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ABSTRACT 

 
 
The paper introduces Digital Frequency Analysis (DFA) based on Benford’s Law as a new 
technique for detecting non-compliance in self-reported pollution emissions data.  Public 
accounting firms are currently adopting DFA to detect fraud in financial data.  We argue that 
DFA can be employed by environmental regulators to detect fraud in self-reported pollution 
emissions data.  The theory of Benford’s Law is reviewed, and statistical justifications for its 
potentially widespread applicability are presented.  Several common DFA tests are described and 
applied to North Carolina air pollution emissions data in an empirical example. 
 
Key Words: Benford’s Law, Digital Frequency Analysis, Pollution Monitoring, Pollution 
Regulation, Enforcement 
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1. INTRODUCTION 
 
 Federal and state environmental agencies collect pollution emissions data to verify permit 

compliance and to assess emissions fees.  Typically, these data are reported to the agency by 

emissions sources via self-administered reporting forms.  Agencies usually do not have the 

resources to conduct frequent, on-site audits of firms’ emissions reports.  For example, the U.S. 

Environmental Protection Agency conducts "a limited number" of data quality inspections in 

support of its Toxic Release Inventory program, but the data are not independently verified [25].  

Similarly, state environmental agencies do not have the resources to conduct frequent on-site 

inspections to verify reported emissions numbers [20].  

 Given infrequent inspections, incentives exist for sources to underreport pollution 

emissions.  The probability of getting caught is relatively low, and the benefits of lower pollution 

emissions include reductions in permit application and annual permit renewal fees, reductions in 

emissions fees, avoidance of costly command-and-control plant modification requirements and 

better public relations.  A method of determining the relative likelihood of fraudulent 

underreporting across pollution sources would improve the efficiency of compliance monitoring 

and enforcement by allowing regulators to better identify and target potentially fraudulent 

sources for earlier or more frequent inspections.  This paper applies new techniques recently 

developed in the field of accounting to the problem of detecting potential underreporting in 

pollution emissions data.  The techniques are based on a statistical property, known as "Benford's 

Law,” that is exhibited by many types of data sets.1  

 The paper is divided into five sections.  The following section of the paper describes 

Benford’s Law and explains why it likely applies to pollution emissions data.  The third section 

presents several statistical tests based on Benford’s Law that can be used to detect evidence of 
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non-compliance in self-reported data.  Section four applies the tests in an empirical case study of 

criteria air pollution emissions data from North Carolina.  The final section concludes with a 

summary of findings, several caveats, and a discussion of future research possibilities. 

 

2. BENFORD’S LAW 

2.1 Background 

 Benford's Law [4] describes a property of the numbers found in many empirical data 

sets.2  For many large data sets, the relative frequency with which the first digit in each of the 

numbers in the data set takes on each of the possible (base 10) values 1 through 9 is not the naive 

estimate of 1/9, but rather follows "Benford’s distribution," as shown in the first column of Table 

1.  Under Benford’s distribution, it is much more likely that the first digit in each number in the 

data set will be a "1" than a "9."  Benford's Law is the equation that gives the relative 

frequencies, f(p), of the first digits of the numbers in a data set as a function of the first digit 

value, p, i.e.:  

 

    f(p) = log10[(p + 1)/p], p = 1, 2, . . ., 9.     (1) 

 

Similar relative frequency distributions hold for the second digit in each number in the data set, 

the third digit, etc., and, indeed, even for joint distributions of the digits [10].   

 Empirically, many data sets have been found to be consistent with Benford's Law [4, 22, 

23, 26].  Recently, tax accountants have begun to use consistency with Benford's Law as a test 

for evidence of income tax evasion. These tests are based on tax reporting models that give rise 

to income tax data distributed according to Benford's Law under truthful reporting [6, 24, 7, 17].  
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If an underlying data-generating mechanism is assumed to be consistent with Benford's Law, 

then deviation of an observed data set from Benford's Law in these models constitutes evidence 

of ex post data manipulation.  If observed tax return data deviate significantly from Benford's 

Law, then tax authorities take this as evidence of potential tax fraud and reallocate regulatory 

auditing effort accordingly.   

 An environmental agency’s problem of detecting fraud in self-reported pollution 

emissions data is analogous to the problem of detecting fraud in self-reported income tax return 

data.  In both instances, reporters have incentives to underreport, and regulatory agencies face 

the problem of allocating limited audit resources.   

 
2.2 Characterizing the Distribution of First Digits  
 
 Following Goudsmit and Furry [9], consider a large set, X, of self-reported, non-negative 

data, where x is an element of X.  Let f(x)dx be the fraction of observations in the interval 

between x and x + dx; then, 

 

     ∫
∞

=
0

1dx)x(f .      (2) 

 
Write each observation as: 
 
     m10px ⋅= ,      (3) 
 
where p, 1 ≤ p ≤ 10, indicates the significant figures of x and m, an integer, is the order of 

magnitude of x.  Benford's law concerns the distribution of the proportions of observations with 

p lying between two consecutive integer values.  For a fixed value of m, via a change of 

variables the fraction of observations with p lying between p and p + dp may be expressed as: 
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     dp10)10p(f mm ⋅⋅ .     (4) 
 
Summing over all values of m, the density function of first digits p, b(p), is: 
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2.3 Theoretical Sources of Benford Distributions 
 
 Given a density function of first digits, b(p), why should it follow Benford’s Law?  

Beginning with an extended example due to Furry and Hurwitz [8], we review several theoretical 

explanations for the common empirical occurrence of Benford Law.   

 Furry and Hurwitz note that x may be expressed as: 
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hence,  
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Factoring out the 1/p and multiplying by ln(10) both inside and outside the summation: 
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Denote the factor in braces above as Ψ.  If Ψ = 1, then b(p) is said to follow Benford's 

distribution, because when Ψ = 1: 
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and the fraction of the data with first significant figure between p0 and p1 is given by: 
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which is Benford's main result.  Equivalently, Benford’s Law describes the frequency 

distribution of the first digits of the numbers in a data set where those numbers follow a 

geometric sequence.  A key insight is that data describing growing processes (e.g., numbers of 

firms, sizes of firms, values of firms—and associated measures such as stock market values and 

pollution emissions) often produce first digit frequencies consistent with Benford’s Law because 

growth is usually a geometric process. 

 Furry and Hurwitz [8] develop conditions on f(x) that are sufficient for Ψ = 1.  Suppose 

f(x) is the nth iterate of some density function g(⋅): 
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Furry and Hurwitz show via Fourier series analysis that: 
 
     1lim

n
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hence: 
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Thus, if f(x) is the result of a sufficient number of iterations of some density function g(⋅), then 

b(p) will follow Benford's Law.  In fact, Furry and Hurwitz show numerically for a variety of 

g(⋅) (e.g., normal, Cauchy, exponential, etc.) that in practice g(⋅) need only be iterated a few 

times to achieve ψ ≈ 1.  For example, suppose the distribution of pollution emissions (not digits) 

across firms depends on parameter Y, the aggregate production level.  Suppose Y is normally 
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distributed and depends on parameter I, aggregate input use level.  Suppose I is in turn normally 

distributed and depends on parameter C, per unit cost of aggregate input I.  Finally, suppose C is 

itself normally distributed and determined exogenously.  In this case, the distribution of pollution 

emissions is the third iterate of input costs.  As such, the distribution of the first digits of 

pollution emissions data should approach Benford’s Law.  In general, there are many other 

possible iteration scenarios that might lead to pollution emissions distributed as Benford’s Law. 

 Furthermore, there are other statistical justifications for the common empirical 

occurrence of Benford’s Law.  Adhikari and Sarkar [2] show that if a uniform random variable 

defined on the interval (0,1) is raised to an integer power, then the first digits of the resulting 

random variable approach Benford’s distribution as the integer power increases.  They further 

show that the first digit distribution of the product of many independent random variables each 

uniformly distributed on (0,1) approaches Benford’s distribution as the number of random 

variables increases.  Adhikari and Sarkar show also that if the first digit of a random variable 

follows Benford’s Law, then the first digit of the reciprocal of the random variable and the first 

digits of the product of the random variable and any constant do as well.   

 Adhikari [1] considers the product of the reciprocals of independent and identically 

distributed uniform random variables defined on (0,1).  He shows that as the number of factors in 

the product increases,the distribution of the first digits of the product approaches Benford’s 

distribution.  Adhikari proves a similar result for a sequence of quotients of uniformly distributed 

random variables.  Finally, Adhikari shows that if any random variable defined on the positive 

real numbers is divided by the preceding sequence of quotients, then the digits of the resulting 

random variable approach Benford’s distribution.   
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 Lemons [14] explores Benford’s distribution from the perspective of physical science.  

Lemons considers a fixed physical quantity broken into particles of random size (subject to some 

maximum and minimum values for the particle sizes).  He shows that the distribution of first 

digits of the particle sizes approaches Benford’s distribution on average over repeated trials.3   

 Boyle [5] shows that Benford’s distribution is the limiting distribution of first digits when 

any continuous, independent and identically distributed random variables are repeatedly 

multiplied, divided or raised to integer powers.  Furthermore, Boyle shows that once the first 

digits achieve Benford’s distribution, then this distribution persists under all further 

multiplications, divisions and raising to integer powers. 

 To this point we have considered only first digit frequencies.  Hill [10] derived frequency 

distributions analogous to b(p) for the second significant digit, third significant digit, etc., of a set 

of data that follow Benford’s Law.  Indeed, Hill even derived the joint distributions of the digits.  

Hill's "Generalized Significant Digit Law" is4: 
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where Di is the ith significant digit of x, numbersnaturalk ∈ , the first significant digit d1 ∈  {1, 2, 

. . ., 9}, and dj ∈  {0, 1, . . ., 9}, for j = 2, . . . , k.   

 Hill [11, 12] provides a more rigorous justification for the empirical occurrence of 

Benford’s Law in its full Generalized Significant Digit Law form.  Hill proves: 

 

“If distributions are selected at random (in any ‘unbiased’ way) and random 
samples are then taken from each of these distributions, the significant digits of 
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the combined sample will converge to the logarithmic (Benford) distribution.” 
Hill [11, p. 354] 

 

Hill remarks that Benford’s Law is a “limit theorem” for distributions of digits of random 

variables, analogous to the Central Limit Theorem for distributions of random variables 

themselves.  In Hill’s words: 

 
“Justification of the hypothesis . . . is akin to justification of the hypothesis of 
independence (and identical distribution) in applying the strong law of large 
numbers or central limit theorem to real-life processes: neither hypothesis can be 
proved, yet in many real-life sampling procedures they appear to be reasonable 
assumptions.  Conversely, [the result] suggests a straightforward test for 
unbiasedness of data—simply test goodness-of-fit to the logarithmic distribution.” 
Hill [11, p.361] 

 

3. REGULATORY APPLICATION OF BENFORD’S LAW 

 

 In this section of the paper, we review several statistical tests recently developed by 

accountants and used to detect fraud in self-reported data.  Because the tests are based on 

examining the frequency of occurrence of digits in a dataset, the tests are known collectively as 

“Digital Frequency Analysis,” or DFA. 

 
3.1 Digital Frequency Analysis: Common Digital Tests 
 
 Nigrini & Mittermaier [18] and Nigrini [19] describe six digital screening tests used by 

business accountants when conducting external and internal audits of firms’ financial 

information.  Internal audits are conducted typically by a firm’s employees to detect data 

accounting and reporting errors within the firm.  Nigrini [19] reviews many case studies where 

the use of DFA successfully uncovered errors in firms’ accounting procedures and outright 

employee fraud.  External audits are conducted typically by third party public accounting firms 
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to validate firms’ self-reported financial records.  External audits seek to uncover reporting errors 

and fraud at the firm level. 

 In an environmental regulation context, internal audits of pollution emissions data would 

help firms avoid regulatory sanctions through early detection of control system irregularities 

such as emissions data recording and reporting errors.  External audits of emissions data by 

regulatory agencies would seek to detect suspicious emissions patterns that might indicate 

pollution control system problems or reporting fraud. The use of DFA as an initial screen for 

abnormalities in emissions data may help regulatory agencies better target scarce personnel 

resources used for on-site inspections. 

 In practice, accountants use several rules of thumb to decide whether a given dataset is 

likely to conform to Benford’s Law under unbiased reporting [19].  A candidate data set should 

(1) describe a single type of phenomena (e.g., air pollution emissions), (2) have no theoretical 

maximum or minimum (except zero) values, (3) be expected to have more small numbers than 

large numbers, (4) not contain systematic number duplication (e.g., it should not be the case that 

firm X is allowed always to report a value of “12” regardless of the actual data value measured), 

(5) not consist of systematically-assigned numbers (e.g., social security numbers, bank account 

numbers, etc.) and (6) be spread across at least one digital order.   

 Assuming a regulatory situation is consistent with conditions likely to produce an 

emissions data set conforming to Benford Law under unbiased reporting (as described above), 

DFA requires that each data value be recorded with sufficient precision (i.e., sufficient number 

of decimal places) to facilitate the analysis and that the total data set be large enough for valid 

statistical inference.  Assuming these conditions are met, descriptive statistics for the data set 
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should confirm that the mean value of the data is larger than the median and that skewness is 

positive (necessary conditions for a Benford distribution). 

 The first DFA test considered is the “First Digits Test.”  This test compares the 

frequencies of the first digits in a data set to the Benford Law first digit frequencies (Table 1).  If 

the frequencies of the smaller digits in the data set are larger (smaller) than the corresponding 

Benford frequencies, then the data values may have been biased (i.e., “fudged”) downward 

(upward).  Z-statistics are used to test for significant differences between actual and expected 

(Benford) frequencies and to construct confidence intervals.  Figure 1 is an example of the type 

of graph typically produced when conducting first digits tests.  The graph shows empirical first 

digit frequencies for a hypothetical data set, the corresponding Benford frequencies and 95% 

confidence limits.  If an empirical frequency lies outside the confidence limits, then the null 

hypothesis that the empirical frequency is identical to the corresponding Benford frequency at 

the 5% confidence level is rejected.   

 The first digits test is typically used simply as a general test of conformity of the data set 

with Benford’s Law; i.e., if several digits show massive deviation from Benford frequencies, 

then the maintained assumption that the unbiased data follow Benford’s Law may not be 

appropriate for the given data set (or, of course, fraud may be very widespread in the data; but if 

this is so, it should be relatively obvious).  Similar tests could be conducted for the second or any 

other single digit.  Of course, chi-square or Kolmogorov-Smirnoff tests could be used to test the 

conformity of all digital frequencies as a group with the corresponding Benford Law 

frequencies. 

 The “First Two Digits Test” is a more precise test that compares the frequencies of the 

first two digit combinations in the data with the frequencies of the first two digit combinations 
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consistent with Benford’s Law.  There are ninety possible first two-digit combinations (10 

through 99 inclusive).  Again, Z-statistics and confidence intervals may be calculated to 

investigate significant differences in digital combinations.  Consider a graph of (hypothetical) 

empirical first two digit frequencies and associated confidence intervals (Figure 2).  An empirical 

frequency extending above the upper confidence interval line is termed a “spike” in the 

accounting literature.  Spikes indicate unusual presence of a first two-digit combination in the 

data set.  (Similarly, an empirical frequency less than the lower confidence limit indicates 

unusual absence of the corresponding combination from the data.)  Of course, some spikes are 

expected to occur due to chance alone (“false positives”), but the First Two Digits test has 

proved useful in practice.  Spikes have been found to signal systematic system (engineering or 

accounting) malfunctions, data reporting or recording errors, and fraud [19].  Each of these 

possible sources of spikes would be of interest to either the reporting firm, the auditor or both.  

Two particular spike patterns deserve emphasis.  The first consists of one or several significant 

positive spike followed by one or several significant negative spikes.  This pattern typically 

indicates a threshold value that is being avoided by the data reporter.  The second pattern 

consists of spikes at multiples of ten and five, indicating the potential of excessive rounding in 

the data.  Of course, “First Three Digit Tests,” “First Four Digit Tests,” etc., may be conducted 

also.  However, data set size may not be sufficient to achieve statistically valid distributions over 

the larger supports required for these higher-precision tests. 

 The “Number Duplication Test” investigates number duplication as one possible source 

of positive spikes.  A positive spike occurring at “25” on the First Two Digits Test may represent 

many values of 25 or an assortment of the values 25, 250, 2500, 252, etc.  The Number 

Duplication Test is simply a list of each number in the data set and the frequency of occurrence 
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of each number in the data set, sorted by decreasing frequency.  If the positive spike at “25” is 

due to many values of 25 in the data set, the value 25 will occur high in the list of duplicated 

numbers.  If the spike is due to an assortment of “25, 250, 2502, 253, etc.” values, then none of 

the values will appear high on the list.  High frequency duplication may indicate systematic 

errors in emissions monitoring equipment, data entry errors, or errors in data “cleaning” and data 

analysis conducted by regulatory agencies.   

 The “Last Two Digits Test” is similar to the First Two Digits Test except that the 

distribution of the last two digit combinations of the data is examined.  This test is useful because 

the distribution of the last two digits of a data set conforming to Benford’s Law is quite different 

from the distribution of the first two digits.  Notice in Table 1 that the distributions of the 

succeeding digits become more and more uniform.  The distribution of the last two-digit 

combinations of Benford Law data (of sufficient precision) is essentially uniform.  Assuming a 

uniform distribution for the last two digits combinations, Z-statistics and confidence intervals are 

calculated, and a graph of the empirical digit frequencies is checked for spikes.  Not only is this 

test useful as an additional indicator of excessive data rounding, the test is used also to detect less 

than expected rounding.  For example, when choosing fictitious data, an evader may shy away 

from choosing round numbers, as they may appear “made up.”  However, we would expect an 

unbiased data set to include numbers ending in “00” fully one percent of the time.  Furthermore, 

numbers ending in “x0” would be expected to appear ten percent of the time.  Hence, a lack of 

round numbers may indicate fraud.  Of course, this test is not possible when the data do not 

possess a sufficient number of significant figures to ensure that the distribution of the last two 

digits approximates a uniform distribution. 
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 The “Round Numbers Test” calculates the frequencies of multiples of round numbers 

such as 25, 100 and 1000 in the data set.  The calculated frequencies are compared with expected 

frequencies (via Z-statistics) based on the assumption that the last two digits of the numbers in 

the data set follow a uniform distribution.  The Round Numbers Test is useful for identifying 

excessive estimation and its order of magnitude.  (In data sets where rounding is expected, other 

digital tests derived from the Last Two Digits test can be used to determine whether rounding is 

unbiased.) 

 

3.2 Nigrini’s Distortion Factor Model 

 Suppose the common digital tests indicate that distortion is present in a data set.  Nigrini 

[16, 17] develops a simple measure of the direction and average magnitude of the distortion in a 

data set that follows Benford’s Law under unbiased reporting.  Nigrini’s measure is called the 

Distortion Factor Model (DFM) and depends on two assumptions.  First, any data manipulations 

do not change the order of magnitude of the manipulated data values.  This assumption is based 

on psychological evidence that people use orders of magnitude as reference points, that data 

manipulators are aware of this tendency, and that manipulators will therefore avoid conspicuous 

order of magnitude changes when altering data.  Second, the model assumes that the relative 

magnitude of data manipulation is similar across orders of magnitude (i.e., that average 

percentage manipulation is equal across orders of magnitude).  This assumption is consistent 

with a manipulator choosing to alter data such that the “level of significance” of the alteration is 

similar across orders of magnitude. 
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 The DFM assumes that the unmanipulated data set follows Benford’s Law and spans the 

range [10, 100).  If the data span a greater range, they are collapsed or expanded to the assumed 

range by moving the decimal point via: 

 

     ))(int(log1010
10

Xcollapsed
XX ⋅= ,    (15) 

 

where X is an uncollapsed (raw) data value, Xcollapsed is the corresponding collapsed (or 

expanded) data value, and “int” is the integer function, which removes digits to the right of the 

decimal.  Because (1) the unbiased data are assumed to follow Benford’s distribution, (2) 

Benford’s distribution is invariant to changes in scale and (3) any data manipulation is assumed 

proportional to order of magnitude, collapsing/expanding the data does not distort any 

percentage manipulation present in the data.  Numbers with less than two significant figures after 

collapsing/expanding are deleted from the data set.   

 The DFM compares the mean of the collapsed data set with the mean of an unbiased data 

set that contains the same number of observations over the same range and that follows 

Benford’s Law.  The actual mean, AM, of the collapsed data set is: 

 

     
N

X
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where N is the number of observations.  Nigrini [17] shows that the expected mean, EM, of an 

unbiased Benford data set with N observations over interval [10,100) is: 
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The Distortion Factor, DF, is calculated as: 
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DF gives the (signed) average percentage manipulation of the data.  Nigrini shows that the 

expected value of DF is zero and that the standard deviation of DF, STD(DF), is: 
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Since AM is the mean of N random variables, by the central limit theorem the distribution of DF 

approaches a normal distribution with mean zero and variance STD(DF)2as N increases.  As a 

result, Z-test statistics may be computed for DF for relatively large N. 
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4. EMPIRICAL APPLICATION: NORTH CAROLINA VOC AIR POLLUTION DATA 
 

 In this section we provide an example of how DFA might be applied by environmental 

regulators.   

 
4.1 Data 
 
 We consider the most recent (1996-1998, depending on each firm’s audit schedule) data 

on annual volatile organic compounds (VOC) air emissions for all permitted North Carolina 

firms [21].  The data are self-reported by firms to the North Carolina Divisions of Air Quality 

(NCDAQ).  Firms are classified by NCDAQ into three categories: Title V5 Facilities, Synthetic 

Minor Facilities, and Small Facilities.  Title V facilities emit 100 or more tons/year of at least 

one criteria air pollutant6, or 10 or more tons/year of at least one hazardous air pollutant, or 25 or 

more tons/year of all hazardous air pollutants combined.  Synthetic Minor facilities “would be 

minor facilities except that the potential emissions are reduced below the thresholds by one or 

more physical or operational limitations on the capacity of the facility to emit an air pollutant.  

Such limitations must be enforceable by the EPA . . . ” [21].  Minor, or “small,” facilities are all 

facilities other than Title V or Synthetic Minor.  All facilities must pay both an initial emissions 

program application fee and annual permit fees to NCDAQ.  Title V facilities (only) must pay an 

additional, annual fee per ton of air emissions on all air emissions (both criteria and hazardous). 

 Is it plausible to assume that unbiased pollution emissions data should follow Benford's 

Rule?  The data set meets the practical requirements for conformance to Benford’s Law: (1) the 

data describe a single type of phenomena (e.g., air pollution emissions), (2) they have no 

theoretical maximum or minimum (except zero) values, (3) they are expected to contain more 
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small numbers than large numbers, (4) they are not expected to contain systematic number 

duplication, (5) they do not consist of systematically-assigned numbers and (6) they are spread 

across several digital orders (from 0.01 to 100,000 tons/yr).  However, perhaps the best 

justification for the Benford Law assumption is Hill’s [11] result that a dataset consisting of 

random samples from a random collection of distributions will converge to the Benford Law 

distribution.  If the data generating mechanism can be characterized as random samples from a 

random collection of distributions, then digital frequencies should follow Benford’s Rule (Hill's 

Generalized Significant Digit Law).  Assuming such a data generating mechanism applies in the 

present case, if the distributions of significant figures do not follow Benford's Rule, then there is 

reason to suspect that the data have been manipulated ex post.   

 Descriptive statistics on VOC emissions for the Title V and small facility categories are 

presented in Table 2.  Facilities with less than 1 ton/yr of VOC emissions were excluded from 

the analysis, as the data for such facilities would have too few significant figures for analysis.  

This reduced the number of small facility observations from 1993 to 631 and the number of Title 

V facility observations from 431 to 380.  For each data set, the mean is greater than the median 

and the skewness is positive, necessary conditions for unbiased Benford data sets.  Figures 3 and 

4 present the VOC emissions data (uncollapsed) distributions by facility size sorted in ascending 

order of emissions level.  These distributions have the general form of geometric sequences, 

further supporting the assumption that the unbiased data approximate Benford’s Law. 
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4.2 DFA and DFM Test Results  

 

 Assuming the unbiased data follow Benford’s Law, we apply the standard DFA tests to 

the VOC data.  All DFA tests are conducted using the DATAS  2000 digital analysis software 

package [27].  We begin with the First Digits Test.  Figures 5 and 6 present the distributions of 

first digits of the VOC data and associated confidence intervals (5% confidence level) by facility 

size category.  The first digits graph for Title V firms (Figure 5) indicates that the data generally 

conform to a Benford distribution, although the upper digits appear to be somewhat 

underrepresented and digits 1 and 2 appear overrepresented.  The overrepresentation of first digit 

1 is statistically significant, as is the underrepresentation of first digit six.  This pattern is 

consistent with downward bias in the data.   

 For small size category firms (Figure 6), digits one and two again appear 

overrepresented, and the larger digits appear underrepresented.  Only digit nine departs 

significantly from Benford’s distribution.  The underrepresentation of digit nine is somewhat 

suspicious, as numbers with leading digit nine lie just below the Title V emissions threshold of 

one hundred tons/yr.  Annual permit fees jump by an order of magnitude at this threshold and 

annual emissions fees are not required for firms below the threshold.  Note further that digit eight 

is relatively well represented among the upper digits.  Firms with emissions in the nineties may 

be fudging their numbers to lie within the eighties to avoid appearing “close” to the emissions 

threshold and attracting regulatory attention. 

 To investigate the digital frequencies with more precision, we consider the distributions 

of the first two-digit combinations of the VOC data and associated confidence intervals (5% 

confidence level) by facility size category.  Figure 7 shows that the Title V facility data exhibit 
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relatively large spikes at emissions levels 15, 27, 43 and 50, though only the latter two spikes are 

statistically significant.  Although a few significant spikes may occur due to chance alone, it 

typically would not be a large task for regulators to investigate possible explanations for these 

few overrepresented combinations.  In some cases, spikes may be easily explained by factors 

other than fraud or evasion.  For example, perhaps an unusually common (in the statistical sense) 

boiler type produces 430 tons/year of emissions when used at capacity, causing “43” to appear 

more frequently than expected.  On the other hand, if a regulatory threshold were 440 tons/year, 

then a spike at 43 might raise suspicion.  If so, the names of firms with emissions levels 

beginning with digits “43” could be extracted from the database and perhaps inspected sooner or 

with a greater frequency until an explanation for the unusual occurrence surfaced.  The lack of 

digit combinations in the high 50s and low 60s in the Title V data is also unexpected, though an 

explanation for this observation is not apparent to the authors.   

 The first two-digit combination data for the small size category firms (Figure 8) show 

significant positive spikes at 10, 22 and 44.  Again, a few spikes would be expected due to 

chance alone.  Whether these spikes should be investigated would depend on additional 

knowledge of the regulatory environment.  Of greater interest in the small facility data is the 

underrepresentation of digit combinations in the 90s.  Firms may be lowering emissions data to 

avoid the 100 ton/year threshold for Title V classification.  This lack of small facility digit 

combinations in the 90s is more suspicious since Title V two-digit combinations in the 10s, 

values just above the small facility 90s combinations, are well represented.  In contrast, the 90s 

combinations are well represented in the Title V data. 

 Table 3 presents the results of the Number Duplication Test by facility size category.  

The ten numbers in each data set that occur with highest frequency are listed together with their 
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respective frequencies.  All (uncollapsed)7 data values greater than 1 ton/yr. are considered.  

Recall that the purpose of this test is to investigate simple number duplication as a possible cause 

of distortions in the digit frequency data.  For Title V facilities, there is not unusual duplication 

of any data value; in fact, no data value appears more than twice in the data set.  However, 

duplication of numbers as specific as “434.32” arouse curiosity.  In fact, the first three numbers 

on the duplication list indicate problems in the data set.  Numbers 434.32 and 332 appear twice 

in the data set because the data records from which they are drawn were apparently keyed in 

twice by NCDAQ by mistake.  Number 311.94 appears twice in the data set because the data 

records for a particular firm for two different years are included in the data set, even though the 

data should include only the data from the most recent inventory year for each firm.  Aside from 

the fact that two years of data for a given firm should not appear in the data set, if the data for the 

firm are correct, then the firm is reporting the same exact emissions values year-on-year.  If 

reported values represent field measurements typically subject to variation, then these repeated 

values raise suspicion.  Hence, the Number Duplication Test can reveal abnormalities in the data 

set as well as simple number duplication.  However, number duplication may occur due to 

chance alone and does not necessarily indicate a data problem.  For example, in the small facility 

data, the value “10.2” is duplicated six times.  When the corresponding data records were 

investigated, no irregularities were discovered. 

 Figures 9 and 10 present results for the Last Two Digits Test.  The distributions of the 

last two-digit combinations (in the uncollapsed data) and associated confidence intervals (5% 

confidence level) by facility size category are shown.  The significant spikes above multiples of 

10 are clear evidence of rounding in the last two digits.  However, this finding is likely of little 

regulatory concern in the present case, as it concerns only fractions of a ton/yr per source. 
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 Table 3 presents the results of the Round Numbers Test by facility size category.  The 

test looks for excessive rounding in reported data.  In contrast to the Last Two Digits Test, the 

Round Numbers Test considers rounding in the integer (left of the decimal point) digits only.  

The Round Numbers data for the Title V facilities indicate no more rounding than expected is 

occurring to the left of the decimal point.  That is, facilities do not appear to be rounding to the 

nearest 5, 10, 25, 100, etc. tons/yr. when reporting emissions levels.  The interpretation of results 

for the small facility firms is the same.  However, the small facilities data indicate also that firms 

may be avoiding round numbers, as the observed proportions of round numbers in the data set 

are significantly less than the expected proportions for several round numbers values. 

 Nigrini’s DFM test determines the direction, magnitude and significance of average 

distortion in a data set.  The DFM compares the actual mean (AM) of the collapsed data with the 

expected mean (EM) of a data set with the same number of observations distributed according to 

Benford’s Law.  Consider Title V facilities and small facilities.  Title V facilities have an 

incentive to distort reported emissions downward, as they must pay emissions fees per ton of 

emissions.  Small facilities have an incentive to distort reported emissions downward, at least at 

higher emissions levels, in order to avoid classification as a (fee paying) Title V facility.  

Although both types of facilities have incentives to underreport emissions, they may not do so.  

If underreporting does occur, its relative magnitude may differ for the two facility categories.  

We test two null hypotheses using the DFM test: 

 

Null Hypothesis 1: For each facility class, the average percentage distortion in 
reported emissions values is zero (i.e., DFTitle V facilities = 0, DFsmall facilities = 0).  
 
Null Hypothesis 2: The difference across facility classes in average percentage 
distortion in reported emissions values is zero.  (i.e., DFTitle V facilities = DFsmall 

facilities) 
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 Table 4 presents test results (5% confidence level) for Null Hypothesis 1 by facility size 

category.  For the Title V facilities, AM is 9.97% lower than EM, a result that is significant at the 

5% level of confidence.  This means that the average of all the numbers in the Title V data set is 

9.97% lower than expected, or that the numbers in the Title V data set appear to be distorted 

downward by 9.97%, on average.  Similarly, DFM test results for the small facility category 

indicate that actual mean emissions are less than expected mean emissions by 9.45%, a result 

that is significant at the 5% level.   

 The second null hypothesis concerning significant difference between Title V facility and 

small facility DF’s is tested via a Z test of differences in means.  Because the DF variances are 

significantly different (at the 1 % level of significance) across facility size categories, we use the 

following large sample Z test that allows for differences in category variances:   
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where NTitle V and NSmall denote sample sizes and s2
Title V and s2

Small denote DF variances for Title 

V and Small facility categories, respectively.  The calculated Z statistic of –1.7328 does not 

exceed the critical Z value of –1.96 (two-tailed test, 5% significance level).  Hence, we do not 

reject the second null hypothesis that the degree of distortion in the data as measured by the 

category DF’s is the same (at a 5% significance level) across facility size categories. 
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5. SUMMARY AND DISCUSSION 
 
 This paper explores the use of Digital Frequency Analysis (DFA) based on Benford’s 

Law to detect evidence of non-compliance in self-reported pollution emissions data.  The theory 

of Benford’s Law is reviewed, statistical justifications for its wide applicability to empirical data 

sets are presented, and several tests for dataset irregularities based on Benford’s Law are 

described.  These tests are being adopted by public accounting firms for use in detecting fraud in 

financial data.  We argue that these techniques can be employed by environmental regulators 

when attempting to detect fraud in self-reported pollution emissions data. 

 In a case study of volatile organic compound air pollution emissions data in North 

Carolina, DFA tests indicate that the data appear to contain distortions that reduce mean 

emissions by about 9.5-10% below expected levels.  This relative distortion is similar across 

facility size categories, although the distortion in absolute emissions levels would be larger for 

the larger Title V facilities.  While the Last Two Digits Test indicates that firms are rounding 

emissions numbers, the Round Numbers Test shows that rounding is not occurring in the larger 

digit positions to the left of the decimal point.  Hence, rounding is not the source of the sizeable 

9.5-10% distortion in mean emissions.  First Digit and First Two-Digit Tests indicate that the 

Title V facility data exhibit unusually high occurrences of the digit combinations 15, 27, 43 and 

50 and an unusually low proportion of data values beginning with digits 5x and 6x.  These same 

tests indicate that the small facility data exhibit unusually high occurrences of the digit 

combinations 10, 22 and 44 and an unusually low proportion of data values beginning with digits 

9x.  Hence, similar distortions in average emissions levels across facility size categories may 

have different causes—a lack of 5x and 6x numbers in the Title V data and a lack of 9x numbers 

in the small facility data.  Given that an emissions level of 100 tons/yr. represents the regulatory 
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threshold for categorization as a Title V firm, which entails significant increases in permit and 

emissions fees, small firms with emissions of 9x tons/yr. may be distorting emissions numbers 

downward to avoid Title V classification. 

 DFA may be used to determine the relative likelihood of fraudulent underreporting across 

other pollution source categories, such as across industry types, across geographic regions, 

across number of pollutants emitted per source, across urban vs. rural source location, etc.  If 

evidence of underreporting is found to vary by industry type, for example, then the efficiency of 

regulatory auditing might be improved by reallocating agency resources toward industries 

exhibiting higher evidence of underreporting.  In addition to further applications within the field 

of pollution control, other potential regulatory applications involving natural resources include 

detecting cheating in fishery landings data, hunting data and cattle grazing data.   

 DFA in its current form faces several limitations.  First, DFA will not detect an equal 

percentage multiplication of all elements in a dataset (due to the scale invariance property of 

Benford’s Law).  Similarly, DFA will not detect systematic multiplication by random numbers 

drawn from a closed interval, nor will it detect systematic addition or subtraction of a constant, if 

the constant is sufficiently small to leave first few digits unaffected by the manipulation.  

Second, the data values in a dataset must span at least one digital order (i.e., 1-10, 10-100, 100-

1000, etc.) for DFA to be useful.  Third, if regulatory agencies adopt DFA as an auditing tool, we 

would expect sophisticated non-compliant firms to adjust self-reported data in ways that avoid 

detection.  In particular, we would expect polluting firms to restrict the types of self-reported 

data manipulations to those that would be consistent with Benford’s Law or some analogous law 

implied by the relevant data generating mechanism.  However, although firms may still find it 

possible to cheat, application of DFA as an audit tool places additional restrictions on self-
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reported data, reducing the “degrees of freedom” in cheating activity.  For example, although a 

firm may still be able to cheat on self-reported data by multiplying each value by a given 

percentage, the firm may not be able to subtract a given amount from each reported value, or 

reduce each reported value to some relevant threshold, without detection.  Furthermore, in cases 

where multiple firms are analyzed together, an individual firm would need to know the data 

values reported by other firms in order to pick a fraudulent data value that would “fit” the 

expected digit distribution across firms.  In effect, the use of DFA makes it more difficult to 

cheat, raising the cost to the firm of cheating activity.  A useful extension of the analysis would 

be to model the potential economic welfare gains from reduced cheating activity due to DFA 

implementation.  For example, one might investigate the incorporation of adherence to Benford's 

Law as a constraint on strategic emissions reporting behavior in the context of regulatory 

mechanism design models. 

 From a more general statistical viewpoint, any data generating mechanism [13] implies 

patterns of digital frequencies in generated data.  Although Benford’s Law may well describe the 

predicted digital frequency patterns associated with many data generating mechanisms (for 

reasons discussed in section 3), the expected digital frequencies in some empirical situations may 

follow some other type of distribution.  Nonetheless, generalized DFA is still useful in such 

cases, as it enables comparison of observed frequencies with the expected digital frequencies 

implied by the maintained data generating mechanism, whatever its structure may be.  Future 

work might develop digital frequency tests applicable to alternative data generating mechanisms.  

If we trust our statistical model specification, then deviation of observed from predicted 

frequencies is a sign that data may be manipulated.  Of course, such deviation may simply signal 

misspecification of the statistical model rather that data manipulation, but identification of model 
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misspecification is useful also for pointing out situations where our understanding of firms’ 

pollution behavior (or pollution reporting behavior) may be poor. 
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ENDNOTES 

 

1 Nigrini [19] provides an extensive bibliography on the theoretical development and empirical 

application of Benford’s Law in the field of accounting. 

2 Simon Newcomb [15] provides the earliest known description of Benford’s Law.  It appears 

that Benford [4] discovered the phenomenon independently, and it is Benford’s paper that 

motivates the current interest in these issues. 

3 If we consider pollution emissions as “pieces” of original production inputs (as we might if we 

take Ayers and Kneese’s (1967) “materials balance,” or conservation of matter, approach to the 

study of pollution), and if we consider each firm’s pollution emissions as a trial, then by 

Lemon’s argument the distribution of pollution emissions across firms might well exhibit first 

digits that follow Benford’s Law. 

4 Hill's Generalized Significant Digit Law holds for data measured in any base.  The version of 

the law appropriate for base 10 data is presented here. 

5 Title V refers to Title V of the federal Clean Air Act, which specifies minimum regulations for 

state air pollution permit programs and fees. 

6 The criteria air pollutant data are: volatile organic compounds (VOC), nitrogen oxides (NOX), 

carbon monoxide (CO), fine particulate matter (PM 10), total suspended particulates (TSP) and 

sulfur dioxide (SO2). 

7 Uncollapsed data are considered because we are looking for duplication in the data values 

themselves, rather than duplication in the digits of the data values.   



 

 

 
 

Table 1. 
 

Benford's Distributiona 

 
 

 Relative Frequency Relative Frequency Relative Frequency Relative Frequency 

Digit Value in 1st Digit Position in 2nd Digit Position in 3rd Digit Position in 4th Digit Position 

0 ---------- 0.11968 0.10178 0.10018 

1 0.30103 0.11389 0.10138 0.10014 

2 0.17609 0.10882 0.10097 0.10010 

3 0.12494 0.10433 0.10057 0.10006 

4 0.09691 0.10031 0.10018 0.10002 

5 0.07918 0.09668 0.09979 0.09998 

6 0.06695 0.09337 0.09940 0.09994 

7 0.05799 0.09035 0.09902 0.09990 

8 0.05115 0.08757 0.09864 0.09986 

9 0.04576 0.08500 0.09827 0.09982 



 

 

 Table 1, Footnote a 
 
  The number "238" has three digits, with "2" as the first digit, "3" as the second digit, and "8" as the third digit. 

  The table indicates that under Benford's distribution the expected proportion of numbers with first digit "2" is 0.17609.   

  Similarly, the expected proportion of numbers with third digit "8" is 0.09864. 

 



 

 

Table 2. 
 

Descriptive Statistics for VOC Data by Facility Class 

(all VOC data values >= 1 ton/yr) 

 

                               Title V Facilities Small Facilities 

Mean 162.4824 12.6268 

Standard Error 12.69531 0.606101 

Median 85.055 7.18 

Mode 1.6 10.2 

Standard Deviation 247.4772 15.22508 

Sample Variance 61244.96 231.803 

Kurtosis 17.3961 11.95194 

Skewness 3.623078 2.83997 

Range 1990.84 137.41 

Minimum 1.06 1 

Maximum 1991.9 138.41 

Sum 61743.33 7967.51 

Count 380 631 

 



 

 

Table 3. 
 

Number Duplication Test Results 
 

Title V Facilities (380 Obs.)  Small Facilities (631 Obs.)  

    (VOC data >=1 ton/yr)     (VOC data >=1 ton/yr) 

Value        Frequency  Value        Frequency 

434.32 2  10.2 6  

332 2  1 6  

311.94 2  3 5  

11.3 2  5.5 4  

5 2  5.2 4  

3.96 2  2.45 4  

1.6 2  2 4  

1991.9 1  1.6 4  

1631.96 1  1.45 4  

1618.3 1  5.7 3  

 
Round Numbers Test Results 

 
Title V Facilities (380 Obs.)  Small Facilities (631 Obs.) 

(VOC data >=1 ton/yr)  (VOC data >=1 ton/yr) 

Multiples Freq. Proportion Expected  Multiples Freq. Proportion Expected 

5= 75 0.197368 0.2  5= 97 0.153724 0.2 

25= 9 0.023684 0.04  25= 8 0.012678 0.04 

100= 2 0.005263 0.01  100= 0 0 0.01 

1000= 0 0 0.001  1000= 0 0 0.001 



 

 

 
Table 4. 

 
 

 Distortion Factor (DF) Model Results  

     

Title V Facilities  Small Facilities 

AM 35.15278  AM 35.32775 

EM 38.9682  EM 39.01523 

DF -0.09791  DF -0.09451 

%distortion -9.79113  %distortion -9.45139 

Std.Dev.(DF) 0.032742  Std.Dev.(DF) 0.025408 

Zstat(DF) -2.99041  Zstat(DF) -3.71978 

 



 

 

Figure 1.
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Figure 2.
FIRST-TWO DIGITS DISTRIBUTION
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Figure 3.
Title V Facility VOC Emissions 

(Uncollapsed Data, Sorted By Emissions Level)
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Figure 4. 
Small Facility VOC Emissions 

(Uncollapsed Data, Sorted By Emissions Level)
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Figure 5.
Title V Facilities

FIRST DIGIT DISTRIBUTION
(Collapsed Data)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9
FIRST DIGIT

PR
O

PO
R

TI
O

N

Actual Upper Bound Lower Bound Benford's Law

 



 

 

Figure 6.
Small Facilities

FIRST DIGIT DISTRIBUTION
(Collapsed Data)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9
FIRST DIGIT

PR
O

PO
R

TI
O

N

Actual Upper Bound Lower Bound Benford's Law

 



 

 

Figure 7.
Title V Facilities
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Figure 8.
Small Facilities
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Figure 9.
Title V Facilities
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Figure 10.
Small Facilities
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