in our study). This can be 

related to the difference in the period of analysis that the authors used (1987 – 2002), the origin of 

their dataset and the estimation method. 
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6. Conclusion 

The aim of the paper was to quantify endogenous factor-augmenting technical change driven by 

accumulated R&D investments. This is the first attempt to quantify endogenous technical change on 

a broader number of sectors. The study focused on a panel of 13 OECD countries over 20 years. A 

CES framework with cost minimization behavior was chosen to derive the system of equations that 

were estimated by GMM system estimator.  

Several conclusions can be made from the obtained results. First, there is strong evidence that 

technical change in selected OECD countries has been directed towards labor in most of the sectors 

and the hypothesis of neutral technical change can be rejected for most sectors. However, the 

growth of labor augmenting technical change is offset by negative capital augmentation, thus total 

productivity effects are moderate in most sectors.  

Second, statistically significant effects of domestic and foreign manufacturing R&D were found on 

labor-augmenting technical change in manufacturing, agriculture, transport and the retail sector. 

This confirms the initial hypothesis that productivity on a sector level is driven by technology 

drivers from outside, as for instance in agriculture, labor augmenting technical change was partially 

explained by R&D spillovers from manufacturing. Concerning the foreign R&D spillovers, their 

positive effect on factor-augmenting technical change is proved mostly in case of manufacturing 

R&D, which had higher potential of transfer via technology imports than the total R&D stock.  

Third, contrary to expectations, it was found that the effect of R&D drivers on factor-augmenting 

technical change seems rather small as major part of technical change still remains unexplained. 

One of the reasons may be the omission of other possible technology drivers such as human capital. 

However, it may be also related to quality of R&D data. For instance concerning agriculture, data 

for public agricultural R&D expenditures in OECD countries is not available in consistent and 

sufficiently long time series. This applies also to the category of total public R&D expenditures, 

which are not adequately recorded neither in Eurostat nor in OECD databases.  

Despite of these challenges, the outcomes of the study can be used to enhance the specification of 

technical change in global CGE models that are frequently used to assess important global issues, 

such as climate change, food security and land use change. They provide a starting point for 

incorporating endogenous factor-biased technical change in these models. With the estimated 

elasticities, it is possible to model the relationship between investments in R&D and factor-

augmenting technical change. For example, with these additions, CGE model MAGNET (LEI 

Wageningen UR, 2014) can be extended to simulate the impact of public agricultural R&D on food 
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security. Such an analysis will be particularly interesting for developing countries, where the returns 

from R&D are expected to particularly high (Alston, 2000). Besides, the extensions can be used in 

other Magnet policy applications such as the impacts of CAP policies, climate change or biofuel 

directive (Kavallari et al., 2014).  

 

Tables and Figures  

Table 1: Mapping of KLEMS production sectors into the aggregation used in the analysis 

KLEMS KLEMS sector description Abbreviation Aggregated sector description 

AtB 
Agriculture, Hunting, forestry and 
fishing agr Agriculture, Hunting, Forestry and Fishing 

C Mining and quarrying min Mining and Quarrying 

D Total manufacturing man Manufacturing 

E Electricity, gas and water supply pu Public Utilities (Electricity, Gas, and Water) 

F Construction con Construction 

G Wholesale and retail trade 

wrt 
Wholesale and Retail Trade, Hotels and 
Restaurants H Hotels and restaurants 

I Transport storage and communication tsc Transport storage and communication 

J Financial intermediation 

fire 
Finance, Insurance, Real Estate and Business 
Services K Real estate, renting and business activities 

Note: governmental and community services were excluded due to lack of data on for this sector. 

Table 2: Manufacturing sub-sectors j used in calculating manufacturing R&D spillovers 

Total manufacturing sector 

  C15T16: Food products, beverages and tobacco 

  C17T19: Textiles, textile products, leather and footwear 

  C20T22: Wood, paper, printing, publishing 

  C23T25: Chemical, rubber, plastics and fuel products 

  C26: Other non-metallic mineral products 

  C27: Basic metals 

  C28: Fabricated metal products, except machinery and equipment 

  C29T35: Machinery and equipment, instruments and transport equipment 

  C36T37: Manufacturing n.e.c. and recycling 

 

Table 4: Descriptive statistics of domestic R&D stocks growth rates 

Variable      Mean Std. Dev. Min Max 

dlog_RDagri 0.5% 1.9% -6% 12% 

dlog_RDman 0.8% 2.0% -2% 13% 

dlog_RDserv 3.9% 7.3% -15% 67% 

dlog_RDtot 1.2% 2.3% -1% 15% 

dlog_RDpub 0.7% 1.9% -2% 15% 

Source: : Authors’ calculations 
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Table 3: Descriptive statistics of output, inputs and price growth for 13 OECD countries (1987-2006) 

  Variable Obs Mean Std. Dev. 

Agriculture 

k_y 242 -1.0% 7.3% 

l_y 242 -3.2% 7.0% 

py_pk 204 -0.8% 30.0% 

py_pl 242 -3.4% 8.8% 

Mining 

k_y 242 2.4% 12.6% 

l_y 242 -2.2% 12.5% 

py_pk 229 0.9% 21.1% 

py_pl 242 -0.2% 15.1% 

Manufacturing 

k_y 242 0.6% 3.9% 

l_y 242 -2.9% 3.2% 

py_pk 242 0.0% 9.1% 

py_pl 242 -2.5% 3.1% 

Public utilities 

k_y 242 -0.6% 6.7% 

l_y 242 -3.4% 7.7% 

py_pk 242 -1.4% 12.8% 

py_pl 242 -2.3% 7.6% 

Construction 

k_y 242 3.0% 5.3% 

l_y 242 0.1% 3.5% 

py_pk 221 -1.5% 58.4% 

py_pl 242 0.3% 4.0% 

Wholesale, retail, 
hotels 

k_y 242 1.6% 4.0% 

l_y 242 -1.8% 3.6% 

py_pk 242 -0.1% 13.3% 

py_pl 242 -1.3% 3.6% 

Transport, storage, 
communication 

k_y 242 0.4% 4.0% 

l_y 242 -3.1% 3.7% 

py_pk 242 -0.8% 8.9% 

py_pl 242 -2.4% 3.6% 

Finance, insurance, 
real estate and 

business 

k_y 242 1.0% 2.9% 

l_y 242 -0.2% 2.9% 

py_pk 242 1.0% 4.6% 

py_pl 242 -0.4% 3.6% 

 

Table 5: Growth of Foreign R&D stocks  

Variable Mean Std. Dev. 

Total Business Foreign Spillovers 

Foreign R&D_stock_CH -0.23% 4% 

Foreign R&D_stock_LP 0.08% 8% 

Manufacturing foreign R&D spillovers (CH) 

agriculture 0.3% 18% 

mining 0.9% 19% 

Public utilities 1.4% 33% 

construction 0.1% 18% 

Wholesale, retail -0.3% 14% 

Transport 0.8% 14% 

Finance, real estate 0.8% 19% 
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Table 7: Overview of elasticities of factor augmenting technical change w.r.t. R&D drivers  

Sector Equations 
Elasticity of AK/AL to 
R&D stock (%) 

Endogenous driver 

Mining FOC_L 0.69 RD total spillovers 

Agriculture FOC_L 0.49 RD man 

Transport FOC_L 0.4 RD man 

Manufacturing FOC_L 0.37 RD man 

Public utilities FOC_K 0.32 RD man 

Manufacturing FOC_L 0.23 RD man spillovers 

Manufacturing FOC_K 0.09 RD man spillovers 

Financial Services FOC_K 0.02 RD man spillovers 
Source: authors calculation 

 

Table 8: Quantification of factor-augmenting technical change 

Sector Equations 

Exo factor-
augmenting 

TC (%) 

Endo factor-
augmenting 

TC (%) 

Total factor-
augmenting 

TC (%) 
Total factor-

augmentation  

Agriculture FOC_L  2.8% 0.5% 3.3% NA 

Mining 

FOC_K -6.2% 0.0% -6.2% 

-2.9% FOC_L 3.5% -0.2% 3.3% 

Manufacturing 

FOC_C -1.1% 0.1% -1.0%   

FOC_L 2.5% 0.6% 3.1% 2.2% 

Public utilities 

FOC_K 0.3% -0.4% -0.2%   

FOC_L 3.6% 0.0% 3.6% 3.5% 

Construction FOC_L -0.2% 

    

NA 0.0% -0.2% 

Wholesale, retail, hotels 

FOC_K -2.1% 0.0% -2.1%   

FOC_L 1.8% 0.0% 1.7% -0.3% 

Transport, storage 

FOC_K -1.2% 0.0% -1.2%   

FOC_L 3.5% -0.2% 3.2% 2.0% 

Financial services 

FOC_K -1.1% 0.02% -1.08%   

FOC_L 0.2% 0.0% 0.2% -0.9% 

Source: authors calculation 
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Table 6: Two-step GMM Estimates of the system of equations (with Newey-West HAC errors) 

 
Note: for sector abbreviations see Table 1, fRtot_CH and fRDtot_LP are total foreign R&D spillovers, fRD_man_CH and 

fRD_man_LP are foreign manufacturing R&D spillovers absorbed in other industries. Coefficient sigma indicates elasticity of 

substitution. Standard errors are in the brackets, ***/**/* indicate significance the parameter at 0.01/0.05/0.1 level.   

 

 

 

 

 

Agr Min Man Pu Con Wtr Tsc Fire
FOC Capita l  - dependent variable = k_y

deltak1 - AUS -0.014  (0.01) -0.029  (0.00***) -0.019  (0.01***) -0.014  (0.01**) -0.003  (0.009) -0.004  (0.003)

deltak2 - BEL -0.1  (0.03***) -0.033  (0.01***) 0.016  (0.00***) -0.047  (0.01***) -0.018  (0.01**) 0.006  (0.004)

deltak3 - CAN -0.025  (0.01**) 0.001  (0.006) 0.004  (0.005) -0.019  (0.01***) -0.009  (0.01*) -0.06  (0.00***)

deltak4 - DEU 0.011  (0.027) -0.014  (0.00***) 0  (0.006) -0.033  (0.00***) -0.01  (0.006) -0.011  (0.00***)

deltak5 - ESP -0.043  (0.01***) -0.013  (0.00***) 0.02  (0.01***) -0.043  (0.00***) -0.033  (0.01***) -0.002  (0.005)

deltak6 - FIN -0.011  (0.021) 0.01  (0.01) -0.004  (0.005) -0.003  (0.013) 0.003  (0.01) -0.012  (0.001*)

deltak7 - FRA -0.033  (0.01***) 0.001  (0.004) 0.038  (0.01***) -0.018  (0.00***) 0.018  (0.00***) -0.003  (0.002)

deltak8 - GBR -0.024  (0.01***) -0.002  (0.007) -0.016  (0.00***) -0.023  (0.00***) -0.03  (0.00***) -0.035  (0.02**)

deltak9 - IRL -0.088  (0.03***) -0.01  (0.009) 0.016  (0.018) -0.025  (0.01**) -0.003  (0.019) -0.005  (0.005)

deltak10 - ITA -0.028  (0.01***) -0.023  (0.00***) -0.032  (0.01***) -0.036  (0.01***) -0.036  (0.02*) 0  (0.003)

deltak11 - JPN -0.025  (0.01***) -0.022  (0.00***) 0.007  (0.006) -0.005  (0.003) -0.02  (0.01***) -0.012  (0.00***)

deltak12 - NLD -0.008  (0.008) -0.001  (0.002) -0.004  (0.01) 0.003  (0.003) -0.001  (0.01) -0.002  (0.003)

deltak13 - USA -0.026  (0.016) -0.009  (0.004) 0.008  (0.006) -0.006  (0.01***) -0.018  (0.01***) -0.003  (0.004)

delta_RDagri

delta_RDman 0.029  (0.105) 0.32  (0.09***) -0.138  (0.213)

delta_RDserv -0.186  (0.07***) 0.022  (0.026)

delta_RDtot -0.3  (-0.46)

delta_fRDtot_CH -0.269  (0.306)

delta_fRDtot_LP 0.067  (0.05)

delta_fRD_man_CH 0.022  (0.01*)

delta_fRD_man_LP 0.087  (0.03**)

s igma 0.4  (0.04***) 0.337  (0.03***) 0.49  (0.02***) 0.183  (0.04***) 0.344  (0.12***) 0.426  (0.10***)

FOC Labor - dependent variable = l_y

delta l1 - AUS 0.032  (0.01***) 0.03  (0.01***) 0.013  (0.00***) 0.045  (0.033) 0.004  (0.01) 0.023  (0.00***) 0.039  (0.01**) -0.007  (0.006)

delta l2 - BEL 0.008  (0.015) 0.086  (0.02***) 0.02  (0.00***) 0.02  (0.01***) 0.023  (0.01***) 0  (0.0026796) 0.026  (0.01**) 0.001  (0.004)

delta l3 - CAN 0.034  (0.01***) 0.002  (0.01) 0.016  (0.00***) -0.021  (0.01***) 0.003  (0.008) 0.021  (0.01***) 0.018  (0.00***) 0.001  (0.003)

delta l4 - DEU 0.05  (0.01***) 0.049  (0.01***) 0.026  (0.00***) 0.035  (0.02**) -0.01  (0.00**) 0.019  (0.00***) 0.055  (0.00***) -0.001  (0.006)

delta l5 - ESP 0.034  (0.01***) 0.041  (0.01***) -0.012  (0.00***) 0.032  (0.02*) -0.01  (0.006) 0  (0.004) 0.017  (0.00***) 0.005  (0.006)

delta l6 - FIN 0.045  (0.01***) 0.034  (0.02***) 0.046  (0.00***) 0.0747  (0.01***) 0.01  (0.005) 0.018  (0.01**) 0.055  (0.01***) 0.003  (0.009)

delta l7 - FRA 0.039  (0.01***) 0.023  (0.023) 0.023  (0.00***) 0.024  (0.01*) -0.001  (0.003) 0.01  (0.00***) 0.035  (0.00***) -0.001  (0.003)

delta l8 - GBR 0.021  (0.01***) 0.074  (0.02***) 0.025  (0.00***) 0.062  (0.01***) 0.01  (0.008) 0.016  (0.00***) 0.042  (0.00***) 0.0165  (0.01***)

delta l9 - IRL 0.012  (0.009) -0.008  (0.015) 0.063  (0.00***) 0.041  (0.037) -0.01  (0.007) 0.03  (0.01***) 0.021  (0.013) 0.01  (0.014)

delta l10 - ITA 0.033  (0.01***) 0.023  (0.02) 0.011  (0.007) 0.062  (0.01***) -0.01  (0.006) 0.007  (0.006) 0.041  (0.01***) -0.008  (0.00**)

delta l11 - JPN 0.025  (0.01***) 0.038  (0.02**) 0.034  (0.00***) 0.027  (0.01**) -0.019  (0.01**) 0.032  (0.01***) 0.027  (0.01***) 0.008  (0.005)

delta l12 - LND 0.017  (0.013) 0.018  (0.024) 0.025  (0.00***) 0.043  (0.027107) -0.01  (0.00***) 0.022  (0.00***) 0.036  (0.01***) -0.005  (0.00***)

delta l13 - USA 0.011  (0.008) 0.039  (0.01***) 0.034  (0.00***) 0.031  (0.01***) -0.014  (0.00***) 0.028  (0.00***) 0.037  (0.01***) -0.002  (0.004)

delta_RDagri -0.34  (0.289)

delta_RDman 0.491  (0.24**) 0.368  (0.08***) -0.463  (0.366) 0.396  (0.17**)

delta_RDserv 0.343  (0.347)

delta_RDtot 0.236  (0.17) -0.577  (0.29**)

delta_fRDtot_CH 0.692  (0.33**)

delta_fRDtot_LP -0.124  (0.04***)

delta_fRD_man_CH -0.069  (0.03**)

delta_fRD_man_LP 0.226  (0.04***)

s igma 0.263  (0.03***) 0.4  (0.04***) 0.337  (0.03***) 0.489  (0.02***) 0.525  (0.05***) 0.183  (0.04***) 0.344  (0.12***) 0.426  (0.1***)
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Figures 1-4: Annual growth rates of Business R&D stocks in selected OECD countries (1987-2006) 

      

    
Note: In case of agriculture, R&D stocks are calculated from governmental budget appropriations. 

 

 

Figures 5-6: Annual growth rates of R&D stocks in selected OECD countries (1987-2006) 

   
Source: authors calculation 
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Figures 7-12: Exogenous rates of  labor augmenting technical change across OECD countries   

  

  

  
Note: Countries with * have significant parameters of exogenous labor augmenting technical change.  
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Appendix: Derivation of the demand conditions of capital and labor 

Under constant returns to scale and perfect competition, producers minimize costs subject to CES production 

technology.  The constrained optimization problem is written as: 

𝑚𝑖𝑛𝑇𝐶 = 𝑃𝑘 . 𝐾 + 𝑃𝐿 . 𝐿 subject to:   𝑌 =  [𝛼𝐾 . (𝐴𝑘. 𝐾)(
𝜎−1

𝜎
) + 𝛼𝐿 . (𝐴𝐿 . 𝐿)(

𝜎−1

𝜎
)]

(
𝜎

𝜎−1
)

    

The corresponding Lagrangian function writes as: 

𝐿(𝐾, 𝐿, 𝜆) = 𝑃𝑘 . 𝐾 + 𝑃𝐿 . 𝐿 − 𝜆. { [𝛼𝐾 . (𝐴𝑘. 𝐾)(
𝜎−1

𝜎
) + 𝛼𝐿 . (𝐴𝐿 . 𝐿)(

𝜎−1

𝜎
)]

(
𝜎

𝜎−1
)

− 𝑌}   (1) 

Applying the first order derivations with respect to K,L and λ and equalizing to zero yields the following tangency 

condition, which equalizes ratio of input prices to marginal products: 

𝑃𝑘

𝑃𝐿
=

𝑀𝑘

𝑀𝐿
=

𝛼𝑘.𝐴𝑘.𝐾
−1
𝜎

𝛼𝐿.𝐴𝐿.𝐿
−1
𝜎

          (2) 

Solving for K and L from equation 2 yields: 

𝐿 = (
𝛼𝐿.𝑃𝐾

𝛼𝐾.𝑃𝐿
)

𝜎

. (
𝐴𝐿

𝐴𝑘
)

𝜎−1

. 𝐾    𝐾 = (
𝛼𝐾.𝑃𝐿

𝛼𝐿.𝑃𝐾
)

𝜎

. (
𝐴𝐾

𝐴𝐿
)

𝜎−1

. 𝐿       (3,4)  

Substituting L into the CES function and collecting terms yields: 

𝑌
𝜎−1

𝜎 = 𝐾
𝜎−1

𝜎  . (
𝑃𝐾

𝛼𝐾
)

𝜎−1

. (𝛼𝐾 . 𝑃𝐾
1−𝜎 . 𝐴𝐾

𝜎−1

𝜎 + 𝛼𝐿 . 𝑃𝐿
1−𝜎 . 𝐴𝐿

𝜎−1

𝜎  . (
𝐴𝐿

𝜎−1

𝐴𝐾
𝜎−1)

(
𝜎−1

𝜎
)

)    (5) 

Solving for K from equation 5 yields: 

𝐾 = 𝑌 . (
𝑃𝐾

𝛼𝐾
)

−𝜎

. (𝛼𝐾 . 𝑃𝐾
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(
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𝜎
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)
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    (6) 

𝐿 = 𝑌 . (
𝑃𝐾

𝛼𝐾
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. (𝛼𝐾 . 𝑃𝐾
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(
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𝜎
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1−𝜎 . 𝐴𝐿

𝜎−1

𝜎  . )

(
−𝜎

𝜎−1
)

    (7) 

Substituting K and L from equations 6 and 7 into total costs function yields: 

𝑇𝐶 = 𝑃𝑘 . 𝑌 . (
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𝛼𝐾
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−𝜎
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  (8) 

Assuming that under perfect competition, firms operate with zero profits and output price equals to unit costs. Dividing 

equation 8 by total output and using substitution for repeated terms yields: 

𝑃 =
𝑇𝐶

𝑌
= 𝑎. 𝐴𝐾

−1. (
𝐴𝐾

𝐴𝐿
)

𝜎

. z
−𝜎

𝜎−1 + 𝑏. 𝐴𝐿
−1. z

−𝜎

𝜎−1       (9) 

Where 𝑎 = 𝛼𝐾 . 𝑃𝐾
1−𝜎 and 𝑏 = 𝛼𝐿 . 𝑃𝐿

1−𝜎  and z =[𝑎 + 𝑏. (
𝐴𝐿

𝐴𝐾
)

1−𝜎

]     (10, 11, 12) 

Collecting z term in equation 9 provides: 

𝑃 = z
−𝜎

𝜎−1. 𝐴𝐿
−1. [𝑎. (

𝐴𝐾

𝐴𝐿
)

𝜎−1

+ 𝑏] = z
−𝜎

𝜎−1. 𝐴𝐿
−1. z       (13) 

Solving for z in equation 13 results in: 

𝑧 = (𝑃. 𝐴𝐿
   )1−𝜎  

Substituting z into demand equation for capital (6) yields: 

𝐾 = 𝑌 . (
𝑃𝐾

𝛼𝐾
)

−𝜎

. 𝐴𝐾
−1. (

𝐴𝐾

𝐴𝐿
)

𝜎

. z
−𝜎

𝜎−1 . = 𝑌 . (
𝑃𝐾

𝛼𝐾
)

−𝜎

. 𝐴𝐾
−1. (

𝐴𝐾

𝐴𝐿
)

𝜎

. (𝑃. 𝐴𝐿
   )𝜎    (14) 

Arranging the terms in equation 14 yields: 

𝐾

𝑌
= (

𝛼𝐾.𝑃

𝑃𝐾
)

𝜎

. 𝐴𝐾
𝜎−1          (15) 
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Finally, applying logarithm yields 16: 

𝑙𝑛
𝐾

𝑌
= 𝜎. 𝑙𝑛𝛼𝐾 + (𝛿 − 1). 𝑙𝑛𝐴𝑘 + 𝜎. 𝑙𝑛

𝑃𝑦

𝑃𝑘
           (16) 

Substituting z into demand equation for labor yields: 

𝐿 = 𝑌 . (
𝑃𝐿

𝛼𝐿
)

−𝜎

. 𝐴𝐿
−1. z

−𝜎

𝜎−1 . = 𝑌 . (
𝑃𝐿

𝛼𝐿
)

−𝜎

. 𝐴𝐿
−1. (𝑃. 𝐴𝐿

   )𝜎       (17) 

Arranging the terms in equation 17 yields: 

𝐿

𝑌
= (

𝛼𝐿.𝑃

𝑃𝐿
)

𝜎

. 𝐴𝐿
𝜎−1          (18) 

Finally, applying logarithm yields: 

𝑙𝑛
𝐿

𝑌
= 𝜎. 𝑙𝑛𝛼𝐿 + (𝛿 − 1). 𝑙𝑛𝐴𝐿 + 𝜎. 𝑙𝑛

𝑃𝑦

𝑃𝑘
           (19) 

 


