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Abstract: 
 
We evaluate the effectiveness of targeting for Brazil�s Bolsa Alimentação, a nutrition-
oriented cash transfer program conditioned on beneficiary participation in health 
activities.  Geographic targeting of program funds relied on adjusted estimates of 
municipality child stunting prevalence, or a malnutrition map.  This evaluation provides 
new estimates of municipality child stunting prevalence for Brazil.  The improved 
estimates indicate moderate budgetary misallocation from geographic targeting.  
However, when geographic targeting errors are combined with those arising from an 
inconsistency between geographic and household targeting objectives, undercoverage of 
children at greatest risk of stunting is potentially large. 
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1 Introduction 
 
This paper evaluates the effectiveness of geographic targeting for Bolsa Alimentação, the 
Brazilian government�s nutrition-oriented conditional cash transfer program.  Bolsa Alimentação 
(BA) is designed to reduce nutritional deficiencies and infant mortality among poor households 
in Brazil. The program offers demand-side incentives to use nutrition-oriented services through 
monthly money transfers to very low income families with young children or to pregnant or 
lactating women.  For poor households with young children, the cash transfer�R$15 (roughly 
US$4.24)1 per month per eligible child for up to three children�is conditional on mothers 
committing to a �Charter of Responsibilities� that requires regular child check-ups, compliance 
with vaccination schedules, and health and nutrition education. Households with pregnant or 
lactating women receive R$15 per month per eligible woman for six months, conditional on 
receiving prenatal care.  When fully implemented, the program is expected to benefit more than 
2.77 million children with bolsas totaling R$499.1 million and 803,000 women with bolsas of 
R$72.3 million in a total of 2.5 million Brazilian households.  As of December 2002, the 
Ministry of Health reported that 1.39 million bolsas worth R$118.8 million had been distributed. 
 
Beneficiary households with young children were selected for the program in a two-stage 
targeting process. The first stage involved geographic targeting, in which the Ministry of Health 
(MOH) allocated program funding to each of Brazil�s 5,561 municipalities according to the 
estimated number of children in the municipality suffering from malnutition.  Because data on 
malnutrition prevalence are not available for most municipalities, the government relied on 
adjusted estimates of municipality child stunting prevalence calculatedin a study by University of 
São Paolo (USP) researchers Benício and Monteiro (1997) using household survey and census 
data.  Geographic targeting of this kind has led to substantial improvements in impact on the 
target population in similar programs, such as Mexico�s PROGRESA program.2  In the second 
stage of targeting, each municipality identified beneficiary households primarily using a means 
test: per capita household income less than half the minimum wage (a threshold of R$90/month) 
and presence of children aged 6 months to 6 years 11 months. 
 
Recent evidence offers strong support for geographic targeting of social programs.3  Baker and 
Grosh (1994) document substantial improvements in program impact through geographic 
targeting of needs-based programs.  Ravallion and Wodon (1999) argue that geographic targeting 
may be justified because location-specific differences in levels of well-being cannot be explained 
by individual characteristics observable to policymakers.  Morris et al (2000) show that a 
nutrition program in Honduras was more effective when located in communities with the highest 
malnutrition rates.  An evaluation of Mexico�s PROGRESA program by Skoufias et al (2001) 
showed that PROGRESA�s �marginality index� approach to geographic targeting improved 
program impact and provided targeting accuracy comparable to a methodology for predicting 
local poverty rates that is analogous to the approach used for predicting malnutrition in BA. 
 

                                                 
1 Throughout this report, US$ figures are based on the December 31, 2002, exchange rate reported by the US 
Treasury (R$3.535/US$). 
2 See Skoufias et al (2001). 
3 See Coady et al (2002) for a review of targeting methodologies.  Out of 100 social safety programs reviewed, 43 
programs relied on geographic targeting, usually in conjunction with other household targeting criteria. 
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This report evaluates geographic targeting for the child component of Bolsa Alimentação.  Based 
on our understanding of the program design, geographic targeting of pregnant or lactating 
women was limited, so it is omitted from this evaluation.  Despite this exclusion, our analysis 
applies to the bulk of program resources since children represent the primary group of 
beneficiaries and 87.4 percent of the annual budget.  The Ministry of Health calculated the 
number of child bolsas allocated to each municipality by applying the estimates of municipality 
child stunting rates from the USP study to current population figures, with a few adjustments.  
Therefore, the evaluation focuses on the accuracy and robustness of the USP model of child 
malnutrition prevalence.  We will refer to this as the �original� model.  In what follows, we 
present estimates of stunting prevalence from new models that use more recent data with a larger 
set of household- and municipality-level predictors.   
 
The general approach to predicting malnutrition prevalence in the original model and in this 
evaluation is based on an imputation technique known as �small area estimation�.  It has recently 
been applied to geographic analyses of poverty, in what is commonly called �poverty mapping�.  
Using data from a nationally representative sample of households that includes anthropometric 
measures of nutritional status for children, a model of malnutrition prevalence is estimated, 
possibly allowing for differences in effects between urban and rural areas and across the great 
regions of Brazil.  The set of right-hand-side variables in this model may include child-, 
household- and municipality-level characteristics.  However, the choice of variables is restricted 
to those that are available in both the sample survey and the census or to municipality-level 
variables from other sources.  The expected malnutrition prevalence for each municipality is then 
imputed through a procedure that combines the parameter estimates from the first-stage model 
with recent census data for the predictors.  Municipality average prevalence is the mean of child-
level predictions in the census if household census data are available.  Otherwise, researchers 
must make predictions using the municipality sum or mean of the regressors from the census, 
which leads to less precise estimates.    
 
The greatest limitation of the original estimates of malnutrition prevalence is that they are based 
on a simple empirical model of malnutrition prevalence that uses only a handful of regressors.  
The evaluation model developed here shows that such stringent restrictions on the set of 
predictors is unnecessary and weakens predictive accuracy.  Another weakness of targeting 
performance is that the malnutrition estimates used are based on data collected a decade before 
the start of the program.  These estimates are derived from the 1989 PNSN, the Pesquisa 
Nacional de Saúde e Nutrição (National Survey on Health and Nutrition), and the 1991 census.  
The PNSN is a nearly representative household sample survey that covered the urban areas of 
the five great regions of Brazil (North, Northeast, Center, Southeast and South) and all the rural 
areas except for the sparsely populated North region.   
 
The models developed for this evaluation include a number of refinements to the general 
approach used by BA.  First, more recent and complete data are used.  The evaluation models are 
based on the 1996 PNDS, the Pesquisa Nacional sobre Demografia e Saude (National Survey of 
Demography and Health) and a 12 percent sample of household records from the long form of 
the 2000 Census, or Censo Demográfico.  Like the 1989 PNSN, the 1996 PNDS sample is 
nationally representative with the exception of the rural North region.  The availability of 
household records from the census, even for a 12 percent sample, makes it possible to add a 
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number of important household demographic variables as predictors to the malnutrition model.  
It also improves prediction by the obvious increase in coverage of the population.  These data are 
supplemented with a large set of variables of municipality characteristics from the 2000 census 
and elsewhere found in the BIM data set, the Base de Informações Municipais.  The updated data 
should more accurately represent the nutritional status of children at the time that bolsas were 
distributed.  A limitation of these data is that the PNDS sample and the census were collected 4 
years apart.  This could reduce the precision of malnutrition prevalence estimates if the 
distribution of the regressors or their effects on malnutrition has changed during that time.  The 
second refinement to the BA methodology is that the evaluation models are subjected to a 
broader set of specification tests: (i) variable selection is tested by a number of criteria including 
stepwise elimination of regressors and minimization of RMSE; (ii) the use of models separated 
by age, urban/rural and regional location is tested against a unified model; and  (iii) the role of 
unobserved municipality-level effects is addressed.  In response to these tests, we present three 
sets of estimates of municipality stunting prevalence that account for different specifications of 
the first-stage model in order to demonstrate the robustness of the approach.  The merits of each 
set of estimates are discussed and the figures are compared to those used to allocate the program 
budget.  Although the models used in the evaluation are still subject to considerable error in 
estimating malnutrition prevalence, we present evidence that suggests they are more precisely 
estimated than the original model used to allocate the program budget.  The evaluation models 
appear to perform better in differentiating malnutrition levels across municipalities.   
 
Results of this analysis show that, although the original malnutrition estimates used by MOH 
undoubtedly led to targeting gains and boosted program impact relative to a program without 
geographic targeting, it is likely that significant misallocation of the program budget occurred in 
some areas.  For example, the state of Maranhao, which had among the very worst malnutrition 
rates, also had the third largest real-value shortfall in its BA budget at R$8.7 million, according 
to the evaluation methodology.   
 
The evaluation is organized as follows.  Section 2 describes the approach to estimating 
municipality malnutrition prevalence in the original model and, to the extent that we understand 
them, subsequent adjustments performed by the Ministry of Health that yielded the final 
allocation of bolsas to municipalities.  Section 3 describes the empirical models of malnutrition 
prevalence used to evaluate the geographic targeting, addresses a number of empirical issues, 
and presents results of the model.  Section 4 compares the allocations of bolsas that would arise 
based on these predictions to the actual allocation.  Other measures of targeting performance are 
also presented.  We offer some conclusions and recommendations in Section 5. 
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2 The Methodology for Geographic Allocation of Bolsas under Bolsa Alimentação 
 
In keeping with the objective of Bolsa Alimentação to reduce childhood malnutrition in Brazil, 
the Ministry of Health targeted the child component of program funds to the municipalities in 
proportion to their prevalence of malnourished children.  The municipalities were then 
responsible for identifying eligible children in the second stage of targeting.  Allowing 
municipalities to manage household targeting was consistent with the new policy of 
decentralized decision-making in which greater authority is vested in the municipalities.  This 
overall approach to targeting, and particularly linking geographic targeting to malnutrition 
prevalence, was a sensible approach to targeting given the program objectives.  The use of 
malnutrition prevalence as the indicator for geographic targeting raises two issues in program 
design: (i) the choice of malnutrition measure, and (ii) the method of estimating malnutrition 
prevalence at the municipality level.  These issues are now addressed in turn. 
 
The Choice of Malnutrition Indicator 
 
There is broad agreement that anthropometric measures of physical status offer the best practical 
indicator of nutritional status.  When summarizing the nutritional status of a population, the 
choice of anthropometry measure depends on the characteristics of the population and on the 
goal of the analysis.  For a target population of children under the age of five or six, researchers 
typically use either weight-for-age or height-for-age.  The goals of this program argue for using 
height-for-age for two reasons.  First, the WHO Expert Committee on Nutrition recommends 
using height-for-age for regional targeting of economic and health interventions (WHO, 1995).  
Height-for-age is a better indicator of long-run nutritional achievement and so is a more reliable 
one-time indicator for a program that will last several years.  Second, the prevalence of stunting 
(a height-for-age Z-score less than -2) is a more serious nutritional problem in Brazil than is 
being underweight (a weight-for-age Z-score less than -2).  In the nationally representative 1996 
PNDS sample, the prevalence of stunting among children aged 6-59 months is 11.3%, while the 
share of children in this age group that are underweight is 6.2%.  The difference in these 
measures of nutritional status probably indicates that inadequate retention of micronutrients is a 
bigger source of malnutrition than inadequate consumption of calories in Brazil.   
 
To evaluate nutritional status using height-for-age, the sample must be compared to a growth 
standard or reference population.  In the Brazilian PNDS data, anthropometry measures are 
based on the Standard Deviation-derived Growth Reference Curves constructed from the 
NCHS/WHO Reference Population.  The three most common measures of height-for-age are Z-
scores (standard deviation scores), percentiles, or percent of median values for the reference 
population.  We use height-for-age Z-scores (HAZ)�or the number of standard deviations from 
the reference median value� as recommended by WHO (1995), as the dependent variable in all 
of the models below.  A shortcoming of using percentiles of the reference distribution is that an 
identical change in percentiles represents different changes in absolute height, depending on the 
location on the distribution.  This makes summary statistical measures such as mean or standard 
deviation difficult to interpret.  Also, prediction of low height-for-age through regression is made 
more difficult by the use of percentiles.  Near the extremes of the reference distribution 
percentile changes will be small, although these can represent large changes in absolute height.  
In a country such as Brazil with fairly low stunting prevalence, this effect could be important.  



 5

The Z-score, on the other hand, is appropriate for monitoring individual status or for summary 
population statistics.  Interpretation is not dependent on the location in the distribution, since a 
fixed Z-score interval represents a fixed change in height.  For the BA program, the original 
model used HAZ as the measure of nutritional status in its prediction of municipality 
malnutrition prevalence as recommended by WHO (1995).  However, the Ministry of Health 
then adjusted these figures so that the average prevalence in three aggregated regions was 
equivalent to the regional prevalence of children with weight-for-age below the tenth percentile 
(WAP10), as discussed below. 
 
Using the share of children that fall below an anthropometric Z-score threshold for nutritional 
targeting is analogous to targeting the poor with a headcount index of consumption poverty, 
which measures the share of a regional population with per capita consumption below a poverty 
line.  These measures indicate prevalence, but targeting resources to municipalities based on the 
depth or severity of malnutrition may also be reasonable.  In the poverty literature, a common 
measure of the depth of poverty is the poverty gap or P1, the average distance from the poverty 
line for the poor.  The severity of poverty is often measured by P2, the squared poverty gap.  
Analogous measures for malnutrition could also be developed.  Alternatively, nutritionists have 
proposed two other measures of the severity of malnutrition: the �standardized prevalence� 
(Mora, 1989) and the �minimum prevalence� (Monteiro, 1991).  The �standardized prevalence� 
is the proportion of individuals in the observed distribution who fall outside�and to the left of�
the reference distribution.  The �minimum prevalence� estimate, proposed by a coauthor of this 
report, is a bit more complicated.  It is based on the assumption that in most developing countries 
there is a malnourished population with an HAZ distribution to the left of the reference 
distribution and a non-malnourished population with the same HAZ distribution as the reference 
distribution.  The �minimum prevalence� estimate then measures the malnourished proportion of 
the total population by netting out an estimate of the size of the non-malnourished population.  
This study will focus exclusively on the measure of malnutrition prevalence in order to be 
consistent with the existing design of the program. 
 
Estimating Malnutrition Prevalence in the Municipalities: Malnutrition Mapping 
 
As in most countries, there is no representative sample survey for Brazil that provides reliable 
estimates of child malnutrition rates at a level of regional disaggregation as low as the 
municipality.  Therefore, the government had to identify alternative methods to estimate child 
malnutrition prevalence across municipalities.  One approach would have required conducting a 
national census of the height of all first-grade students in the country.4  Morris and Flores (2002) 
show that a school height census in Honduras provided a reliable and valid tool for small-area 
targeting of nutrition interventions.  Their study found that municipality mean height-for-age Z-
scores in a school height census were closely correlated (Spearman�s rank correlation = 0.74) 
with sample survey estimates of municipality mean HAZ in children less than age five.  They 
claim that a school height census should provide a comparably accurate proxy for municipality 
stunting prevalence because height-for-age Z-scores are normally distributed with little variation 
in standard deviation across localities.  Despite these benefits a school height census was not 

                                                 
4 See Morris, Saul S., Pedro Olinto and Rafael Flores, �Consultancy to Support the Design and Evaluation of Bolsa 
Alimentação,� IFPRI, Final report, September 7, 2001. 
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conducted in Brazil, presumably because of the short timeframe available for designing and 
implementing Bolsa Alimentação and the cost of administering the school height census.  
 
In the absence of reliable data or a proxy from a school height census, statistical analysis can be 
used to estimate municipality-level malnutrition prevalence by combining nutrition-oriented 
sample surveys and census data.  The technique involves applying parameter estimates of the 
relationship of nutritional status to child, household, and municipality characteristics from a 
national sample survey to census data for the same characteristics in order to obtain estimates of 
nutritional status at a low level of geography.  This approach is closely related to that of small 
area estimation used by demographers.5  It has recently become popular as a method for 
obtaining local-area estimates of consumption or income poverty, or �poverty mapping.�6  The 
methodology has benefited from recent advances by Elbers et al (2003) in an application to 
poverty measurement using sample-based estimates of per capita consumption and household 
census records.  Their approach involves a careful accounting for the sources of variance in the 
error term in the imputed local poverty measure.  This makes it possible to obtain welfare 
measures at a very low level of disaggregation, and to be informed about the tradeoff between 
precision and narrowness of location.7   
 
The general technique of poverty mapping can be applied to estimating local malnutrition 
prevalence, or �malnutrition mapping�.8  A variant of this technique was employed in the 
original model of municipality malnutrition prevalence used to allocate the program budget.  
However, household census data was not available at the time that model was developed.  This 
restricted the set of variables available for the prediction and made it impossible to calculate the 
precision of the malnutrition prevalence estimates.  The evaluation models presented here benefit 
from having the 12 percent sample of household data from the 2000 Census, which enables us to 
use a large set of predictors for household demographics.  However, we received this census data 
only recently, and so have not yet calculated the standard errors of our malnutrition prevalence 
estimates, as discussed below. 
 
The Original Model of Malnutrition Prevalence and the Allocation of Bolsas to Municipalities 
 
The original estimates of malnutrition prevalence in Brazil were constructed in the 1997 USP 
study for use by the Ministry of Health for the nutrition program that preceded Bolsa 
Alimentação called Incentivo de Combate às Carências Nutricionais (ICCN).  That approach to 
malnutrition mapping was based on a logistic regression of stunting prevalence in children under 
age five from the 1989 PNSN sample survey, 
 
(1)  S

i
SS

i
S
i uX2HAZM += β  where 1=S

i2HAZM   if HAZi<-2 
                                                 
5 See Purcell and Kish (1980). 
6 See, for example, Hentschel et al (1998); Minot (2000); Simler and Nhate (2002); and Minot and Baulch (2002).  
For regional and UF-level estimates of poverty for Brazil created through small area estimation using the PPV and 
PNAD data sets, see Elbers et al (2003). 
7 An unresolved issue concerning geographic targeting of nutrition interventions is whether these statistical 
approaches to estimating local malnutrition prevalence would provide more accurate estimates than a school height 
census.   
8 Fujii (2002) appears to be the first example of malnutrition mapping, which applies the Elbers et al (2003) 
approach for Cambodia. 
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        = 0 otherwise, 
 
and where the superscript S denotes the sample survey, i indexes children, S

iX  is an kn×  matrix 
of explanatory variables, Sβ is a 1×k  vector of parameters, and S

iu  is a 1×n  vector of random 
disturbances from a logistic distribution with mean zero.   
 
The regressors used to predict stunting prevalence in the sample included up to two indicator 
variables for household head income level relative to region-specific thresholds; a dummy 
variable for whether the mother was illiterate; and two dummy variables for household sanitation 
which were coded as �semi-adequate� and �inadequate�.  In urban areas, a household with 
�adequate� sanitation, the reference category, had piped water from the public system and either 
a sewerage or septic system for waste.  �Semi-adequate� referred to piped water but no sewer 
system or septic pit, and �inadequate� referred to no piped water or sewer or septic.  In rural 
areas, �adequate� was a household with piped water (regardless of source) and �inadequate� 
referred to the absence of piped water.  There was no �semi-adequate� category for rural areas. 
 
The sample was divided into seven regional strata for estimation:  northeast urban, northeast 
rural, center-south urban, center-south rural, all urban Brazil (to provide estimates for urban 
municipalities in the North), all rural Brazil (to provide estimates for rural municipalities in the 
North), and the urban area of Pará state.  A Likelihood Ratio Test determined the final set of 
variables used in each regional model. 
 
The next stage of the analysis involved calculating the predicted stunting prevalence 
corresponding to every combination of explanatory variables in S

iX  for each regional model, a 
procedure made feasible by the use of only binary variables as regressors.  For each municipality 
in the 1991 census, the number of children under 5 in each combination of explanatory variables 
was obtained, as was the number of children in rural and urban areas.  Rural and urban 
prevalence for each municipality was given by the sum of predicted prevalence times the share 
of children in each category of explanatory variables.  The estimates of stunting prevalence for 
the 4,491 municipalities in 1991 was then calculated as the (child) population-weighted average 
of urban and rural estimated prevalence for each municipality.  The 1,070 municipalities created 
between 1991 and 2001 received (i) the state weighted average prevalence, (ii) the state simple 
average prevalence, or (iii) the average prevalence of the municipalities from which they 
derived, depending on when they were created.  It is interesting to note that using a limited set of 
binary regressors made it possible to fully classify all children into one of the combinations of 
explanatory variables, ultimately obtaining the number of children in each group.  In a sense, this 
approach fully recovers the household census records for these variables, although only the 
number of children in the municipality in each category was known.  However, this benefit to 
that approach is outweighed by the loss in predictive power that comes from using only 3-5 
binary predictors in each regional model. 
 
Apparently, two adjustments were made by the MOH to these stunting estimates to arrive at the 
figures used for targeting by BA.  First, the stunting estimates were adjusted for the regional 
average reduction in child stunting prevalence from the period of the 1989 PNSN to that of the 
1996 PNDS.  For this adjustment, the five great regions of Brazil were grouped into three:  
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North, Northeast and Center-South.  It appears that an adjustment factor was calculated for each 
of these three regions and applied to the corresponding municipalities� estimates of 1991 
malnutrition prevalence. These adjustment factors are believed to be from the report, �Evolução 
da Mortalidade Infantil e do Retardo de Crescimento  nos Anos 90: Causas e Impactos sobre 
Desigualdades Regionais� � �Changes In Poverty-Related Health Indicators In Brazil:  Causes 
And Impact On Regional Inequities�.  They are presented in Table 1. 
 
  Table 1: Regional Adjustment Factors for Decline in Stunting Prevalence, 1989-1996 
 
Region Share of children 

with HAZ<-2 in 
1989 PNSN, % 

Share of children 
with HAZ<-2 in 
1996 PNDS, % 

Reduction in 
Stunting,  

1989�1996, % 

Adjustment 
Factor 

 Northeast 27.3 17.9 -34.4 0.656 
 North 23.0 16.6 -27.8 0.722 
 Center-South 8.6 5.6 -34.9 0.651 

Source: �Evolução da Mortalidade Infantil e do Retardo de Crescimento  nos Anos 90: Causas e Impactos sobre 
Desigualdades Regionais�   - �Velhos e Novos Males da Saúde no Brasil,� São Paulo p. 400. 

 
We believe that the second adjustment was to multiply the �updated� stunting prevalence 
estimates by the ratio of the average regional prevalence of children with weight-for-age below 
the tenth percentile (WAP10) to the average regional prevalence of children with height-for-age 
Z-scores less than -2 (HAZM2).  This adjustment factor was 1.2 for municipalities in the 
Northeast.  Adjustment factors for the other two regions are unknown. We were told that the 
second adjustment was requested by BA staff who wanted the malnutrition estimates to reflect 
low weight-for-age because they were considering using observed weight-for-age in the second-
stage household targeting as a criterion for eligibility.  The tenth percentile threshold for weight-
for-age was used to raise the size of the target population to desired levels.  Using the standard 
weight-for-age cutoff for underweight prevalence of less than -2 Z-scores, which corresponds to 
the 2.3 percentile in a well-nourished population, would have resulted in a target population of 
6.2 percent of children according to the 1996 PNDS sample.  Using the tenth percentile of 
weight-for-age as the eligibility threshold increases the target population to 19.7 percent of 
children.  However, the use of this crude adjustment factor applied to estimates of stunting 
prevalence probably led to inaccurate targeting of weight-for-age prevalence below the tenth 
percentile.  In the end, observed child weight-for-age was not used as a criterion for eligibility 
for the program because of concerns about the perverse incentives for good nutrition that this 
would create.   
 
The allocation of bolsas to the municipalities was based directly on these adjusted estimates of 
malnutrition prevalence.  The number of bolsas awarded to each municipality was equal to the 
adjusted estimate of malnutrition prevalence times a projection of the year-2000 population of 
children of age at least 6 months and less than 7 years based on the 1991 census.   
 
A number of shortcomings affect the reliability of the results of this methodology.  The first is 
the absence of household census data, which would permit the use of a more robust methodology 
that would also enable statistical tests of equality of malnutrition prevalence across two 
municipalities.  Another substantial limitation of this approach is the use of only three-to-five 
regressors, all of them binary, in the first-stage model of stunting prevalence.  Such a limited set 
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of binary regressors impedes the model�s ability to differentiate the incidence of malnutrition 
between municipalities.  It is possible, for example, that two municipalities have roughly similar 
distributions of children according to threshold levels of income, female illiteracy, and 
sanitation, but differ substantially in the distribution of these variables away from the thresholds 
or with respect to other important characteristics such as infrastructure, health facilities, and 
political participation.  The effect of the two ex post adjustments described above is to increase 
the effect of the region of location of a municipality on its estimated malnutrition prevalence.  As 
just noted, these regional effects were already responsible for a great deal of the variation in 
municipality malnutrition prevalence estimates because regional models were estimated with few 
regressors.  The projections of the number of children in each municipality are not a significant 
source of error.  The Pearson correlation of these estimates with the number of children in the 
2000 census was 0.888.  In the next section, we expand and refine the methodology used in the 
original model to try to obtain more accurate estimates of municipality malnutrition prevalence.   
 
 
3 The Evaluation Model for Geographic Allocation of Bolsas under Bolsa Alimentação 
 
In order to evaluate the accuracy of the adjusted estimates of malnutrition prevalence used by 
Bolsa Alimentação, we estimate revised models of stunting prevalence that include a number of 
changes in methodology, more recent data, and a substantially expanded set of predictors that 
should provide more precise malnutrition estimates.  The first-stage stunting models are 
estimated using the 1996 Brazilian Demographic and Health Survey (PNDS) supplemented by 
IBGE�s BIM data, a large data set of municipality characteristics on topics such as school access 
and quality, health care providers, and political participation.  Parameters from this model are 
then applied to data from the 2000 Censo Demográfico and the BIM data to obtain estimates of 
municipality stunting prevalence.  This section presents the details of three models of 
municipality stunting prevalence.  For each model, we discuss the choice of explanatory 
variables, results of various specification tests, and a summary of results.  The three models 
differ by choice of regressors and by allowance for regional differences in effects of predictors 
on the probability of being stunted.  These three models are presented in order to provide an 
indication of the sensitivity of the methodology to model specification, and to allow the 
government to consider the assumptions that underlie any of the estimates it might ultimately 
use.  We use these results to demonstrate the limitations in the accuracy of prediction in these 
types of models and consider the implications for targeting. 
 
Methodology 
 
The general approach to constructing estimates of municipality stunting prevalence is the same 
for all three sets of estimates presented below.  The procedure occurs in two stages.  Our first-
stage model predicts the height-for-age Z-score for the sample of 3,610 children aged 6-59 
months in the 1996 PNDS,   
 
(2)  S

ij
SS

ij
S
ij uXHAZ += β ,  where  S

ij
S
j

S
iju εη += .9 

                                                 
9 Although the target population for Bolsa Alimentação is children aged 6 months to 6 years 11 months, the PNDS 
only provides anthropometry data for children aged 6-59 months.  A benefit of this restriction is that it enables 
comparability of samples between these new estimates and the original study.   
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Here, i indexes individuals, and j indexes municipalities.  S

ijX  and Sβ are as defined in (1). S
iu  is 

a vector of random disturbances with two components: a municipality-specific effect, S
jη , and a 

classical zero-mean individual disturbance, S
ijε , with variance Sσ .  A continuous model of 

height achievement is estimated at this stage rather than a discrete threshold model of stunting 
prevalence, as in the original model, because the continuous dependent variable takes better 
advantage of the information available and because the estimates are less sensitive to 
distributional assumptions about the error term.   
 
In the second stage, we calculate the expected height-for-age Z-score for children in the census 
sample using the parameters estimated from the PNDS and the census data for the corresponding 
regressors, and accounting for the possibility of unobserved municipality effects, 
 
(3)  [ ] [ ]S

j
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C
ij XEHAZE ηβ |�= , 

 
where the superscript C denotes census data, C

ijX  represents census sample observations for 

predictors, and S
jη  controls for omitted municipality effects from the first-stage regression.  

Accounting for unobserved municipality effects at this stage borrows from the approach of 
Elbers et al (2003).  If tests for the presence of omitted municipality effects are significant, these 
can be controlled for in the estimation. 
 
In the final stage of the calculation, the expected probability of being stunted for the ith child in 
the jth municipality is given by, 
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where Φ  is the cumulative normal density function, 2−=µ  is the Z-score cutoff for stunting 
prevalence,  and Sσ�  is the estimated standard error of the first-stage model.  Based on (4), the 
estimated municipality stunting prevalence is the average estimated prevalence of all children in 
the municipality, 
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where jM  is the number of children in the jth municipality.  In practice, it is necessary to test 
whether the parameter estimates in (2) differ by age of the children, urban and rural area, or 
location.  If so, separate models for (2) are estimated on each cohort, and the estimate of 
municipality stunting prevalence in (5) is a population-weighted estimate of cohort-specific 
stunting prevalence. 
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Variable Selection and Comparability 
 
The selection of variables for estimation of the HAZ model in (2) was guided by the need to 
maximize the predictive accuracy of the model, while being sensitive to concerns about 
overfitting the first-stage estimates.  This objective suggested a broader set of regressors than 
that used in the original study.  We sought variables at various levels of aggregation in order to 
account for local differences in child, household and municipality characteristics.  The list of 
potential child- and household-level explanatory variables was restricted to those available in 
both the 1996 PNDS and the 2000 Census.  With household level census data available, it was 
still possible to include many control variables for household demographics.  The PNDS and 
census variables are not comparable on these topics.  The analysis also benefited from having 
access to more than 400 variables of municipality characteristics from the BIM data, providing a 
large set of local data to control for municipality-level effects.    
 
The process of selecting variables first involved identifying a set of child-, household-, and 
municipality-level variables available in both data sets that were plausible predictors of stunting.  
From this core set of potential right-hand-side variables, various techniques were used to identify 
which set of regressors would be included in the final models.  These tests of variable selection 
and the resulting models are described in the next section.  Here, we describe the core set of 
variables included in the selection process. 
 
Where possible, continuous rather than binary variables were used to provide greater variability 
across observations.  In addition, many continuous variables were made non-linear through use 
of quadratic terms or clustering of levels into categories.  For example, household size included 
both linear and quadratic terms and various specifications of mother�s education were tried, 
including grouping education levels into dummy variables for groupings of completed years of 
education (0-3, 4, 5-7, 8, 9-11, >12 years).   
 
The list of child- and household-level variables included as potential predictors in the HAZ 
model includes child age as a quadratic or in monthly groupings; child gender; an interaction of 
gender and age; child birth order; a dummy for female household headship; a quadratic for 
mother�s age; dummy variables for groupings of numbers of completed years of mother�s 
education (0-3, 4, 5-7, 8, 9-11, >12 years); a dummy for whether the mother�s husband has at 
least 4 years of education; a quadratic for household size; the under-5 dependency ratio; number 
of rooms and number of bedrooms in the dwelling; number of people per room; a dummy 
variables for piped water; a dummy variable for well or spring water in the house for any use; 
and a dummy for electricity.  Household asset variables considered were dummy variables for 
presence of a radio, a refrigerator, a television, a VCR, a washing machine, and a car.  From the 
large set of municipality explanatory variables available, 37 regressors were selected on the 
following topics: numbers of hospitals and clinics per capita; birth rate; death rates by 
age/reason; primary schools (enrollment, student-teacher ratio, class size); literacy rate; 
employment rate; fiscal expenditures by type; sanitation; housing type; population density; and 
household head income.  We also included an interaction term for municipality infant mortality 
rates and household observations on mother�s education in completed years.  This allows the 
nutritional benefits of mother�s education to depend on the local health environment.   
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Based on the recommendations of the WHO Expert Committee on Nutrition (WHO, 1995) on 
the use of anthropometric data, observations with child height-for-age Z-scores below �5 or 
above 3 were treated as outliers and omitted from the sample.  This led to dropping 44 
observations, all but three of which had Z-scores over 3.  Table 2 provides summary statistics for 
the full set of explanatory variables used as possible regressors in the first-stage model. 
 
Elbers et al (2003) note that in mapping exercises like this one comparability of the regressors 
between the sample survey and the census data is important to the quality of the prediction.  
Variables should have similar definitions in the two data sets and should have similar 
distributions.  Some variables under consideration were dropped during this analysis for these 
reasons.  An important example is a set of more precise sanitation variables on type of latrines 
and sewerage.  Information on sanitation is not gathered in the same way in the PNDS and the 
2000 census.  Other important variables that were maintained in the set of regressors presented a 
significant challenge in this regard.  For example, mothers of children in the census are not 
identified.  In order to construct variables on mother�s age and education, it was necessary to 
infer who the likely mother is based on the information provided.  We used the following 
conditions successively to identify probable mothers in the census: 
 

(i) a female head of family with children under age 7  
(ii) the female spouse of head of family if a child under age 7 is the offspring of the head 

of family 
(iii)a female daughter of head of family who has given birth if head of family has 

grandchildren under 7 
(iv) an adult female who has given birth if the head of family has grandchildren under 7 
 

We believe this approach was fairly successful at identifying likely mothers of the children in the 
census.  In the case of the first category, mothers are clearly identified.  Women in the second 
category have a high probability of being the birth mother.  Those that are not are likely to be the 
primary caregiver.  We regard conditions (iii) and (iv) as less likely to identify the actual mother.  
To check this approach, we looked at the data for five UFs and found that 92.7 percent of 
children had a mother identified by the first two categories alone.  The third condition identified 
a mother for another 2.8 percent of children under 7, and the fourth condition for 0.3 percent of 
children. 
 
Next, we tested the comparability of the distributions of the variables in Table 2 between the 
PNDS and census data sets.  Two tests were used, a t-test for equality of means and a 
Kolmogorov-Smirnov test, a non-parametric test of equality of distributions.  The results of these 
tests are provided in Table A.1 in Appendix A.  Of the 30 child and household variables tested, 
equality of the means of the variables was rejected 11 times and the equality of the distributions 
was rejected by the Kolmogorov-Smirnov test 11 times.  Equality of the distributions was 
rejected under both tests for 8 of the 30 variables.  These results suggest reasonable 
comparability in the data sets, although differences in the distributions of predictors failing the 
tests, such as household size and asset variables, could be a source of error in the predictions of 
stunting prevalence.  For mother�s age and education, there is mixed support for our strategy for 
identifying likely mothers in the census.  Results of the Kolmogorov-Smirnov test fail to reject 
equality of the distribution of all of the mother�s education variables, but rejects equality of the 



 13

distribution of mother�s age in the PNDS and census.  It is not possible to know whether possible 
differences in mothers� ages in the two data sets is due to sampling error or to our definition of 
mothers in the census.  T-tests for equality of means reject equality for 2 of the 5 variables for 
mother�s education, but fail to reject equality of the means of mother�s age.   
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Table 2:  Summary Statistics for Variables in Stunting Model* 
 

 

 
Dependent Variable and  
Sample Stunting Prevalence Mean Std Dev Min Max

HAZ Z-score of height-for-age -0.581 1.266 -4.99 3
HAZM2 Dummy for HAZ<-2 0.129 0.335 0 1
   
 Child and Household Explanatory Variables  
Age7m Dummy for child age of 7 months 0.015 0.120 0 1
Age8m Dummy for child age of 8 months 0.018 0.133 0 1
Age9m Dummy for child age of 9 months 0.024 0.153 0 1
Age10m Dummy for child age of 10 months 0.023 0.150 0 1
Age11m Dummy for child age of 11 months 0.023 0.149 0 1
Age1223 Dummy for child age of 12-23 months 0.223 0.416 0 1
Ageyrs Age in completed years 2.195 1.328 0 4
Ageysq Age in completed years squared 6.580 5.859 0 16
Girl Dummy for child gender = girl 0.490 0.500 0 1
Agey_Girl Age in completed years times girl dummy 1.070 1.438 0 4
Birthord Child�s birth order for live births 2.735 2.220 1 18
Rage Respondent's (mother's) age 28.000 6.406 15 49
Ragesq Respondent's (mother's) age squared 825.030 381.281 225 2401
Headfem Dummy for female household headship 0.123 0.328 0 1
Hhsize Number of household members 5.565 2.330 2 18
Hhsizesq Number of household members squared 36.401 35.754 4 324
Redy03 Respondent has 0-3 yrs of education 0.313 0.464 0 1
Redy4 Respondent has 4 yrs of education 0.173 0.378 0 1
Redy57 Respondent has 5-7 yrs of education 0.216 0.411 0 1
Redy8 Respondent has 8 yrs of education 0.086 0.280 0 1
Redy911 Respondent has 9-11 yrs of education 0.176 0.381 0 1
Ped4ov 1 if husband completed at least 4 yrs educ 0.661 0.473 0 1
Headfem 1 if HH head is female 0.123 0.328 0 1
U5deprat Under 5 dependency ratio 0.328 0.134 0 0.8
Nroom No. rooms in house 5.015 2.005 1 17
Nbedroom No. rooms used for sleeping 2.082 0.875 1 8
Peopleroom No. HH members per room 1.323 0.919 0.231 10
Pipedwater 1 if water piped into house/yard 0.702 0.458 0 1
Wellspringin 1 if well/spring water in house/yard 0.157 0.364 0 1
Electr 1 if has electricity 0.896 0.305 0 1
Radio 1 if has radio 0.801 0.399 0 1
Refrig 1 if has refrigerator 0.622 0.485 0 1
Vcr 1 if has VCR 0.143 0.350 0 1
Wshmach 1 if has washing machine 0.261 0.439 0 1
Tvset 1 if has television 0.525 0.499 0 1
Car 1 if has car 0.178 0.382 0 1
   
  (continued�)   
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Table 2:  (continued) 
 
 Municipality Explanatory Variablesº Mean Std Dev Min Max
  
Birthpcm Live births per capita, 1998 0.030 0.013 0.001 0.112
Dthr01_redyrs Interaction: < 1 death rate & mother's educ. 0.129 0.117 0 1.014
Dthr14_redyrs Interact: death rate, 1-4 y.o.'s & mother's educ. 0.006 0.006 0 0.081
Hosp00pc Number of hospitals per capita 4.34E-05 4.18E-05 0 2.79E-04
Hospbed00pc Number of hospital beds per capita 2.74E-03 2.17E-03 0 3.28E-02
Intesp00pc Hospital internment per capita, 2000 7.25E-02 4.33E-02 0 3.36E-01
Ambuis99pc Ambulatory units per capita, 1999 3.67E-04 2.93E-04 0 2.49E-03
Postde99pc Health posts per capita, 1999 1.14E-04 2.04E-04 0 2.41E-03
Cent99pc Health centers per capita, 1999 7.87E-05 8.60E-05 0 7.34E-04
Cons99pc Surgical units or private clinics per capita, 1999 5.24E-06 5.21E-05 0 6.90E-04
Conso99pc Dental surgical units per capita, 1999 2.14E-06 1.61E-05 0 1.94E-04
Ambus299pc Hospital ambulatory unit per capita, 1999 2.50E-05 3.53E-05 0 2.91E-04
Postca99pc Centers w only ambulatory care per capita, 1999 3.54E-07 2.92E-06 0 3.66E-05
Dthrate Death rate: deaths per population 4.96E-03 1.87E-03 0 9.75E-03
Dthrinfec Rate of deaths by infection 2.69E-04 1.53E-04 0 1.20E-03
Dthr01 Death rate under 1 year olds 2.33E-02 1.40E-02 0 8.84E-02
Dthr14 Death rate for 1-4 year olds 1.03E-03 8.00E-04 0 7.33E-03
Dthr59 Death rate for 5-9 year olds 3.53E-04 2.99E-04 0 4.35E-03
Dthr1014 Death rate for 10-14 year olds 3.96E-04 3.05E-04 0 2.34E-03
Dthr1519 Death rate for 15-19 year olds 9.79E-04 6.73E-04 0 4.12E-03
Dthr2029 Death rate for 20-29 year olds 1.57E-03 8.29E-04 0 4.98E-03
Primenrollr Approx primary school enroll rate, 2000 0.990 0.115 0.638 2.060
Primestr Primary school student-teacher ratio, 2000 24.643 4.485 13.361 43.945
Primestusch No students per primary school, 2000 238.778 160.290 33.857 793.786
Employ98 Approximate share of adults (>15) employed 0.203 0.161 0.003 1.083
Orcacor97pc Government revenues per capita 2.462 1.637 0 16.500
FunFUN00 Funding for basic education 3.073 9.918 0 50.479
Shgarbbuck00 Public garbage bins (share HHs), 2000 0.061 0.087 0 0.730
Shgarbpubser00 Public garbage collection (share HHs), 2000 0.637 0.291 0 0.982
Shgarbburied00 Garbage buried (share HHs), 2000 0.013 0.020 0 0.139
Shgarbriver00 Garbage disposal: river (share HHs), 2000 0.005 0.012 0 0.162
Shgarbwast00 Garbage disposal: wasteland (share HHs), 2000 0.111 0.140 0.000 0.792
Shhhhouse00 House as dwelling (share HHs), 2000 0.909 0.100 0.352 0.998
Shhhapt00 Apartment as dwelling (share HHs), 2000 0.066 0.095 0 0.616
Shhhroom00 Room as dwelling (share HHs), 2000 0.011 0.013 0 0.078
Popdens00 Population density, 2000 11.245 22.243 0.004 129.086
Lrhhpcinc00 Ln real per capita income, July 2000 5.426 0.677 3.848 6.826
*These summary statistics are unadjusted for sample design including weights and clustering. 
ºFor some of the municipality variables expressed in shares of the population, the population figure in the denominator is 
projected or is from a different year than the main variable in the numerator.  These variables, such as Primenrollr and 
Employ98, are proxies for the true shares and may take on values greater than 1.
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Specification Tests and Empirical Issues 
 
A number of specification tests were performed on the HAZ model in (2).  The first set of tests 
compared a unified model for all Brazilian children to separate models nested by the age of the 
child, then urban and rural residence, and regional location. 
 
For analysis of nutrition determinants, the WHO Expert Committee on Nutrition (WHO, 1995) 
recommends a minimum stratification of a sample of children under 5 years old into cohorts 
above and below age 2.10  A Wald test was performed to compare separate models for 6-23 
month olds (N=1240) and 24-59 month olds (N=2370) to a unified model of all 6-59 month olds 
(N=3610).  The unified model was rejected in favor of separate models for each age cohort.11  
Hereafter, we refer to the cohort of 6-23 month olds as �infants� and to the 24-59 month olds as 
�toddlers�. 
 
Next, the data were separated into urban and rural sub-samples to test for the appropriateness of 
separate urban and rural models within the two age groups.  Within the infant cohort, a Wald test 
was unable to reject the unified infant model for separate models for urban and rural infants.  In 
the toddler cohort, the results were more mixed.  The Wald test rejected the unified toddler 
model in favor of urban and rural toddler models (Wald statistic= 46.84; )30(2χ = 43.77).  
However, a Wald test is inexact and may too easily reject the null in small-to-medium samples.  
The more conservative bounds test in Kobayashi (1986) failed to reject the unified toddler 
model.   
 
We then tested for regional differences in coefficients.  Observations from the South, Center-
West, and Southeast regions were pooled into a Center-South (CS) sub-sample and those from 
the North and Northeast regions were pooled to create a North-Northeast (NNE) sub-sample.  
For the infant cohort, both the Wald test and the Kobayashi bounds test rejected the unified 
infant model in favor of separate NNE and CS infant models.  For toddlers, the Wald test failed 
to reject the toddler model in favor of NNE and CS toddler models, but with a p-value of 0.1008.  
The Kobayashi test failed to reject the unified toddler model.12   
 
These results are quite mixed.  There is only weak support for urban/rural models in the toddler 
cohort, and no support for urban/rural models for infants.  However, separate NNE/CS models 
are supported for infants, but not for toddlers.  Since the bulk of this evidence seems to favor 
separate models for infants and toddlers only, with no further disaggregation, we began with a 
model that uses only this separation of the data.  This model will be referred to as Model 1.  
Later, we will present another set of estimates that allows for division of the sample into eight 
models based on the infant/toddler, urban/rural, NNE/CS divisions described.  Such an approach 

                                                 
10 This recommended point of separation reflects, among other things, that the reference populations on which the Z-
scores are based are different for 6-23 month olds and 24-59 month olds.  Therefore, an empirical finding that the 
determinants of nutritional status are different above and below this age cutoff may be due in part to the use of 
different reference groups in the NCHS/WHO data. 
11 The Wald statistic was 124.83.  The corresponding χ2 test statistic with 33 degrees of freedom was 47.40.  The 
unified model was easily rejected. 
12 Results of all tests are available from the authors upon request. 
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can be defended in part by the mixed model specification test results and because the data are 
representative at this level of disaggregation.13  This model will be referred to as Model 3. 
 
For Model 1, separate regressions of height-for-age Z-scores were estimated for the infant and 
toddler sub-samples of the PNDS data using a subset of the regressors listed in Table 2.  Both 
models began with the full set of possible explanatory variables, with the exception that the 
infant models used dummy variables AGE7M, AGE8M, AGE9M, AGE10M, AGE11M, 
AGE1223 for child�s age and the toddler model used AGEYRS and AGEYSQ. Explanatory 
variables were selected for inclusion into the models depending on their contribution to 
predictive accuracy based on several criteria including individual t-statistic and minimization of 
RMSE.14  First, a stepwise regression procedure of backward selection was used in which each 
model was estimated on all potential regressors and then variables with high p-values were 
removed.  Through repeated attempts using different p-value thresholds for variable inclusion, it 
was determined that a liberal threshold of p<0.3 performed best in the stepwise regression in 
terms of minimizing RMSE.  Thus, many variables that would not meet standard levels of 
significance in a model of nutrition determinants were kept as regressors because they improved 
the predictive accuracy of the model. Using the list of variables obtained from the stepwise 
regression as a base, additions and subtractions of individual variables from the list were 
considered on the basis of their effects on RMSE.  One approach involved replacing all child or 
household level regressors omitted from the models during the backward selection procedure.  
Returning these variables generally led to little change in RMSE, but in the end these variables 
were retained on the grounds that they belonged in the model for intuitive reasons.  This 
procedure lead to the use of 39 predictors in the infant model and 33 predictors in the toddler 
model. 
 
We also tested for the presence of omitted municipality-level effects in Model 1.  The presence 
of significant municipality-level effects in nutritional status that remain unexplained by the 
model would argue for using simulation methods to add the municipality component of the 
empirical residuals back into the linear prediction of HAZ status.  We tested for unobserved 
municipality effects in two ways: (i) regressing residuals from the HAZ regression on 
municipality fixed effects, and (ii) estimating the HAZ model in (2) by random effects.  F-tests 
that the municipality fixed effects were jointly zero cannot be rejected for either the infant or 
toddler model.  There is no evidence of important omitted municipality effects.  The large set of 
municipality variables included in the regression capture the correlation of municipality effects 
with nutritional status.  Since no omitted municipality effects were identified, simulation 
methods for predicting nutritional status were not employed at this stage. 
 
In the final stage of the prediction model, parameter estimates from each model were matched to 
data from the 2000 census survey to construct estimated child HAZ levels and corresponding 
predicted stunting prevalence for each municipality.  In the infant and toddler samples of 
imputed HAZ levels in the census, 2.9 percent and 3.8 percent of children, respectively, had 

                                                 
13 In the literature on poverty mapping, it is common to estimate separate first-stage models on each stratum in the 
sample data set, in order to allow for greater variability in predicted poverty rates.  Such an approach is not feasible 
here.  The PNDS strata are the urban and rural areas of each UF, many of which have fewer than 20 observations in 
the data set. 
14 See Theil (1961) on the use of minimized RMSE as a criterion for predictive accuracy. 
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missing HAZ estimates due to missing data.  Also, in the infant cohort from the census, a limited 
number of predicted HAZ levels (0.07%) fell outside the (-5,3) range used to trim the PNDS 
sample.  In the toddler cohort, even fewer predicted HAZ levels (0.02%) fell outside these 
bounds. These outliers were dropped in both cohorts.  The municipality average prevalence was 
constructed as a child-population-weighted average of the stunting rates for each age cohort.  
The imputation exercise created stunting prevalence estimates for the 5507 municipalities in 
existence in 2000.  Between 2000 and 2001, another 54 municipalities were created.  These were 
assigned the median estimated stunting prevalence for their corresponding Unidade de 
Federação (UF).  
 
One concern raised by the approach to variable selection used for Model 1 is that of overfitting 
the data.  Overfitting may occur when right-hand-side variables are selected primarily on the 
basis of their fit for the present sample.  Although all of the variables considered as potential 
regressors were chosen for intuitive reasons as potential predictors of height achievement, the 
stepwise selection procedure used to reduce the regressor matrix to only variables with relatively 
high t-statistics could have fit the PNDS data too closely.  Because of sampling error, these 
variables may not be the best predictors in other samples.  This can lead to extreme predictions in 
other samples, particularly if the distribution of the X variables differs across the two data sets.   
 
Evidence of overfitting is provided if estimating the regression on a smaller sub-sample leads to 
a large change in R2.  To undertake this test, we drew random samples of half the observations 
from the infant and toddler cohorts and estimated the regressions again for the same set of X 
variables.  With the decline in sample size, the R2 changed from 0.202 to 0.218 in the infant 
model and from 0.264 to 0.274 in the toddler model.  These results provide little evidence of 
overfitting in the infant and toddler models in Model 1. 
 
Despite this informal evidence against overfitting, we developed another set of infant and toddler 
models of height achievement in the PNDS that relied on a narrower set of predictors.  This 
approach would provide estimates of stunting prevalence that were more conservative with 
respect to extreme values, and would also serve as a robustness test for Model 1.  We refer to this 
new set of models as Model 2 or the �reduced� model.  In these models, no stepwise selection of 
variables was used.  Instead, we reduced the set of child- and household-level variables under 
consideration by either dropping or merging variables.  Variables dropped from Model 2 include 
female headship, number of rooms and bedrooms, piped water, radio, vcr, washing machine, and 
quadratic terms for child and mother�s ages.  The categorical variables for mother�s education 
were also collapsed at the upper tail of the distribution.  Starting with this reduced set of child 
and household regressors, all remaining child and household variables were included in the 
regressions for Model 2.  To identify a more restricted set of municipality-level variables to 
include, we first estimated the model using only the child and household variables for each of the 
infant and toddler cohorts.  We regressed the residuals from these models on municipality fixed 
effects in order to capture omitted municipality effects for each cohort.  We then regressed these 
unexplained fixed effects on the set of potential municipality-level variables and selected the 3-5 
municipality variables that best explained the municipality effects.  These variables were 
included in the set of regressors and the models were re-estimated.  This procedure is very 
similar to that used by Elbers et al (2003) to select location-specific regressors.  These changes in 
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variable selection led to inclusion of 24 regressors in both the reduced infant model and the 
reduced toddler model. 
 
In Model 3, which used eight regressions based on infant/toddler, urban/rural, and NNE/CS 
divisions of the sample, the approach to variable selection was similar to that used in Model 2.  
This procedure, which uses fewer regressors and is more conservative with respect to concerns 
for overfitting, was chosen because the division of the sample into eight sub-samples led to a 
large reduction in degrees of freedom in each regression.  We now present the results of these 
models and some tests of model performance. 
 
Results and Predictive Performance of the Evaluation Models of Stunting Prevalence 
 
Estimates from the infant and toddler HAZ regressions from Model 1 are presented in Appendix 
Tables B.1 and B.2.  As noted above, the variable selection process kept 39 and 33 predictors in 
the infant and toddler models, out of 71 and 67 possible regressors, respectively.  The coefficient 
of determination (R2) for the infant model was 0.202 and for the toddler model was 0.264.  A 
large share of the variation in HAZ remains unexplained by these models, despite having a very 
large set of regressors available.  In similar poverty mapping exercises, the analogous first-stage 
regression is a model of consumption expenditure.  These typically have an R2 of 0.4 to 0.6.  This 
provides the first evidence that predictive models of nutritional status are rather incomplete.  It 
suggests that caution should be exercised when using these models for allocating program 
budgets.   
 
Despite the shortcomings of these models, they appear to perform better than the original models 
that generated the malnutrition estimates used by BA.  Using the 1996 PNDS data, we attempted 
to construct variables for mother�s illiteracy, household sanitation, and household head income 
that were similar to the variables used in the original models in order to assess the performance 
of those models.  Mother�s illiteracy is provided in the PNDS, but sanitation variables are coded 
differently than in the 1989 PNSN, which somewhat limits the comparability of the sanitation 
variables.  However, the greatest difficulty came in developing the income variables, since 
household head income is not directly measured in the PNDS.  As a result, a crude proxy for 
household head income was developed based on asset ownership following an approach 
developed by the Brazilian research organization ANEP, referred to as �Critério Brasil.�15  There 
is considerable error in income measurement through this approach, although the scope of the 
problem is limited by the need only to classify households as above or below one or two income 
thresholds in each model.  Using these variables constructed from the PNDS data, we estimated 
the original logit models for stunting from (1).  The parameter estimates obtained differed 
considerably from those in the original 1997 study.  This difference partially reflects the seven-
year time span between the two data sets, though it also is determined by differences in variable 
definitions.  Despite the shortcomings of our attempts to replicate the original models for the 
newer 1996 PNDS data, results from this exercise probably provide a reasonable picture of the 
explanatory power of a similar model with a small set of binary regressors.  The outcome is that 
logit estimates of stunting prevalence for the original models on PNDS data (7 regional models 
in all) yielded a median pseudo-R2 of 0.051 and no pseudo-R2s larger than 0.092.  For the sake of 
                                                 
15 See Associação Nacional de Empresas de Pesquisa. January 2003. �Critério de Classificação Econômica Brasil 
Atualizado� at http://www.anep.org.br/m-arquivo.htm. 
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comparison, we estimated the infant and toddler models from Model 1 as logit model of stunting 
prevalence and obtained a pseudo-R2 of 0.18 and 0.17, respectively.  The evaluation model 
appears to have greater predictive ability than the model used to allocate the budget for Bolsa 
Alimentação. 
 
Another indicator of the performance of these types of models for geographic targeting is their 
accuracy in predicting average malnutrition prevalence at higher levels of regional aggregation.  
A summary of stunting prevalence estimates in Table 3 provides further evidence on the 
performance of the evaluation model in Model 1.16  The first column of means in Table 3 
presents the observed stunting prevalence from the PNDS for the eight strata considered in 
specification tests above.  Stunting is most severe in the Northeast, particularly in rural areas, and 
is generally worse for infants than for toddlers.  The next column of means in Table 3 presents 
the average predicted stunting prevalence for each stratum based on our first-stage model of 
height-for-age Z-scores in the PNDS for Model 1.  The evaluation models perform quite well at 
this stage.  In each stratum, average predicted stunting rates are very close to the sample 
estimates.  The lower panel of the same column contains average estimated stunting prevalence 
for the 8 strata based on the predicted probability of stunting for children in the second stage of 
Model 1 using the 2000 Census data.  Estimated cohort stunting prevalence for both the infant 
and toddler models is very close to observed prevalence, with the exception of infants in the rural 
Center-South, which contribute relatively few observations to the first-stage parameter estimates.  
These estimates are reassuring, given that there are a number of factors that can contribute to a 
decline in accuracy in the second-stage models.  These include the comparability of variable 
definitions between the PNDS and the 2000 census, sampling error in the PNDS, model error in 
the first-stage estimates, and idiosyncratic error captured in the household residuals of the first-
stage model.  Of course, the goal of this methodology is to correctly predict differences in 
malnutrition prevalence across municipalities, not average cohort prevalence.  However, had 
these average prevalence estimates been very inaccurate, we would have had little confidence in 
the individual municipality estimates as well. 
 
For Model 2 the R2 for the infant model falls to 0.177 and that of the toddler model is 0.255.  
Table 3 shows that the reduced set of predictors in Model 2 perform comparably to Model 1 in 
estimating regional stunting prevalence in the first-stage model.  Only the estimate for rural 
toddlers in the CS region is appreciably worse.  In the second-stage estimates for the 2000 
census, Model 2 is nearly identical to Model 1 for the toddler strata.  For the infant strata, results 
are mixed, with Model 1 out-performing Model 2 for two of the four strata.  If closer inspection 
of municipality stunting prevalence estimates for Model 1 reveals extreme estimates, Model 2 
may be preferred, since it does about as well at estimating mean regional prevalence.  These 
results also demonstrate that the evaluation model of stunting prevalence is reasonably robust to 
the choice of predictors.  More evidence on this matter will be presented below. 
 
For the eight strata regressions in Model 3, variable selection was based on the reduced set of 
candidate variables and included only 3-6 municipality variables.  These limitations were driven 

                                                 
16 The estimates of malnutrition rates available to us from BA do not permit calculation of stunting prevalence 
because of the adjustments made to the original stunting estimates, and our own estimates of the original stunting 
model are too different to rely on.  Therefore, we do not include the �adjusted� malnutrition prevalence figures used 
by the MOH in this comparison of stunting prevalence.  



 21

by the need to avoid overfitting in sub-samples with relatively few degrees of freedom for 
estimation.  For most of these eight models, the R2 remains relatively stable compared to the R2 
for the reduced infant/toddler regressions in Model 2.  However, the jump in R2 to 0.335 for the 
CS rural toddler cohort suggests some overfitting for that model.  The last two columns of Table 
3 show the Model 3 estimates of stunting prevalence for the eight strata for the first-stage 
estimates from the PNDS and the second-stage estimates for the 2000 Census.  The first-stage 
infant models in Model 3 perform better than Models 1 and 2, but the first-stage estimates for 
toddler are not better.  From the second-stage estimates on the eight strata, half of the estimates 
are closer to observed stunting prevalence in Model 3 than in Model 1. 
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4 Geographic Targeting Performance of Bolsa Alimentação 
 
This section evaluates the accuracy of geographic targeting in Bolsa Alimentação.  The 
implications of targeting failures for the program budget and for income redistribution are also 
considered.  The analysis is based on a comparison of the municipality stunting prevalence 
estimates developed for this report to the estimated malnutrition rates used to allocate the 
program budget.  Although we have demonstrated that our estimates of stunting prevalence are 
subject to non-negligible error, the three evaluation models presented here appear to have greater 
predictive ability than the approach used by BA.  Thus, we will interpret differences in targeting 
outcomes between the evaluation model and the original estimates used by BA not as precise 
estimates of the size of targeting failures, but as suggestive of the spatial and socioeconomic 
distribution of these failures and as a rough estimate of their size.  Throughout this comparison, 
we assume that household level targeting in the second stage of the targeting procedure is perfect 
in the sense that, once the number of stunted children in a municipality is determined through 
geographic targeting, identifying those children through household targeting is effortless.17  
Estimates in this section of the number of children to be included in the program from the 
evaluation models were constructed by multiplying the municipality estimated malnutrition 
prevalence times the number of children aged 6 months through 6 years in the 2000 census. 
 
Comparing Distributions of Malnutrition Estimates 
 
Table 4 presents summary statistics of estimated municipality malnutrition prevalence for BA 
and for the three evaluation models.  Estimates of mean malnutrition prevalence for BA and the 
evaluation models are not directly comparable because the evaluation models measure stunting 
prevalence, whereas stunting estimates in the BA model were adjusted upward according to the 
regional average of the ratio of WAP10 to HAZM2.  A comparison of the evaluation models 
shows that Model 1 performs best at estimating national stunting prevalence.  Models 2 and 3 
both underestimate stunting levels. 
 
The other summary statistics in Table 4 demonstrate a primary shortcoming of the simple BA 
model raised in Section 2:  reliance on a small set of predictors constrains the model�s ability to 
differentiate between municipality malnutrition rates.  The BA malnutrition prevalence figures 
have lower variance than the evaluation estimates and fall in a narrow range, from 4.0 to 29.9 
percent.  The evaluation models, on the other hand, have greater variance in estimated 
malnutrition prevalence and a much wider range. 
 
Finally, Table 4 shows that the distributions of stunting prevalence estimates across the three 
evaluation models are quite similar.  There are only minor differences in median prevalence and 
interquartile range, for example.  This suggests that the evaluation models are fairly robust to 
model specification, including reductions in the number of predictors and differences in the 

                                                 
17 We use the assumption of perfect household targeting within municipalities in order to focus exclusively on 
geographic targeting in this report.  Of course, significant difficulties arise in designing effective household targeting 
as well.  Preliminary field visits conducted by IFPRI show, for example, that there was considerable confusion 
within municipalities about responsibility for household targeting, which hampered the creation of the list of 
beneficiaries.  We briefly discuss the consistency of geographic and household targeting objectives later in this 
report. 
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degree of regional aggregation for first-stage model estimation.  These results are also consistent 
with the weak evidence for separate urban/rural and regional models provided by the Wald tests 
in Section 3.  Notice also that stunting prevalence estimates in the tails of the distribution from 
Model 1 are not appreciably more extreme than those in Models 2 and 3.  This provides further 
evidence that concerns about overfitting in Model 1, which can lead to extreme predictions, are 
not serious.  Based on these results, we rely on Model 1 as our default set of estimates of stunting 
prevalence for the comparison with the original estimates undertaken in this section, in part 
because Model 1 provides the closest estimate of observed stunting prevalence of any of the 
evaluation models. 
 
The last row of Table 4 presents Pearson correlation coefficients of estimates of municipality 
stunting prevalence from the three evaluation models with the adjusted stunting prevalence 
estimates from the original model used by BA.  The correlation coefficient of 0.65 for the 
original model estimates with the preferred estimates from Model 1 suggests that the program 
achieved significant improvements in targeting over an untargeted program by using the original 
model, but that further improvements are available.   
 
 
     Table 4: Estimates of Malnutrition Prevalence: 
     Bolsa Alimentação and the Evaluation Model 
 

 Observed Stunting Prevalence, 1996 PNDS:    11.3% 
  

 
Bolsa 

Alimentação  
Evaluation  

 Model 1 Model 2 Model 3 
    
Mean 14.9 11.1 10.7 10.8 
Std Dev 7.1 8.9 7.9 8.9 
Min 4.0 1.2 0.0 0.0 
Max 29.9 81.5 65.5 72.6 
     
Percentiles     

1% 5.3 3.0 3.1 2.7 
5% 6.1 4.1 4.3 3.8 

25% 8.8 6.4 6.3 5.9 
50% 12.3 10.6 10.3 10.0 
75% 22.6 18.0 17.2 18.7 
95% 26.2 29.5 27.1 29.6 
99% 27.5 42.7 37.8 40.0 

   
Pearson correlation with 
BA estimates 0.650 0.645 0.731 
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The HAZ Threshold and Stunting Estimates Implied by BA Program Size 
 
As noted earlier, the upward adjustment of stunting prevalence estimates from the original model 
to bring them in line with average prevalence of WAP10 suggests that the government wanted to 
reach more children through the program than just those who were already stunted.  A program 
expansion of this size would allow the government to reach many children who are not stunted 
by the �classical� definition, but whose height achievement is less than their potential or who 
may be at high risk of stunting. 
 
Maintaining height-for-age as the preferred measure of nutritional status for geographic 
targeting, the government�s desire to expand the program beyond stunted children suggests an 
implied HAZ threshold for program participation that is above -2.  In order to calculate this 
implied threshold, we first fixed the number of children in the program at the level determined 
by the BA prevalence estimates.  We then re-estimated modified �stunting� prevalence rates in 
Model 1 for infants and toddlers for various threshold levels of HAZ and calculated the 
corresponding numbers of children predicted below each threshold level.  This procedure was 
repeated until an HAZ threshold was identified for which the predicted number of stunted 
children was equal to the number currently in the program.  This procedure identified an implied 
threshold for inclusion in the program of HAZ<-1.823.  By construction, this HAZ threshold 
creates a program of equal size to the current BA program, with 2.77 million child beneficiaries, 
or 12.4 percent of children age 6 months to 6 years 11 months.  However, as with the Model 1 
estimates of stunting prevalence based on the HAZ<-2 threshold, the evaluation model 
underestimates the mean of this �mild� stunting prevalence for HAZ<-1.823, which is 14.2 
percent of children aged 6-59 months in the PNDS sample.  We refer to stunting prevalence at 
this threshold consistent with BA program size as the �implied� stunting prevalence. 
 
In a population such as Brazil�s characterized by intermediate rates of stunting, it is important to 
adjust these prevalence estimates for baseline or expected prevalence.  As noted in WHO (1995), 
when -2 Z-scores is used as a stunting threshold, 2.3 percent of the NCHS/WHO reference 
population will be classified as stunted even if their growth is not impaired.  The correct measure 
of classic stunting prevalence for Brazil is obtained by subtracting this baseline prevalence from 
observed prevalence of children with HAZ below -2.  Using the PNDS estimate of 11.3 percent 
of children age 6-59 months with HAZ < -2, this yields a stunting prevalence of 9.0 percent.  The 
evaluation model estimates this figure at 8.8 percent of children.  At a threshold of HAZ<-1.823, 
3.4 percent of the reference population would be classified as malnourished.  Subtracting this 
baseline prevalence yields a PNDS estimate for this �mild� incidence of malnutrition of 10.8 
percent and an evaluation model estimate of 9.0 percent. 
 
Another indication of the accuracy of the estimates of malnutrition prevalence from the original 
model and evaluation Model 1 is available from new results of a school height census of children 
for Pelotas municipality in the state of Rio Grande do Sul.18  As noted earlier, Morris and Flores 
(2002) show that a school height census of first graders in municipalities in Honduras provided 
reliable estimates of the height achievement of children under five in the same municipalities.  
They indicated that these results should provide a similar ranking of municipalities to a ranking 
based on stunting prevalence.  For Pelotas, the figures available are for stunting rather than mean 
                                                 
18 We would like to thank Cora Luiza Araujo for sharing the results of the Pelotas school height census with us. 
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HAZ.  The school height census showed stunting prevalence of 4.1% among first graders and 
3.2% for school children aged 7-10.  The stunting prevalence estimate for children aged 6 
months to 5 years from evaluation Model 1 for Pelotas is 5.6%, and the estimate for toddlers 
(aged 2-5 years) is 4.3%.  Although we are only able to make this comparison for one 
municipality, these results provide encouraging support for evaluation Model 1.  The stunting 
estimate for toddlers is very close to the observed stunting prevalence in first graders.  The 
adjusted stunting estimate from the model used by BA for Pelotas is 7.4%.  We should expect 
this figure to be somewhat higher because the BA program has a larger target population than 
children who are classically stunted.  However, using results from evaluation Model 1 adjusted 
upward for the BA-implied threshold of HAZ<-1.823, the implied stunting prevalence from 
Model 1 for Pelotas for children under 5 is 6.2% and the estimate for toddlers is 4.5%.  Again, 
the evaluation model appears to provide more accurate estimates of stunting prevalence than the 
model used to allocate the program budget. 
 
Having revised the estimates of municipality malnutrition prevalence to be consistent with the 
size of the BA program, we investigate the distribution of program resources in more detail.  
Figure 1 presents nonparametric estimates of the distribution of the BA program budget to 
municipalities based on three measures of malnutrition prevalence: the original estimates used by 
BA, the stunting estimates from evaluation Model 1, and the evaluation estimates for implied 
stunting prevalence from Model 1.  The graph shows the distribution of the natural logarithm of 
the value of bolsas per child population given to municipalities for each measure.19  This graph 
clearly demonstrates the bunching of the malnutrition prevalence estimates in the original model.  
The evaluation model of stunting, on the other hand, has many more municipalities receiving 
either a low or high budget per child, with a lower mean budget size.  In the evaluation estimates 
revised for program size, this distribution shifts upward.  Regarding the �Implied Model 1� 
distribution as the preferred distribution at this program size, the space below the peaks of the 
BA distribution and above the �Implied Model 1� distribution represents failures of geographic 
targeting including both leakage of program benefits to ineligible beneficiaries and 
undercoverage of eligible beneficiaries.  That is, some of the municipalities represented there 
should have a smaller budget (leakage) and others should have a larger budget (undercoverage). 
 
 

                                                 
19 This graph is comparable to a graph of the natural log of estimated malnutrition prevalence, since prevalence is 
simply the number of bolsas divided by the child population and the value of the transfer is uniform at R$15 per 
child per month.  
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Figure 1: Municipality Distribution of Stunting Prevalence 
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Malnutrition Maps for Brazil 
 
The effect of the original model�s difficulties in differentiating between low-, middle- and high-
malnutrition-prevalence municipalities on the geographic distribution of malnutrition rates and 
program resources can be seen most clearly by mapping malnutrition prevalence for the various 
estimates being considered.  Figures C.1-C.3 in Appendix C map the estimated malnutrition 
prevalence from the original �BA� model, Model 1 from the evaluation, and evaluation Model 1 
revised for the BA-implied stunting threshold, respectively, for the 5507 municipalities in 2000.  
In each figure, estimates of malnutrition prevalence were grouped into seven categories of 
prevalence: six categories of five percentage points (from 0.00-4.99% up to 25.00-29.99%) and a 
top category of 30% and above.  The comparison of Figures C.1-C.3 is striking.  The BA 
program estimates in Figure C.1 have almost no municipalities in the lowest and highest 
categories of malnutrition rates.  The North and Northeast regions clearly suffer from the worst 
malnutrition, but there is limited differentiation of estimates within regions.  The stunting rates 
from the evaluation model presented in Figure C.2 stand in stark contrast to the results in Figure 
C.1.  The stunting model shows considerable variability in malnutrition rates within regions as 
well as within states (demarcated by solid lines).  Although the North and Northeast are 
obviously the worst affected, there are pockets of relatively low prevalence within these areas, as 
would be expected.  Figure C.3 shows that, when the threshold stunting level is relaxed in the 
evaluation model to be consistent with the size of the BA program, many municipalities jump 
one or two categories of stunting prevalence for this relatively mild definition of stunting.  It 
appears that more resources are being allocated to the interior areas of the North, the Northeast, 
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and the Center-South of Brazil as a result of expanding the program beyond classically stunted 
children.   
 
Maps of estimated stunting prevalence for Model 2 and Model 3 are provided for comparison in 
Figures C.4 and C.5, respectively.  The map of stunting prevalence estimates for Model 2, which 
are based on a smaller set of predictors, show less variability in stunting as expected.  Estimates 
from the eight age-regional models from Model 3 exhibit a more uniform distribution of stunting 
prevalence in the Center-South region and stronger regional divisions in prevalence than 
estimates from Model 1.   
 
A striking feature of the maps from the evaluation models is the high estimated prevalence in the 
North region.  The mean of the municipality stunting prevalence estimates for the North from 
Model 1 is 25.4 percent, which lies in the second highest prevalence category for these maps.  
More than 25 percent of municipalities in the North lie in the highest prevalence category 
(>30%) for estimates from Model 1.  Although we have no means to validate these estimates, we 
are concerned that they are too high.  The PNDS data from which the parameters of the stunting 
model are derived does not contain any observations on households in rural areas in the North 
region.  If these households have very different distributions of X variables in the census than 
their distributions for other regions of Brazil in the PNDS, this could result in inaccurate stunting 
estimates.  This high concentration of estimated stunting prevalence in the North region falls 
somewhat in Model 3 (Figure C.5), where prevalence estimates for the rural North are based on 
first-stage stunting models for households in the urban North and urban and rural areas of the 
Northeast.  However, these stunting estimates are still quite high.  Based on these concerns, we 
recommend that these estimates for the North region be used cautiously. 
 
Figure C.3 also demonstrates that considerable geographic variation in the allocation of program 
resources would still be possible had the government grouped municipalities into categories of 
malnutrition prevalence and given each municipality a budget of bolsas per child equal to the 
average malnutrition prevalence for its category.  Given the error in estimated stunting 
prevalence that was observed even with the very large set of potential predictors used for the 
evaluation model, the use of this type of classification might be justified.  There is little reason to 
believe that prediction models using aggregate census data can reliably differentiate between 
fractions of percents in malnutrition prevalence in the manner applied by the BA administration. 
 
Quantifying Targeting Errors 
 
A comparison of the allocation of the BA program budget based on the original model used by 
BA and the recommended allocation suggested by stunting estimates in Model 1 reveals 
considerable errors in geographic targeting.  Using the municipality implied stunting estimates 
from evaluation Model 1 as a benchmark, 17.87 centavos out of every real spent on the BA 
program did not reach the intended municipality�a targeting accuracy rate of 82.13 percent.  
Equivalently, the government spent R$1.22 for every real transferred to intended beneficiaries.  
If geographic targeting was the only source of targeting errors, this targeting accuracy rate would 
represent a moderate level of leakage compared to similar programs (see Coady et al, 2002).  
However, these estimates of leakage represent a lower bound on targeting errors in the program 
because they only capture errors that occurred in geographic targeting.  Errors in household 
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targeting within municipalities can only result in further reductions in targeting accuracy.  
Nonetheless, geographic targeting errors alone were large enough to erase the surplus 
represented by the fact that the program targeted 2.77 million children when the number of 
stunted children in 2000 was 2.48 million according to the evaluation model.  In fact, at these 
levels of leakage in geographic targeting, the BA budget would have to be increased from 
R$499mn to R$550 million in order to reach all stunted children.  In fact, this scenario is actually 
too optimistic, since it assumes perfect household targeting.   
 
Errors in household targeting may have been considerable in part because children at risk of 
malnutrition were identified only through the proxy of per capita household income below R$90 
per month.  However, if the target population for the program is stunted children, or those 
vulnerable to stunting, poverty is an imprecise selection criterion.  The correlation between 
income poverty and child stunting may be high, but probably does not exceed 0.7 or 0.8.  If the 
program was fully funded to cover all poor households with children, it would only reach the 
segment of the target population that were both stunted and poor�80 percent of stunted children 
would be a generous estimate.  However, the program was only funded to cover stunted children, 
who number less than poor children for the poverty line chosen.  This would cause many 
municipalities to run out of funds before reaching all poor households with children, and the 
share of stunted children reached would fall even further.  For this reason, municipalities were 
given the opportunity to amend the roster of beneficiaries to improve targeting of children at risk 
of malnutrition.  However, limited field visits suggest that confusion kept many municipalities 
from taking advantage of this opportunity.  The resulting undercoverage of children at risk of 
stunting is impossible to quantify, but is potentially large.   
 
These estimates of targeting errors are not as large if the target population is expanded to include 
all children in poor households.  However, serious household targeting errors could still have 
occurred because income is self-reported for households entered in the cadastro unico, and these 
households have an incentive to under-report their earnings. 
 
State-Level Malnutrition Estimates and the Distribution of Targeting Errors 
 
As a method of summarizing the geographic distribution of errors in targeting, we consider 
malnutrition estimates and budgetary allocations at the state level.  Table 5 presents estimates of 
malnutrition prevalence from the original model and the evaluation and the corresponding size of 
the budgetary misallocation for Brazil�s 27 Unidades de Federação.  Columns 1-3 show the 
estimated malnutrition rates for the BA program, stunting evaluation Model 1, and evaluation 
Model 1 for �implied� stunting, respectively.  A comparison of Columns 1 and 2 shows the 
lower average malnutrition prevalence that results from the stunting model, but also uncovers 
substantial differences in malnutrition estimates across states for the two estimates.  The figures 
in Column 3 reflect identical national malnutrition prevalence as Column 1, still with substantial 
differences in state-level estimates. 
 
Columns 4 and 5 of Table 5 show the size of the budget for each state under the original BA and 
evaluation approaches for an identical total budget.  These numbers indicate the state-level cost 
of budgetary misallocations under the program, under the assumption that the evaluation model 
estimates are preferred to the estimates used by BA.  The state of Maranhao, which had among 
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the very worst malnutrition rates under all three approaches in Columns 1-3 and is the poorest 
state, had the third largest real-value shortfall in its BA budget at R$8.7 million, according to the 
evaluation methodology.  The states with the two greatest shortfalls in budget in terms of value 
are Amazonas and São Paulo, respectively.  A useful way to quantify the budgetary value of 
targeting errors is to express the BA budget for each state as a fraction of the recommended 
budget under the evaluation.  This performance indicator is presented in Column 6.  In those 
states for which this indicator is less than 1, there was undercoverage of the target population of 
children according to the evaluation methodology.  Where the indicator is greater than 1, the BA 
budget included leakage to non-target households.  Of course, the total value of leakage and 
undercoverage for all states must be equal.  The table shows that many states had substantial 
undercoverage: four states (Amazonas, Roraima, Amapa and Acre) received less than half of the 
budget they would have received under the evaluation methodology.  One of the worst affected 
was the state of Amazonas, which had the second worst classic child stunting prevalence 
estimate at 25.2 percent, but received only 41.7 percent of the recommended budget, resulting in 
a shortfall of R$14.9 million.   
 
The states suffering undercoverage show no clear pattern in terms of income distribution.  
Column 7 ranks the 27 states by per capita income calculated from reported monthly income of 
household heads from the 2000 census, adjusted for average household size and regional prices.  
States with the greatest undercoverage were ranked 16, 12, 17, and 14, respectively, by per capita 
income.  The wealthiest UF, Distrito Federal, received only 66.2% of the budget recommended 
by the evaluation model. Also, the two states that benefited from the greatest leakage were 
ranked 24th and 15th in terms of per capita income. 
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Table 5:  Malnutrition Estimates and Budgetary Allocations by State 
 

 
STATE      Malnutrition Prevalence

 
Budget, R$mn 

 Targeting 
Accuracy Income 

 BA Model 1 Implied BA Implied BA/Impl. Rank 
 (1) (2) (3) (4) (5) (6) (7) 
ACRE 14.4 26.1 29.0 2.6 5.2 0.498 17
ALAGOAS 21.1 16.8 18.6 16.7 14.7 1.137 25
AMAPA 11.3 20.4 22.6 1.8 3.6 0.498 14
AMAZONAS 11.8 25.2 28.2 10.7 25.6 0.417 16
BAHIA 21.4 16.7 18.5 67.2 58.1 1.156 21
CEARA 21.9 14.8 16.4 42.0 31.5 1.334 23
DISTRITO FED 6.4 8.3 9.6 3.0 4.5 0.662 1
ESP SANTO 9.8 7.3 8.2 6.6 5.5 1.193 9
GOIAIS 10.8 9.2 10.5 12.4 12.0 1.027 10
MARANHAO 22.4 24.7 27.7 36.2 44.9 0.806 27
MATO GR 11.3 11.3 12.5 7.0 7.8 0.905 7
MATO GR S. 10.1 8.4 9.3 5.0 4.6 1.089 8
MIN GERAIS 10.3 8.6 9.7 39.5 37.3 1.059 11
PARA 22.8 22.3 24.9 41.8 45.7 0.916 20
PARAIBA 20.6 12.0 13.2 16.6 10.7 1.556 24
PARANA 9.0 7.2 8.1 19.0 17.1 1.114 6
PERNAMB 19.2 12.3 13.6 35.9 25.5 1.407 15
PIAUI 22.1 19.2 21.3 15.8 15.2 1.037 26
RIO DE JAN 5.0 4.7 5.4 21.5 23.3 0.923 3
RIO GR N. 18.6 10.9 11.9 12.4 8.0 1.556 18
RIO GR S. 7.9 5.9 6.5 16.2 13.4 1.211 4
RONDONIA 13.1 12.3 13.7 4.9 5.1 0.957 13
RORAIMA 9.7 19.9 22.0 1.0 2.3 0.443 12
SAO PAULO 5.7 6.4 7.4 43.0 55.4 0.776 2
SERGIPE 17.6 13.6 15.1 8.2 7.0 1.163 22
ST CATARINA 7.5 7.0 8.0 8.5 9.1 0.939 5
TOCANTINS 11.9 18.2 20.2 3.8 6.4 0.591 19

 Total    499.3  
 
 
 
5 Conclusions and Recommendations 
 
The results of this evaluation show that, by using the original 1997 estimates of municipality 
malnutrition prevalence, the government of Brazil was able to target BA program resources 
toward localities with higher malnutrition rates.  The correlation coefficient of Bolsa 
Alimentação�s estimates of malnutrition prevalence for Brazil�s 5561 municipalities and the 
preferred estimates of stunting prevalence generated by the evaluation methodology was 0.65, 
suggesting sizeable gains from targeting.   
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However, data limitations and the simplicity of the original prediction model led to inaccuracies 
in estimating malnutrition prevalence.  The main shortcomings of the MOH approach to 
geographic targeting include (i) use of outdated household sample and census data from 1989 
and 1991, respectively; (ii) use of only three to five binary regressors to predict stunting 
probabilities in the sample, and (iii) failure to use newly available �mapping� techniques based 
on household record census data to assist in quantifying targeting errors.   
 
The original model is quite accurate at predicting mean stunting prevalence at high levels of 
regional aggregation.  However, it does not perform as well at identifying differences in 
malnutrition prevalence between municipalities.  As a result, the malnutrition prevalence 
estimates on which the Ministry of Health based the geographic allocation of bolsas were 
bunched around the mean.  The evaluation model suggests that there were many municipalities 
with either higher or lower stunting prevalence than predicted in the BA model.  These probable 
geographic targeting errors led to undercoverage of intended beneficiaries in some 
municipalities.  A targeting accuracy analysis showed that, based on comparison with the 
evaluation model estimates, 17.87 centavos out of every real spent on the BA program did not 
reach the intended municipality.  Equivalently, the government spent R$1.22 for every real 
transferred to intended beneficiaries.  These errors in geographic targeting represent a lower 
bound on total targeting errors because they do not account for errors in household targeting. 
 
The �malnutrition mapping� approach used in the evaluation models shows some promise as a 
technique for geographic targeting, but warrants caution as well.  The models developed here 
were quite robust to changes in model specification including choice of predictors and level of 
regional aggregation for model estimation.  However, the fairly large models estimated here 
could explain only 20-25% of the variation in observed child height achievement.  This implies 
that important factors that determine local stunting prevalence rates have not been captured in 
these models, which could lead to meaningful errors in prevalence estimates and geographic 
targeting.   
 
This cautionary note suggests that allocating bolsas to municipalities in direct proportion to 
estimates of malnutrition prevalence leads to targeting errors.  For existing models, we do not 
know the size of the errors in the prevalence estimates, but we suspect that differences in 
estimates between municipalities equal to fractions of a percent are probably not meaningful.  
This suggests grouping municipalities by malnutrition prevalence levels, so as to average out the 
targeting errors.  This procedure would still require arbitrary cutoffs between categories, but 
these would be fewer than the reversals in rankings that occur when prevalence estimates with 
three significant digits are treated as precise.  Also, availability of standard errors for the 
estimates of stunting prevalence generated in these models would help to determine how wide to 
make the groupings of municipalities by prevalence.  Subsequent drafts of this paper will include 
estimates of the standard errors of the stunting prevalence estimates. 
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Appendix A:  Data Diagnostics 
 

Table A.1:  Comparison of the Distribution of Predictors  
 Across the PNDS and Census Data Sets 
 
    CENSUS PNDS K-Smirnov T-Test  
    Mean SE Mean SE   P-value P-value 
age10m Dummy for age 10 moths 0.019 0.0001 0.023 0.0029 1.00 0.10 
age11m Dummy for age 11 moths 0.018 0.0001 0.022 0.0026 1.00 0.15 
age1223 1 if child age 12-23 months 0.217 0.0003 0.222 0.0073 0.98 0.51 
age7m Dummy for age 7 moths 0.019 0.0001 0.015 0.0023 1.00 0.14 
age8m Dummy for age 8 moths 0.018 0.0001 0.017 0.0024 1.00 0.68 
age9m Dummy for age 9 moths 0.018 0.0001 0.024 0.0027 1.00 0.02 
agey_girl Interaction ageyrs and girl  1.104 0.0011 1.066 0.0259 0.61 0.14 
ageyrs Child�s age in years 2.245 0.001 2.202 0.0235 0.11 0.07 
ageysq Child�s age in years squared 6.764 0.0043 6.605 0.1019 0.11 0.12 
birthord Child's birth order for live births 2.553 0.002 2.621 0.0522 0.38 0.19 
car 1 if HH has car 0.206 0.0004 0.22 0.0105 0.24 0.19 
electr 1 if HH has electricity 0.9 0.0003 0.913 0.0085 0.21 0.13 
girl Child is a girl 0.492 0.0004 0.488 0.0089 1.00 0.69 
hhsize Number of household members 5.22 0.0026 5.42 0.0579 0.00 0.00 
hhsizesq Number of household members squared 32.413 0.0447 34.455 0.9063 0.00 0.02 

ped4ov 
1 if husband completed at least 4 years of 
education 0.731 0.0004 0.701 0.0113 0.00 0.01 

peopleroom No. HH members per room 1.24 0.001 1.27 0.0206 0.00 0.15 
rage Current age � respondent 28.287 0.007 28.177 0.1433 0.00 0.45 
ragesq Respondent's (mother's) age squared 857.268 0.5294 834.654 8.5417 0.00 0.01 
redy12m Respondent has 12 or more yrs 0.051 0.0002 0.046 0.0058 0.95 0.37 
redy4 Respondent has 4 yrs of educ 0.149 0.0003 0.178 0.0089 0.38 0.00 
redy57 Respondent has 5-7 yrs of educ 0.227 0.0004 0.219 0.0094 1.00 0.39 
redy8 Respondent has 8 yrs of educ 0.1 0.0003 0.097 0.0062 0.97 0.58 
redy911 Respondent has 9-11 yrs of 0.206 0.0004 0.179 0.0089 0.52 0.00 
refrig 1 if HH has refrigerator 0.738 0.0004 0.676 0.0118 0.00 0.00 
tvset 1 if HH has a television 0.597 0.0005 0.587 0.0126 0.00 0.44 
u5deprat Under 5 dependency ratio 0.316 0.0001 0.328 0.0033 0.00 0.00 
urban 1 if HH located in Urban area 0.777 0.0004 0.759 0.0126 0.03 0.15 
vcr 1 if HH has a VCR 0.262 0.0004 0.183 0.0098 0.00 0.00 
wellspring_in 1 if well or spring water in house for any use 0.19 0.0004 0.135 0.0092 0.00 0.00 

Note: The Kolmogorov-Smirnov test is a non-parametric test for equality of the distributions.  The T-Test results test the null hypothesis 
of equality of means across data sets for each variable. 
Variables in bold italic when T-test p-value>0.05; Variables underlined when Kolmogorov-Smirnov p-value>0.05. 
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Appendix B:  Estimates of First-stage Height-for-age Models20 
 
Model 1: Infant and Toddler Cohorts Only with Full Regressor Set 
 
Table B.1: HAZ Model for Infants 
 
                                                  Number of obs    =      1237 
                                                  F(  39,    680)  =      7.40 
                                                  Prob > F         =    0.0000 
                                                  R-squared        =    0.2024 
 
------------------------------------------------------------------------------ 
         haz |      Coef.    Std. Err.      t    P>|t|    [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       age7m |   .0031096    .2352661     0.01   0.989    -.458782    .4650013 
       age9m |   -.134676    .2309357    -0.58   0.560    -.588066    .3187139 
shgarbbuck00 |   1.065988    .4955849     2.15   0.032    .0930196    2.038957 
       age8m |  -.3128967    .2323129    -1.35   0.178   -.7689904     .143197 
    dthr1519 |  -88.98376    86.94562    -1.02   0.306   -259.6818    81.71426 
      age10m |  -.3361157    .2244244    -1.50   0.135   -.7767221    .1044908 
      age11m |  -.3656496    .2254101    -1.62   0.105   -.8081912    .0768921 
     age1223 |   -.427469    .1964369    -2.18   0.030   -.8131283   -.0418098 
        girl |   .2333992    .1204163     1.94   0.053    -.003011    .4698093 
   agey_girl |  -.1913917    .1495444    -1.28   0.201   -.4849882    .1022049 
shgarbpub~00 |   1.170127    .2690373     4.35   0.000    .6419337    1.698321 
        rage |    .075847     .042739     1.77   0.076   -.0080614    .1597554 
      ragesq |  -.0013248    .0007645    -1.73   0.084   -.0028258    .0001762 
       redy4 |   .1774863    .1039562     1.71   0.088   -.0266081    .3815806 
      redy57 |   .3346142    .1092052     3.06   0.002    .1202144    .5490139 
       redy8 |    .292159    .1551813     1.88   0.060   -.0125044    .5968224 
     redy911 |   .2725428    .1376436     1.98   0.048    .0023108    .5427748 
     redy12m |   .3962685    .2328913     1.70   0.089   -.0609608    .8534978 
      ped4ov |   .1291001    .0924078     1.40   0.163   -.0523217    .3105218 
    primestr |  -.0124003    .0100055    -1.24   0.216   -.0320438    .0072432 
      hhsize |  -.1223752    .0768308    -1.59   0.112   -.2732151    .0284647 
    hhsizesq |   .0068916    .0051799     1.33   0.184    -.003278    .0170612 
    u5deprat |  -1.349893    .3241462    -4.16   0.000   -1.986281   -.7135055 
    employ98 |   -.491193     .434291    -1.13   0.258   -1.343825    .3614389 
  postde99pc |    845.625    248.8034     3.40   0.001     357.156    1334.094 
  peopleroom |  -.1058729    .0464654    -2.28   0.023   -.1970972   -.0146486 
 orcacor97pc |  -.0371317    .0282611    -1.31   0.189    -.092616    .0183525 
wellspring~n |  -.2152219    .1010115    -2.13   0.033   -.4135352   -.0169086 
 shhhhouse00 |   4.232899     2.10813     2.01   0.045    .0940638    8.371735 
    dthr2029 |   113.5525    60.17965     1.89   0.060    -4.59663    231.7016 
      refrig |   .1581947    .0982926     1.61   0.108   -.0347806    .3511699 
         vcr |   -.222028    .1326361    -1.67   0.095    -.482429    .0383731 
  ambus299pc |   2276.991    1132.324     2.01   0.045    53.92977    4500.051 
 hospbed00pc |  -36.68779    15.45311    -2.37   0.018   -67.02647   -6.349103 
         car |   .2729624    .1116048     2.45   0.015    .0538517    .4920732 
    birthpcm |  -4.848849    3.151954    -1.54   0.124     -11.037    1.339299 
   shhhapt00 |   3.846624    2.141556     1.80   0.073   -.3578357    8.051084 
dthr14_red~s |   8.192569    5.604241     1.46   0.144   -2.810088    19.19523 
  ambuis99pc |  -391.2313     162.536    -2.41   0.016   -710.3339   -72.12865 
       _cons |  -5.093573    2.276579    -2.24   0.026    -9.56312    -.624027 
------------------------------------------------------------------------------ 
 

                                                 
20 All models were estimated to account for sample design through sampling weights, stratification and clustering. 
Reported standard errors are Huber-White heteroskedasticity robust standard errors. 
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Model 1: Infant and Toddler Cohorts Only with Full Regressor Set 
 
Table B.2: HAZ Model for Toddlers 
 
                                                  Number of obs    =      2363 
                                                  F(  33,    686)  =     17.75 
                                                  Prob > F         =    0.0000 
                                                  R-squared        =    0.2636 
 
------------------------------------------------------------------------------ 
         haz |      Coef.    Std. Err.      t    P>|t|    [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      ageyrs |  -.0166785    .2826364    -0.06   0.953    -.571571    .5382139 
        rage |  -.0001722    .0304324    -0.01   0.995   -.0599194     .059575 
    cons99pc |  -1061.151    223.9582    -4.74   0.000   -1500.842   -621.4593 
      ageysq |  -.0394832    .0470478    -0.84   0.402   -.1318508    .0528844 
        girl |  -.4495865    .1736045    -2.59   0.010   -.7904196   -.1087534 
   agey_girl |   .1881371    .0563494     3.34   0.001    .0775079    .2987664 
    birthord |   -.076394    .0192651    -3.97   0.000   -.1142167   -.0385713 
shgarbbuck00 |   -.669874    .2820328    -2.38   0.018   -1.223582   -.1161664 
      ragesq |   .0002645    .0004906     0.54   0.590   -.0006986    .0012275 
       redy4 |   .0875134     .089197     0.98   0.327   -.0876046    .2626314 
      redy57 |   .1879906    .0852518     2.21   0.028     .020618    .3553633 
       redy8 |   .4518498    .1009102     4.48   0.000    .2537354    .6499642 
     redy911 |   .3701898    .1135351     3.26   0.001    .1472893    .5930904 
     redy12m |   .7170499    .1703012     4.21   0.000    .3827021    1.051398 
      ped4ov |   .0979943    .0675436     1.45   0.147   -.0346122    .2306008 
   shhhapt00 |   2.354303    1.995757     1.18   0.239   -1.563914     6.27252 
      hhsize |  -.1517244    .0438739    -3.46   0.001   -.2378609   -.0655879 
    hhsizesq |    .007752    .0027127     2.86   0.004    .0024262    .0130779 
    u5deprat |  -.5507253    .2178056    -2.53   0.012   -.9783373   -.1231133 
 hospbed00pc |    23.9921     18.4192     1.30   0.193   -12.16983    60.15403 
  intesp00pc |  -1.498231    .8713009    -1.72   0.086   -3.208833    .2123704 
  peopleroom |  -.1094327    .0364581    -3.00   0.003     -.18101   -.0378554 
    dthr1519 |   62.65815     52.9485     1.18   0.237   -41.29423    166.6105 
wellspring~n |     .09029    .0757322     1.19   0.234   -.0583931    .2389731 
      electr |   .1359447    .1108853     1.23   0.221   -.0817534    .3536428 
     dthrate |   51.33245    19.98792     2.57   0.010     12.0907     90.5742 
      refrig |   .3828001    .0722843     5.30   0.000    .2408863     .524714 
         vcr |  -.1153503    .0795469    -1.45   0.147   -.2715226    .0408221 
    funFUN00 |  -.0033198    .0023102    -1.44   0.151   -.0078553    .0012157 
       tvset |   .1263379    .0679333     1.86   0.063   -.0070337    .2597095 
 shhhhouse00 |    2.31183    1.943492     1.19   0.235   -1.503777    6.127437 
    birthpcm |  -11.04505    2.917468    -3.79   0.000   -16.77283   -5.317259 
dthr01_red~s |  -.6440162    .3178927    -2.03   0.043   -1.268126    -.019906 
       _cons |  -2.015342    2.048312    -0.98   0.325   -6.036738    2.006055 
------------------------------------------------------------------------------ 
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