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GRAFTED POLYNOMIALS AS
APPROXIMATING FUNCTIONS

WAYNE A. FULLER*

lowa State University

The use of segments of polynomials to approximate production surfaces
and time-series trends is described and illustrated. These segmented
curves are restricted to be continuous and have a continuous derivative(s)
at the join points,

The goal in many studies is to represent a response variable, y, as a
relatively simple analytic function of an input variable(s). Most func-
tions furnish only an approximation in a limited range. Thus, in a prac-
tical situation, the choice of functional form will rest upon theoretical
considerations, ease of estimation and acceptance by the data.

Discussions of the properties of some common forms used in agri-
cultural response studies are given in Heady and Dillon [4] and Mason
[9]. Two articles by Anderson [1 and 2] contain a discussion of estima-
tion problems associated with form,

Generally, a function is desired that

1. is continuous,

2. possesses continuous first derivatives,

3. 1is easy to estimate (i.e., linear in the parameters), and
4. permits easy computation of optima.

Obviously this is not an exhaustive listing of desirable properties, nor
are the listed properties of equal importance. One function that satisfies
these criteria to an admirable degree is the quadratic. However, the quad-
ratic does not always furnish an adequate approximation over the entire
experimental space.

We shall show how it is possible to ‘graft’ quadratic (and other poly-
nomial) functions to increase the domain of approximation in such a
way that Properties 1, 2, and 3, and to a large extent Property 4, are
retained.

Consider first the one-dimensional case. We assume that we can
approximate the response with

y:ao+a1X~|—a2X2 ch
y:b0+b1X+b2X2 X}C
where C is a specified number and the parameters (the a’s and b’s) are

restricted so that the curve and the derivative are continuous at the point
C. These restrictions can be written:

Ay + aIC —I—— d2C2 = bo + b1C -I— b2C2
a + 2a,C = b, + 2b5C.
These restrictions are linear in the parameters and reduce the number
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of independent parameters in the model from six to four. We choose, for
reasons which become evident below, to estimate directly the parameters
Go, Q1, A2, b2 — Q2.
The b; are then defined in terms of these four parameters by
by = ao + C? (b2 — a2)
b = a; — 2C (bz — az)
by =as + (b2 — as).
Estimates of aq, a1, a2, and (by — a2) are obtained from the regres-
sion equation
y=ao+ aX + a:X* 4 (b2 — az2) Z
where
Z=0 X<C
=(X—-0)* X>C.
The format permits estimating a single quadratic as well as the modified
quadratic by simply deleting the independent variable, Z, from the re-
gression. Also, the “t’ for the regression coefficient estimating (bs — aa)
indicates immediately the ‘gain’ obtained by adding a parameter to the
model.
Obviously one can join several quadratics in this manner and could,

for example, represent a curve with increasing and then decreasing
returns as in Figure 1.

f(x)=1.25+ x% 0 sx <l
=-0.25+3X-05%" 1<X €2
=-225+5%X - X8 2<X
£'(x)

Fic. 1—Example of a Grafted Quadratic.

The procedure is easily extended to higher-dimensional surfaces by
cutting the domain of the function with planes. We illustrate the pro-
cedure in two dimensions. Assume, as illustrated in Figure 2, that the
two-variable quadratic
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Yy =da + a1X1 + a2X2 + 03X21 —I— a4X22 + a5X1X2
holds in the region
X1 < Ko+ KX, K;5#0
and that
Yy =bo + b:1X1 + b2Xo + bsX? + bsX? + bsX 1 X
holds in the region
Xl 2 KO + K1X2
subject to the restrictions that, on the line Ko + K1 Xs = X1:
(i) the functions are equal,
(ii) thedpartial derivatives of the two functions w.r.t. X, are equal,
an
(iil) the partial derivatives of the two functions w.r.t. X, are equal.
These restrictions specify five independent linear restrictions upon the
12 parameters. If we specify the parameters to be estimated directly by
ay, ay, as, as, as, as, (b — as),
then the remaining parameters are defined by
bo = a0 — K% (2K1) 7! (b5 — a5)
by = a; + KoK= (b5 — a5)
b = ay — Ko (bs — a;5)
by = a3 — (2Ky) ! (b5 — a5)
by=a, — 271K, (b5 — a5)
bs = as + (b; — a5).
Thus, the regression equation becomes
Yy =ao + aXy + a: Xz -+ azX? + a. X% + a: X, X + (bs —a5) Z
where
Z:O X1<K0—|—K1X2
= —(2K;) "' (X1 — Ko — K1 X;,)? X1 > Ko + KXo
We note that the functions will differ in the two subdomains only if
the interaction differs in the two domains (i.e., @5 = bs). If the response
displays no interaction, one gains little by dividing the domain along a
line perpendicular to neither axis. Thus, one procedure is to divide the

domain by planes perpendicular to axes obtained by the rotation such
that the interaction term is eliminated. That is, if one fits the quadratic

Y =@ + a1 X1 + a2 X5 + a3 X% + a X% + a:X1X»
to the data of the shaded region of Figure 2, the suggested cutting planes
would be of the form
C;=X,co568— X,sin @
Co = X,;sin6 + X,cos 6
where 6 is defined by
tan 26 = 615/(0'3 — 04) as 75 as.
0= 11'/4 ag — dy.

We now outline a procedure for dividing the domain into more than
two subdivisions. Such a subdivision is illustrated in Figure 3. If the sub-
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Fic. 2—A possible subdivision of the plane for estimation of a grafted

quadratic.

divisions are identified as in the figure, we associate the four quadratic
functions with the four subdivisions

1 Yy =4qa + a1X1 + a2X2 + 03X21 + a4X22 + a5X1X2 = f1

2 y=by+ biX;y + boXs + bsX? + byX? - b5 X1 Xo =2

3 Y = Co + C]_X]_ + C2X2 —l— C'3X21 + C4X22 + C5X1X2 = f3

4 y:d0+d1X1+d2X2+d3X21+d4X2 + d5X1X2:f4

The restrictions are:

A. Ontheline Xy = C;

(1a) fi=*f (2a) fa=h

(1b)  8f1/8X, = 8f2/8X1 (2b)  8fs/8X; = 8fs/8X,

(le) 8f1/8X2= 8f2/8X (2¢) Ofs/d3X:= 8fs/3X 2
B. Ontheline Xy = C;

(1a) fi="fs (2a) fa==fa

(lb) 8f1/3X1 - 3f3/3X1 (2b) 3f2/3X1 == 3f4/3X1

(lc) 3f1/8X., = 8fs/8X 2 (2c) 8fs/8X. = 8f+/8X 5.

This system permits the independent estimation of eight parameters. If
we identify the parameters to be estimated directly as

ao, a1, Az, ds, A4, s, b — az, €4 — 4y,

the remaining parameters are given by

by = ao + C%; (bg — as)

by —=a, — C, (ba—aa)
bs = ay
b4:a4
b5:a5

Co = do - C?; (¢4 — as)
1=

C3— ds

C5; = aj

dy = ay + C2, (by — as) + C% (¢4 — as)
dy = by = a, — 2C, (b3 ~— az)

do = ¢y = as — 2C3 (cs — ay)

dy = by = az -+ (bs — az)

dy= cas = as + (cs — a4)

Co=ay —2Cs (¢4 —as) ds=as
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We see immediately that the estimates are obtained from the regres-
sion equation:

y = a4+ a1X + a: X2 + asX?* + a, X% + a;X X2 + (bs — a3) Z, +

(cs—as) 2o
where
21:0 X1<C1
= (X, — () X1>G
Zy =10 Xo < Co
= (X2 — Cy)* Xo > Co.

Notice that the coefficient on the interaction term is identical in the
four subdomains. Thus, it is suggested that one use this subdivision after
rotating the axis to remove most of the interaction. Another possibility

would be to further subdivide the domain by a dashed line as in Figure
3.

X2

Cz

0 c, X,

F16. 3—Division of the domain of a production function into several
subdomains.

An alternative way of approaching the problem is to approximate the
response surface by sums of functions, each of which is continuous and
has continuous first derivatives. We note that the functions

Z, = (X, —C)* X1 >C
:O Xl gc

Zy = (X2 — ap — a1 X1)* X > ap 4 031X,
=0 otherwise

satisfy these requirements. Obviously, the functions obtained by revers-
ing the inequalities satisfy the requirements equally well. Note that the
function

Zi= (X1 —C)) (X2 —Cy) X; <ClLXe <Gy
=0 otherwise

does not satisfy the restriction.

If we desire that higher-order derivatives of our approximating surface
be continuous, we use higher-order polynomials. In general, for example,
the following functions where y; and C are constants, are continuous
with m — 1 continuous derivatives:

B3
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Ti=(X—-0C)™ X>C
=0 otherwise
g—1 g—1
T, = (Xg—AEOWX@‘)m Xy > EOWXi
=0 otherwise.

The function
TSZﬁ(Xi_C'i)mi X'i<C'£s i":l,z,..-,g
i=1

=0 otherwise

where m; (m; > 0) and m are integers with Sm; — m, has continuous
derivatives of order m; — 1 where m, is the minimum of the m;.

Thus, if we desire an approximating curve in one dimension with
continuous first and second derivatives, we would fit the regression equa-
tion, e.g.,

y=ao+ & X + a:X®+ asX® +a, T
where
T=(X—-C)8 X>C
=0 otherwise.

Of course, any number of functions of the T-type might be included in
the equation.

The grafted polynomials we have been discussing can be used to
approximate the trend in a time series. In the use of moving averages to
remove trend, one often makes the assumption: ‘the trend over a distance
of A observations is adequately approximated by a polynomial of degree
n’. On the basis of this assumption, one then constructs K weights [8,
p- 366] to estimate the trend value at the midpoint of the interval. Con-
sider now a similar assumption: ‘The series may be divided into segments
each containing 4 observations and the trend in each is adequately
approximated by a polynomial of degree m. The trend is continuous from
period to period and the first r (r << m — 1) derivatives of the trend are
continuous.” Using the latter of the two quotations, we would fit a grafted
polynomial to the data and obtain the estimated trend for the entire
series. The latter assumption might heuristically be judged somewhat
more restrictive, but making this assumption permits one to obtain a
‘smooth’ trend estimate for the entire series.

Let us consider in detail the case when we are willing to approximate
the trend by a quadratic with continuous first derivative. Assume the
data are indexed by (+ = 1,2,...,n). Dividing the data in segments
of 4 observations, we consider the regression variables:

Zei=(—(1—1)A)* t>(G—1)4
=0 otherwise
where
i=1,2,....M
M — an integer such that | AM — n | < A.

The series is divided into M segments and M — 1 is the number of
grafts or joins in our function. In this formulation we assume that,
if ns£AM, the last segment, containing observations indexed by
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i—AM —1) +1,A(M — 1) 4+ 2,..., n, is the only one to contain
more or less than A observations. While obviously any of the segments
can be varied in length, this formulation will simplify the presentation
and construction of regression variables. At the formal level all we need
do to estimate the trend is to regress our series upon f, Zy, Zs, ... Zy
the estimated trend being given by

M

}’}t:CAO_l—&lt"*' 3 (i@'zit
i—t1

where C,, C, and d; are the estimated regression coefficients. However,
if M is at all large, we can expect to encounter numerical problems in
obtaining the inverse and regression coefficients. To reduce the correla-
tion, we suggest that a simple linear combination of the Z’s be taken to
form the variables

Xit:Zit_3Zi+1,t+3Zi+2,t—'Zi+‘3,t i:]72,---:M
where for convenience we define
Zyi1—=Zyyo=2Zy43= 0.

Note that
X = —(i—1) A)* i—1)A<t<iA
e (f— (P — 1) A)2—3(t—id)? iA<<t<(i+1)4
=@—(i+2)4) (i+HAi<(i42)4
=0 otherwise.

Since the function, X, for i < M — 3 is symmetric about (i 4 )4,
the X variables can be written down immediately. The X; remain corre-
lated, but there should be little trouble in obtaining the inverse.

This procedure is thought to have merit when one is called upon to
extrapolate a series. Since polynomials tend to plus or minus infinity at a
rate equal to the highest power of f as ¢ increases, practitioners typically
hesitate to use high-order polynomials in extrapolation. Thus, though a
series may display a nonlinear trend, we might wish to extrapolate on
the basis of a linear trend. To accomplish this we approximate the trend
of the last K observations of a series of n observations by a straight line.
By imposing restrictions this linear trend can be made continuous to
and tangent at the point of join to a non-linear trend for the earlier
portion of the time series. Using grafted quadratics for the carlier portion
of the series, one could construct the regression variables

Xu:t
Zf_){:(t—“—K)z t<n-K
=0 otherwise
Zori 1= (t—K—1i4)* t<n—K—iAd,i=1,2,...
=0 otherwise

where it is assumed that time is coded from 1 to n, n being the last
observation. If there is a large number of Z’s they should be transformed
into the lesser correlated X’s.

With either the Z’s or X’s, the forecast equation is
y=>bo+ bit
where the b’s are the least squares coefficients.
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One may desire to approximate a curve with ‘locally linear segments’
but would like the region of the graft of the two curves to be smooth to
the extent that the first derivative is continuous. The function

Z =0 <G
= (t—C1)* CiKt<Ce
=C*% —C»42(C.—Cy) ¢ t =Gy

is such a function.

Using these ideas we could fit a trend line to a time series which would
be linear for the first K, observations, linear for the last K, observations
and a grafted quadratic in the remainder. The required variables would
be, e.g.,

X =t
Xos=(t—K;)* t> K,
=0 otherwise
X2+i,t=(t~—K1—l'A)2 t>K1+iA,i:1,2,...,I'—3
=0 otherwise
Xr,t:(X—n—l—A—|—K2)2 n-—-A—K2<t<n—K2
—(n—A4A—Ky))2—(n—A)2 42,4t t>n—K;
=0 otherwise

Example One

We consider first a fertilizer experiment with the objective of esti-
mating the response surface for corn yield as a function of nitrogen, N,
and phosphorus, P. These data are taken from Heady, Pesek and Brown
[6]. The data have also been analysed in [3] and [5]. The experiment
was conducted on Ida Silt Loam in Western Iowa in 1952. The experi-
ment contains 57 treatments (combinations of nitrogen and phosphate)
in two replicates. Nitrogen and phosphorus are coded in units of 40
pounds. The treatment means for a portion of the experiment that forms
a 5 x 5 factorial are given in Table 1. As a preliminary analysis, the
data were analysed in four separate sections with a range of 160 pounds
of nutrient in each section. The data for the highest levels of both nutri-
ents displayed little or no treatment effects. (The F for treatment was
less than one.) That for the high levels of one and low levels of the
other generally showed treatment effects only for the nutrient at the low
level and little interaction. The data for low P and high N suggested that
response to P was not well approximated by a quadratic. The data for
the low levels of both nutrients displayed significant effects for both
variables and significant high order interaction. On this basis, the domain
was divided into four subdomains by the lines N = 4 and P = 4. The
functions

Z, = (N —4)2 N <4
=0 otherwise
Zy—= (P —4)2 P <4
=0 otherwise
Z;=(N+P—4)* N4+P<4

=0 otherwise
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=0 otherwise
Z; = (P—2)? P<?2
=0 otherwise
Zg=(P—1)* P <1
=0 otherwise
Z; = (P —4)° P <4
=0 otherwise

were constructed. The first four of these are given for the twenty-five
treatments in Table 1.

Below are three equations estimated and the square root function as
reported in [6]. We give the residual mean square (R.M.S.) on a per
observation basis for each.

(1-7) (0-23) (0-50) (6:7) (0-42) (7-8)
RM.S. = 155

(i) y= 1264 — 621Z, — 3-70Zy — 15-1Z5 + 1'31Z, — 12-2Z;
(1-8) (0-24) (0-80) (7-0) (0-44) (3-2)
R.M.S. = 168
(iii) y = 1264 — 6:21Z, — 0-94Z, — 16:3Z; + 1-38Z, — 1-45Z;
(1-8) (0-25) (1:70) (7:0) (0-45) (0-43)

RM.S. = 177
(iv) y = —5-682 — 0-316N — 0-417P - 6:351 VN + 8:516/P
|- 0341 /NP RM.S. =215

The square root function is given in the original units as reported in [6]
and the other equations are in the coded 40 pound units. The predicted
values computed with equations (i) and (iv) are given in Table 1.

The analysis of variance presented in [6] gives the error mean square
as 156. The F test comparing the residual mean square for any of the
four equations to the error mean square would be nonsignificant. A more
interesting comparison of the equations is obtained by considering the
change in residual sum of squares associated with the addition of the
variables unique to one equation to the other equation and vice versa.

To compare, for example, equation (i) and (ii), we add the variables
occurring 1n (i) but not in (ii) and test the sum of squares associated
with this addition against error. The only variable in equation (i) but
not (ii) is Zs. The resulting F with 1 and 57 degrees of freedom is
812/156. If we add the variable Z5 occurring in (i) but not in (i) to
equation (i), the resulting F is 146/156. On this basis, we would con-
clude that equation (i) is significantly superior to equation (ii). If we
add the variables in the square-root function to equation (i), the F with
5 and 57 degrees of freedom is 194/156, which is nonsignificant. If we
add the variables in equation (i) to the square-root function, the F with
5 and 57 degrees of freedom is 799/156 which is highly significant, and
we conclude that equation (i) is a superior representation of the data.
One might well point out that the data were used to estimate the join
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points of the grafted quadratic. Thus, perhaps we should consider the
model to contain nine parameters rather than five (the five regression
coefficients, plus the four join lines). This would certainly reduce the
level of significance of the F test; but in our case, if we charged ourselves
for four additional parameters, we would obtain a ratio of 444/156
which is highly significant if compared with the tabular value of F for
9 and 57 degrees of freedom. This is obviously being overly harsh on
equation (i) since we did not choose the join lines to obtain the absolute
minimum sum of squares. Additional testing indicates that equation (i) is
significantly superior to all other equations. It is interesting that the
grafted quadratic is considerably superior to the cubic in approximating
the response to P.

TABLE 1
Fertilizer Experiment Data

Predicted  Predicted

Corn yield yield

Nitro- Phos- Yield** grafted square
gen* phorus* z, 22 Za Z quadratic  ToOt**
0 0 16 16 16 256 15-4 11-0 —5.7
0 2 16 4 4 64 26-4 31-9 371
0 4 16 0 0 0 23-0 27-1 35.3
0 6 16 0 0 0 36-5 27-1 261
0 8 16 0 0 0 11-6 271 131
2 0 4 16 4 64 17-6 16-1 25-8
2 2 4 4 0 16 107 -4 103-8 95-9
2 4 4 0 0] 0 105-4 101-8 105-4
2 6 4 0 0 0 102-5 101-8 104-8
2 8 4 0 0 0 100-2 101-8 99.2
4 0 0 16 0 0 12:2 17-8 24-0
4 2 0 4 0 o 94-2 108-2 105-4
4 4 0 0 0 Q 123-0 126-6 119-6
4 6 0 0 ¢ 0 1267 126-6 122-6
4 8 0 0 ] 0 122-8 126-6 120-0
6 0 0 16 0 0 11-5 17-8 16-8
6 2 0 4 0 0 119-0 108-2 106-9
6 4 (] 1) 0 0 127-4 126-6 124-6
6 6 0 1] 0 0 117-6 126-6 130-4
6 8 ] 1] 0 0 133-4 126-6 1301
8 0 0 16 0 0 220 17-8 68
8 2 0 4 0 o 105-5 108-2 104-1
8 4 0 0 0 0 129.2 1266 124-9
8 6 0 0 0 ¢ 1379 126-6 1330
8 8 0 0 0 0 123-4 126-6 134-7

* In 40 pound units of N and P.Os
#* Taken from {6, p. 305]

Example Two

We shall fit a trend line to the adjusted corn yield data of Shaw and
Durost [11, p. 97]. We somewhat arbitrarily assume that, for a segment
of 8 years, the trend is adequately approximated by a quadratic. We
approximate the trend for the last 2 years by a straight line used for
extrapolation. The trend is required to have continuous first derivatives.
Accordingly, the variables
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Zye = (t — 1961)2 t < 1961
=90 otherwise
Zo — (t — 1952)2 t < 1952
=0 otherwise
Zge = (t — 1944)* t < 1944
=0 otherwise
Zy = (t — 1936)2 t < 1936
=0 otherwise

are constructed.
These were transformed as suggested and
Xlt — th — 3Z2t —|‘ 3Z3t - Zu
Xoy = Zoy — 3Z3 + 3Z 4
Xg = Z3t — 324
X4t — Z4t
together with the variable (¢ — 1962) were used in the regression. The
resulting estimated equation is
ye="T742+ 318 (+ — 1962) + 020 Xy 4 0-33 Xo; -+
(1-7) (0-45) (0-04) (0-06)
042 X3t + 057 X4f.
(0-10) (0-12)

ADJUSTED YIELD

O S O N N T U T 0 N T U O O 0 T O A O
30 1935 1940 1945 1950 1955 1960
YEAR

Fic. 4—FEstimated Trend in Adjusted Corn Yields 1929-62 (Source [11;
p. 971).

Tll
)
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When the variables are coded in this manner, we see that the constant
term is the forecasted yield for the next observation, in our case 1962.
The forecast for additional observations is given by

yi=742 4+ 3-18 (+ — 1962).
The data and the fitted trend line are plotted in Figure 4.

Determining the Join Points

In our discussion of estimation procedure, we have considered the
domains of our curves to be established from sources other than the
data. Yet, in our fertilizer example, the data are used in some degree to
subdivide the domain. In our examples, we did not attempt to find those
lines that would have minimized the residual sum of squares. It is our
belief that, in a great many situations, one may quite readily establish
the approximate area of the join line. One may then use an approxi-
mate solution as we did, or one may estimate the point (or line) by
constructing several Z-functions and choosing the one (or combination)
that gives the smallest residual sum of squares. The estimation of the
join point is clearly a nonlinear problem. For discussion of the estimation
of join points, see [7], [10] and [12].
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