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ABSTRACT:   Several criteria that produce rankings of risk management alternatives are
evaluated.  The criteria considered are Value at Risk, the Sharpe ratio, the necessary condition
for first degree stochastic dominance with a risk free asset, and the necessary condition for
second degree stochastic dominance with a risk free asset.  The effectiveness of the criteria
increases as decision-makers are assumed to be more risk averse and have greater access to
financial leverage.
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A Comparison of Criteria for Evaluating Risk Management Strategies

Recently there have been significant advances in the ability to develop probabilistic

forecasts of the returns to risky investments.  Personal computer simulation packages such as

@RISK and AgRisk enable decision-makers to quickly develop approximations to the

cumulative distribution of returns associated with an investment.  Agricultural risk management

education has begun to provide producers with probabilistic information about the risks that they

face.  Examples of these educational efforts are the AgRisk computer program (http://www-

agecon.ag.ohio-state.edu/agrisk/), the Center for Agricultural and Rural Development’s

interactive LDP database (http://cardsrv6.card.iastate.edu/LDPStart.htm), probabilistic grain

price forecasts on Michigan State’s web site (http://www.msu.edu/user/hilker/), and other

producer education efforts (Baker and Patrick, Iowa State).

Analyzing probabilistic information can be a challenging activity for managers.  Unless

the decision-maker is able to completely specify his/her utility function it is not possible to

implement the expected utility hypothesis.  As a result, risk efficiency criteria such as stochastic

dominance or mean-variance analysis can be used to identify sets of projects deserving further

managerial consideration.  While these methods are useful, they often leave the decision-maker

with many alternatives.  Likewise, simulation packages developed to aid producer risk

management strategy selection do not explicitly calculate these efficient sets.  Instead, they often

present the decision-maker with descriptive information such as the means, standard deviations,

and values at risk (see AgRisk as an example).

Many criteria are available to summarize and rank the desirability of various risk

management strategies.  The optimality of decisions based upon these rankings is reliant upon a

criterion’s ability to concisely summarize information about the risks and returns of particular
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strategies.  This paper compares the rankings produced by several ranking criteria including two

ranking criteria that are new to the literature.  The rankings produced by these criteria are

examined to identify important differences and consistencies across the criteria.  The criteria are

described and related to expected utility maximization in the next section.  Then the data and the

correlation of the rankings produced by each of the criteria are presented.  Finally, the results are

discussed and conclusions about the usefulness of the various criteria are offered.

The Ranking Criteria

Ranking criteria are intended to assist a decision-maker in choosing among mutually

exclusive investment alternatives on which they have probabilistic information regarding the

returns associated with each alternative.  The criteria considered in this paper all have some basis

in expected utility maximization although some are more closely related to the concept than

others.  Two of the criteria, value at risk (VAR) and the Sharpe ratio, have been widely used by

the financial community to evaluate the risks associated with investments and to evaluate the

returns associated with investments.

Value at Risk

Manfredo and Leuthold review some of the current uses of VAR and suggest that it may

have application in agricultural risk management.  VAR considers a probability level in the

cumulative distribution function (CDF) and finds the associated quantile or money outcome from

the X axis in a standard graph of the cumulative distribution1.  For this study VAR is defined by

equation (1).

(1) )( pQVAR XXp =
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where VARXp is the value at risk under alternative X and cumulative probability level p, QX(p) is

the quantile function of activity X evaluated at cumulative probability level p.

The quantile function of activity X is defined as the inverse of the cumulative distribution

function associated with the returns to activity X in (2).

(2) 1)()( −= zFpQ XX

where FX(z) is the cumulative distribution function associated with the returns to activity X

which is defined in equation (3), and z is a monetary return level.

(3) )Pr()( zxzFX ≤=

where Pr returns the probability that the monetary returns (x) to activity X are less than or equal

to some level z.

For a given level of probability, a larger VARXp is preferred by all decision-makers who

prefer more wealth to less.  Thus, the VARXp criterion can be used to rank projects by choosing a

specific probability level in the CDF and ordering projects according the magnitude of their

associated quantiles or VARXp.

VARXp is clearly related to first order stochastic dominance (FSD).  For instance, if VARXp

is greater than or equal to VARYp for all values of cumulative probability, then strategy X would

dominate strategy Y by FSD.  When all strategies are evaluated at a single probability level, the

strategy with the largest VARXp is guaranteed to be a member of the FSD set.  However, the

strategy with the largest VARXp need not be a member of the second degree stochastic dominance

(SSD) set2.  More importantly, when used as a ranking criterion, VAR focuses on a particular

probability level.  In most agricultural risk management situations, there is not a clear economic

justification for selecting the probability level at which VARXp is evaluated.  A more intuitive
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objective is to evaluate strategies with respect to the likelihood that they will or will not produce

some benchmark return level.

Benchmark Returns, the Risk Free Return, and Investment Analysis

The concept of a benchmark return is important in risk management analysis.  The risk

free return is an important benchmark for two key reasons.  First, it allows one to incorporate the

idea of an opportunity cost into investment analysis.  Second, its inclusion can produce a

theoretical separation of the investment decision from risk preferences.  For example, when

agents are allowed to borrow and lend at the risk free rate of return in Markowitz’s mean-

variance framework, the efficient set is reduced to one expected utility maximizing investment

(Tobin, Sharpe).  An investment ranking criterion known as the Sharpe ratio is a result of this

analysis.

The Sharpe Ratio

Sharpe (1966, 1975, 1994) showed that the Sharpe ratio could be used to completely

characterize choice among mutually exclusive investments when borrowing and lending were

possible.  Following Sharpe (1994), denote the difference in returns between asset i and the risk

free asset as (4).
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return differential for asset i, iµ , is given by (5) and the standard deviation of the return

differential for asset i, iσ , is given by (6).
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The Sharpe ratio for asset i is given by (7).
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Given a set of mutually exclusive investment alternatives that differ only by their first

two moments, all expected utility maximizing decision makers with the ability to borrow or lend

will invest in the alternative with the largest Sharpe ratio (Sharpe, 1994).

The Sharpe ratio is similar to the coefficient of variation, with the important difference

that the return to the risk free asset has been subtracted from the returns to the risky asset

(Sharpe, 1994).  The measure has intuitive appeal as Sharpe (1994) shows that it is related to the

t-statistic used to determine the probability that there is no difference between the returns to the

risky asset and the returns to the risk free asset.

These characteristics make the Sharpe ratio quite powerful.  It considers the economic

concept of the opportunity cost of borrowing and lending, and under certain circumstances is

completely consistent with expected utility maximization.  However, the mean-variance model

that generates the Sharpe ratio relies upon several seemingly strong assumptions.  The most

obviously violated assumption is the requirement that the distributions being compared differ
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only by their first two moments.  One purpose of using risk management alternatives such as

options is to modify the skewness of the return distribution.

While the assumptions used to justify the theoretical separation in the mean-variance

model rarely hold in most agricultural risk management contexts, the inclusion of a risk free

alternative in the ordinary stochastic dominance (SD) framework produces what Levy and Kroll

(1979) call an empirical separation.  The implication of this empirical separation is that when the

risk free alternative is included in the analysis, all but a small number of alternatives are typically

inefficient in a SD sense.  Because the SD criteria are not dependent upon restrictive

distributional assumptions, it is possible that a ranking criteria based upon the stochastic

dominance with a risk free asset (SDRA) criteria could produce rankings that are theoretically

consistent with a wide variety of expected utility maximization.

Necessary Condition for First Degree SDRA

The SDRA criteria developed by Levy and Kroll (1978) and Levy (1998) incorporate the

concept of financial leverage into the ordinary SD framework.  The first degree SDRA efficient

set is a subset of the FSD efficient set and contains the expected utility maximizing strategy for

all decision makers who have access to borrowing and lending at the risk free return and prefer

more wealth to less.

The necessary condition for first degree SDRA provides a simple ranking criterion that

has intuitive appeal.  The criterion is shown given by (8).

(8) ( )rFNfsdra XX =

where NfsdraX is the probability returned when the cumulative distribution of activity X, FX(•), is

evaluated at the risk free return, r.  The strategy with the smallest value of Nfsdra is preferred.
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This criterion is similar to the VARXp criterion.  However, unlike VARXp there is an

economic rational for choosing the evaluation point.  The risk free return provides an opportunity

cost with which to evaluate investments.  The most desirable strategy under this criterion is the

strategy that has the smallest probability of failing to generate the risk free return.  Further, the

investment with the lowest cumulative probability at the risk free return could potentially

dominate all other activities by first degree SDRA, insuring that the strategy with the smallest

Nfsdra must be a member of the first degree SDRA set.  However, the top ranked strategy under

this criterion is not required to be a member of the SSD or second degree SDRA efficient sets.

The Nfsdra criterion measures risk in only a limited FSD sense.  While the first degree

SDRA efficient set is typically smaller than the FSD efficient set, the empirical separation is not

ordinarily achieved with only first degree SDRA.  Thus, one would suspect that the strategy with

the smallest value of Nfsdra would not typically be an EU maximizing choice for a wide range of

risk averters.  The second degree SDRA risk efficiency criterion typically produces a much

smaller set than the first degree SDRA criterion.  Likewise, the criterion based on the necessary

condition for second degree SDRA is the only criterion capable of assuring that the most

desirable strategy will be a member of both the ordinary SSD and second degree SDRA efficient

sets.

The Necessary Condition for Second Degree SDRA

For investment X to dominate investment Y by second degree SDRA it is necessary that

the value of p that solves (9) is smaller under investment X than under investment Y (Levy and

Kroll, Levy).

solves       thatpNssdra X =
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(9) ( )  
0
∫=
p

X dttQrp

where NssdraX is the cumulative probability level p,  r is the risk free return, and QX(t) is the

quantile function for investment X.  The investment with the smallest Nssdra value could

potentially dominate all other strategies by second degree SDRA and is therefore a member of

both the SSD and second degree SDRA efficient sets.

Figure 1 provides a graphical interpretation of the Nssdra condition.  The figure shows a

CDF, F(x), with probability on the vertical axis and returns on the horizontal axis.  For

simplicity, F(x) is drawn as a straight line, which passes through the origin.  The risk free return

is assumed to be 10.  The left side of (9) represents the area of a rectangle with length r and

height p.  The integration on the right side of (9) is of the quantile function so the area

represented is above F(x) and below p.  In order for (9) to hold one must equate these areas.

Because the area to the left of r, above F(x), and up to p are common to both sides of (9), one can

see that when the area in a is equal to the area in b the condition will hold.  In Figure 1 this is

defined by the horizontal intercept of F(x) occurring at 0, F(r) being equal to 0.25 and p equal to

0.5.  As long as the expected value of X is greater than the risk free return and F(x) does not lie

entirely to the right of r, the value of p that solves (9) will always be a probability less than one

(Levy and Kroll, 1978).

The Nssdra measure can be interpreted as the minimum amount of cumulative probability

needed to rule out ordinary SSD of the cumulative distribution of the risk free asset over the

cumulative distribution of the risky asset.  The Nssdra measure is similar to a safety first

measure because it measures the area below the CDF to the left of the risk free rate.  However, it

also considers the rate at which the CDF pulls away from the CDF associated with the risk free
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return.  Given the same area below the CDF and to the left of the risk free rate, the Nssdra

measure penalizes distributions that move away from the risk free rate slowly.

Theoretically, the Nssdra condition is attractive because the second degree SDRA

efficient sets tend to be small (Levy and Kroll, 1979).  Thus, unlike the guarantee of membership

in the FSD set, the guarantee of membership in the second degree SDRA efficient set means that

the strategy is one of a few potential expected utility maximizing strategies.  The Nssdra

criterion is likely to be more consistent with EU maximization than the other ranking criteria

because it takes into account a wider range of the CDF.  At the same time, it is not dependent

upon the distributional assumptions of the Sharpe ratio.  The unattractive feature of this

condition is that it is computationally more intensive than the other criteria.

Certainty Equivalents

The ranking criteria discussed up to this point are not necessarily consistent with

expected utility maximization.  The certainty equivalents produced by the power utility function

allow for a complete ranking of risky projects that are consistent with specific cases of expected

utility maximization.  To compute the certainty equivalent (CE) rankings, the coefficient of

relative risk aversion, ρ, was set to four different levels.  These levels might correspond to

classes of decision makers who could be considered slightly risk averse, ρ = 0.5, moderately risk

averse, ρ = 1 and 1.5, and highly risk averse, ρ = 4.

The rankings produced by the Sharpe ratio, Nfsdra, and Nssdra criteria are all influenced

by the assumption that a decision maker can use financial leverage to adjust the amount of total

risk associated with a particular risk management project.  The certainty equivalent rankings
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were calculated based upon expected utility maximization in which the level of financial

leverage was a variable.  That is, expected utility was maximized for the following problem:

(10)
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where αj is the amount of financial leverage which maximizes expected utility for strategy j and

is constrained to be non-negative, EUj is expected utility of strategy j, pij is the probability of

state of nature i occurring under strategy j, r is the risk free return, Xij is the monetary return to

strategy j when state i occurs, and ρ is the coefficient of relative risk aversion.  This problem was

solved for 4 different values of ρ, and with 4 different upper bounds on α.  By varying the upper

bound on α one can assess the effect of different assumptions about the amount of financial

leverage that the decision maker has access to.  The upper bounds on α were set to values of 1, 2,

3, and 4.  These upper bounds correspond to project debt to equity ratios of 0, 1, 2, and 3.  In

particular, the upper bound of 1 corresponds to cases where the decision maker can only lend at

the risk free rate.  Because the optimal level of leverage fell on the upper bound of each range of

leverage for all levels of risk aversion except ρ = 4, the certainty equivalents increased as

leverage increased.

 Data

The gross revenue distributions associated with two case farms were compared with the

ranking criteria.  Specifically, the AgRisk simulation model was used to generate gross revenue

distributions for 13 pre-harvest risk management strategies for a 300 acre corn and soybean farm

in Decatur county Indiana.  The risk free return was calculated based upon the cash rental rate
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plus variable costs of operation for a 300 acre Indiana farm with average quality soils given in

Doster, et al.  The return distributions produced by Nydene’s simulation of a 1,000 acre crop

farm and 175 sow farrow to finish hog farm under various risk management policies were also

compared with the rules.  Nydene’s study considered 23 risk management strategies designed to

manage both output price and output quantity risk.  The risk free return for this farm was based

upon a 9 percent borrowing rate and an estimate of the total assets of the simulated farm.  The

strategy codes used to report the results of both models are explained in Table 1.

The means, standard deviations, and standardized skewness measures for the 13 pre-

harvest risk management strategies simulated with AgRisk are shown in Table 2.  Table 3

contains the same information for the 23 risk management strategies simulated by Nydene.  In

both models, the natural hedge or cash sale strategy produced the largest expected return.  In the

AgRisk simulations this strategy also had the largest standard deviation.  The smallest standard

deviation in the AgRisk simulation was produced by the forward contract 66 percent of expected

production strategy (Fwd 66%).  The strategies have different levels of skewness in both sets of

distributions.  The ordinary SSD and second degree SDRA efficient sets contained 6 and 4

strategies in the AgRisk simulation and 6 and 3 strategies in the crop and hog farm model.  The

strategies in each of these sets are indicated with the ‡ (SSD efficient) and * (second degree

SDRA efficient) symbols.

The VARXp, Sharpe ratio, Nfsdra, and Nssdra criteria were used to rank the desirability of

the strategies for each model.  Within each set of results the most desirable strategy was assigned

a ranking of 1, the next most desirable a ranking of 2, and so on.  In the AgRisk case, three

strategies were identified as the most desirable alternatives.  The Nfsdra, Nssdra, and all but one

CE ranking identified the Fwd 33% strategy as the most desirable strategy.  The Sharpe ratio and
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VAR10 rankings identified the Fwd 66% strategy as the preferred strategy and Fwd 33% as the

second best strategy.  The slightly risk averse decision maker (ρ = 0.5) who was only allowed to

lend at the risk free return (α ∈ [0,1] ) preferred the natural hedge strategy.  All three of the top

rated strategies were members of the SSD efficient set, while only Fwd 33% was a member of

the second degree SDRA set.  Thus, although the top ranked strategy under the VAR10, Sharpe

ratio, and Nfsdra criteria is not required to be a member of the SSD set, all identified a SSD

member.

In the crop and hog farm simulation the VAR10 and all but one CE ranking identified

hedge hogs (HH) as the most desirable strategy.  This strategy was rated as the second most

desirable by the Sharpe ratio, Nfsdra, and Nssdra criteria.  The Nfsdra, Nssdra, and CE ranking

with ρ = 4 and α ∈ [0,4] identified the practice of buying actual production history crop

insurance, hedging crops, hedging hogs, and hedging feed (APH HC HH HF) as the most

desirable strategy.  Both of the HH and APH HC HH HF were members of both the SSD and

second degree SDRA efficient sets.

In general, the criteria performed relatively well in that they identified strategies that

were rated highly under specific cases of expected utility maximization.  All criteria also

identified a member of the SSD set as the preferred strategy.  To explore the correspondence of

the rankings more thoroughly the rankings were analyzed with a correlation analysis.  

Correlation of the Rankings

The correlation of the rankings shows a more sophisticated relationship between the

rankings of the criteria.  It also allows one to assess the correspondence of the rankings to the

assumptions about borrowing and risk aversion.  Table 4 shows the correlation matrix of the

rankings produced by the Sharpe ratio, VAR10, Nfsdra, Nssdra criteria and the CE criteria with
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the widest leverage bounds for the AgRisk simulation.  The rankings produced by the Sharpe

ratio were more highly correlated with the non-CE rankings than any of the CE rankings.  As the

level of relative risk aversion increased, the Sharpe ratio rankings tended to be more highly

correlated with the CE rankings.  When the level of relative risk aversion was low, the

correlation was relatively low (0.47).

The VAR10 rankings were highly correlated with the Nfsdra rankings, indicating that the

10 percent level in the CDF tended to correspond to the risk free return for most strategies.  As

with the Sharpe ratio, the correlation between the VAR10 rankings and the CE rankings increased

as the level of relative risk aversion increased.  This is consistent with the increasing dis-utility

associated with low return states of nature as risk aversion increases.

The Nssdra rankings were highly correlated with the VAR10 and Nfsdra rankings.  As the

level of relative risk aversion increased, the correlation between the Nssdra and CE rankings

increased.  When relative risk aversion was high, the Nssdra rankings were nearly perfectly

correlated with the CE rankings.  Of the non-CE criteria, the Nssdra rankings were the most

highly correlated with the CE rankings for every level of relative risk aversion.  The correlation

between the various CE rankings show that in the AgRisk case the rankings are relatively highly

correlated across levels of relative risk aversion.

Table 5 shows the correlation between the rankings produced by the non-CE criteria and

the CE rankings for all levels of borrowing.  As expected, the correlation between the Sharpe

ratio, Nfsdra, and Nssdra criteria generally increased as the bounds of leverage are widened.

Again, the Nssdra rankings were the most highly correlated with the CE rankings for all levels of

leverage and risk aversion.  The correlation between the Sharpe ratio and the CE rankings

improved as the bounds of leverage increased until the coefficient of relative risk aversion
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reached 4.  The highest correlation achieved by the Sharpe ratio was 0.77, which indicates that

the optimality of the Sharpe ratio is quite dependent upon the return distributions only differing

by the first two moments.  The Nssdra condition was the most consistent for all levels of

leverage even those when only lending was allowed (α = 0 – 1).  In all cases, the correlation

between the Nssdra and CE rankings was greater than 0.6.  For values of relative risk aversion

above 1.5 the correlation was no lower than 0.74.  In the highly risk averse case the CE and

Nssdra rankings were nearly perfectly correlated.

The correlation of the rankings for the crop and hog farm simulation model are presented

in Table 6.  These results show the correlations among the Sharpe ratio, VAR10, Nfsdra, and

Nssdra  rankings to be higher than in the AgRisk case.  For the crop and hog farm simulation, all

non-CE rankings possess low correlation with the CE rankings under the slightly risk averse

case.  Unlike the AgRisk case, the Nssdra rankings are not the most highly correlated with the

CE rankings until the level of relative risk aversion reaches the most risk averse case.  However,

at this level the correlation is very high, 0.96.  Again, the level of correlation between the non-

CE criteria rankings and the CE rankings increases as risk aversion increases.  For this

simulation, the correlations increase relatively quickly as relative risk aversion increases.  When

relative risk aversion reaches 1.5, the correlation of all non-CE rankings is at least 0.90.  When

risk aversion is high, the Nfsdra and Nssdra rankings are very highly correlated with the CE

rankings.  The low level of correlation among the various CE rankings indicates that the

desirability of many projects changes considerably as risk aversion changes.  For this reason, it is

not surprising that the non-CE rankings are not highly correlated with the CE criteria for all

levels of risk aversion.
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The correlation between the non-CE rankings and the CE rankings with different leverage

bounds for the crop and hog simulation are shown in Table 7.  The results again show that as the

bounds of leverage widen, the correlation levels typically increase.  When the bounds of leverage

are wide ( α ∈ [0,4] ) and the level of risk aversion is high (ρ= 4) the rankings produced by all of

the non-CE criteria are nearly perfectly correlated with the CE criteria.  The results show that as

the bounds of leverage widen, the correlation between the non-CE rankings and all CE rankings

except those with ρ = 4 increases.

Conclusions

The ranking criteria considered in this paper use simplified measures of risk and return to

rank alternative risk management strategies.  In some cases the measure was as simple as

evaluating one point on a cumulative distribution function.  The criteria performed relatively

well in that they all selected strategies that were at least members of the SSD efficient set.  This

is in spite of the fact that only the Nssdra criterion is guaranteed to do so.

Criteria like VARXp, Nfsdra, and Nssdra focus on a region of the cumulative distribution

function.  The Nssdra criterion covers the largest area and is therefore the most consistent with

EU maximization.  The Sharpe ratio’s dependence upon the assumption of differences in the

strategies being compared being confined to the first two moments appears to cause its rankings

to diverge from the CE rankings.  When agents are not very risk averse, none of the rankings

were highly correlated with the CE rankings.  However, in general, the top ranked strategy was

usually consistent with the strategy that had the largest CE.  This indicates that the preference for

the top strategy did not change considerably although the rankings of the other projects did

change.
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In all cases rankings produced by the criteria correspond more closely to CE rankings

produced with higher levels of relative risk aversion than those produced with low levels of

relative risk aversion.  Likewise, the correlation between the CE and non-CE rankings increased

as the amount of leverage the decision maker had access to increased.  When the level of relative

risk aversion is high and the bounds of leverage wide, the Nssdra rankings were nearly perfectly

correlated with the CE rankings.

The ability to approximate the cumulative distribution function of returns to risk

management strategies has the ability to improve risk management decision making.  Decision

makers seeking measures to summarize the risk and return of various risk management strategies

can easily apply the criteria presented in this paper.  The results of the paper indicate that

rankings produced by these criteria tend to identify solutions that are at least potentially expected

utility maximizing for risk averse agents (members of the SSD efficient set).  However, the

results suggest against using such simplified criteria when agents are not very risk averse.

Likewise, when borrowing is not allowed, the criteria have less correspondence to the expected

utility maximization.  When using the criteria it is most reasonable to use the Nssdra criterion.

The highest ranked strategy under this criterion is guaranteed to be a member of the typically

small second degree SDRA efficient set which contains all of the potential expected utility

maximizing strategies for risk averse agents with access to financial leverage.
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1.  In many financial studies value at risk implies estimation of the return distribution as well.

2. If VAR is evaluated at the smallest value of probability occurring among a group of
investments then the strategy with the largest VAR would be a member of the SSD set.

0.25

0.50

F(x)

1.00

a

b

0 r = 10 20

Return, $’s

Figure 1.  The Nssdra criterion.
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Table 1.  Strategy Codes for Crop/Hog Farm Simulation Model.

Code Description of Strategy
AgRisk Simulation

Natural Hedge Cash sale at harvest

Fwd Forward contract 33, 66, or 100 percent of
expected production

Hedge Forward contract 33, 66, or 100 percent of
expected production

ATM PUT Buy at the money puts on 33, 66, or 100
percent of expected production

PUT-CALL Buy out of the money puts and sell out of
the money calls on 33, 66, or 100 percent
of expected production

Crop and Hog Farm Simulation*
APH Buy Actual Production History Insurance

CO Buy Crop Options

CRC Buy Crop Revenue Coverage Insurance

GRP Buy Group Risk Plan Insurance

HC Hedge Crops

HF Hedge Feed

HH Hedge Hogs

HO Buy Hog Options

Naïve Cash Sale
Source:  Table 4.1 Nydene (1999).
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Table 2.  The Means and Standard Deviations for the Marketing Strategies Simulated with
AgRisk.

Strategy Mean Standard Deviation Standardized Skewness*

‡Natural Hedge $ 87,147 $ 14,317 0.65

Fwd 100% $ 86,525 $ 13,330 -0.79

‡Fwd 66% $ 86,987 $ 11,760 0.02

‡*Fwd 33% $ 87,075 $ 12,298 0.56

Hedge 100% $ 86,069 $ 13,314 -0.59

Hedge 66% $ 86,436 $ 11,976 0.04

‡*Hedge 33% $ 86,792 $ 12,377 0.53

‡*ATM PUTS
100%

$ 86,769 $ 12,384 0.58

‡*ATM PUTS 66% $ 86,897 $ 12,734 0.71

ATM PUTS 33% $ 87,022 $ 13,390 0.73

PUT-CALL 100% $ 86,768 $ 12,545 0.19

PUT-CALL 66% $ 84,320 $ 12,388 0.42

PUT-CALL 33% $ 87,022 $ 13,187 0.62

 * Skewness divided by standard deviation cubed, 
3

3)(

σ

µ−xE
.
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Table 3.  The Means and Standard Deviations for the Strategies Simulated with the Crop and
Hog Farm Model.

Strategy Mean Standard Deviation Coefficient of Skewness
‡naïve $ 587,863 $  102,032 0.59
APH $ 581,152 $  101,044 0.63
CRC $ 578,998 $    99,895 0.68
GRP $ 580,948 $  101,511 0.61
HF $ 587,398 $  108,998 0.63
HO $ 585,347 $    90,324 0.61
‡*HH $ 586,801 $    75,617 0.11
HC $ 586,685 $    81,197 0.23
CO $ 584,502 $    95,211 0.62
APH HC $ 579,974 $    79,733 0.28
APH CO $ 577,791 $    94,062 0.68
GRP HC $ 579,770 $    80,283 0.26
GRP CO $ 577,587 $    94,567 0.64
APH HO $ 578,636 $    89,123 0.67
‡*APH HH $ 580,090 $    74,101 0.15
‡HC HH $ 585,623 $    75,452 -0.01
HC HF $ 586,220 $    83,927 0.32
‡HF HH $ 586,336 $    79,168 0.18
HF HO $ 584,882 $    96,328 0.70
APH HC HH $ 578,865 $    73,585 0.03
APH HC HO $ 577,458 $    74,111 0.11
‡*APH HC HH HF $ 578,447 $    70,519 0.06
CRC HF HH $ 577,471 $    76,771 0.26
* Indicates Membership in SSDRA Efficient Set
‡ Indicates Membership in SSD Efficient Set
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Table 4.  Correlation Matrix for the Rankings Produced by the Various Ranking Criteria: AgRisk Simulation.

Sharpe
Ratio

VAR10 Nfsdra Nssdra ρ = 0.5
α = 0 – 4

ρ = 1
α = 0 – 4

ρ = 1.5
α = 0 – 4

ρ = 4
α = 0 – 4

Sharpe
Ratio

1.00

VAR10 0.77 1.00

Nfsdra 0.79 0.98 1.00

Nssdra 0.76 0.92 0.92 1.00

ρ = 0.5
α = 0 – 4

0.47 0.68 0.68 0.74 1.00

ρ = 1
α = 0 – 4

0.53 0.76 0.76 0.82 0.97 1.00

ρ = 1.5
α = 0 – 4

0.63 0.86 0.86 0.93 0.90 0.97 1.00

ρ = 4
α = 0 – 4

0.71 0.86 0.86 0.96 0.65 0.73 0.85 1.00
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Table 5.  Correlation of the Rankings Produced by the Ranking Criteria and All Certainty
Equivalent Criteria:  AgRisk Simulation.

Sharpe Ratio VAR10 Nfsdra Nssdra
ρ = 0.5  α = 0 – 1 0.27 0.55 0.55 0.62

ρ = 0.5  α = 0 – 2 0.37 0.63 0.63 0.69

ρ = 0.5  α = 0 – 3 0.47 0.68 0.68 0.74

ρ = 0.5  α = 0 – 4 0.47 0.68 0.68 0.74

ρ = 1  α = 0 – 1 0.37 0.63 0.63 0.69

ρ = 1  α = 0 – 2 0.47 0.68 0.68 0.74

ρ = 1  α = 0 – 3 0.51 0.73 0.73 0.77

ρ = 1  α = 0 – 4 0.53 0.76 0.76 0.82

ρ = 1.5  α = 0 – 1 0.47 0.68 0.68 0.74

ρ = 1.5  α = 0 – 2 0.51 0.73 0.73 0.77

ρ = 1.5  α = 0 – 3 0.63 0.85 0.85 0.91

ρ = 1.5  α = 0 – 4 0.63 0.86 0.86 0.93

ρ = 4  α = 0 – 1 0.63 0.85 0.85 0.91

ρ = 4  α = 0 – 2 0.75 0.93 0.93 0.98

ρ = 4  α = 0 – 3 0.77 0.90 0.88 0.98

ρ = 4  α = 0 – 4 0.71 0.86 0.86 0.96
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 Table 6.  Correlation Matrix of Rankings Produced by Various Ranking Criteria:  Crop and Hog Farm Simulation.

Sharpe
Ratio

VAR10 Nfsdra Nssdra ρ = 0.5
α = 0 – 4

ρ = 1
α = 0 – 4

ρ = 1.5
α = 0 – 4

ρ = 4
α = 0 – 4

Sharpe
Ratio

1.00

VAR10 0.99 1.00

Nfsdra 0.99 0.96 1.00

Nssdra 0.99 0.98 0.99 1.00

ρ = 0.5
α = 0 – 4

0.49 0.49 0.49 0.46 1.00

ρ = 1
α = 0 – 4

0.79 0.79 0.77 0.76 0.89 1.00

ρ = 1.5
α = 0 – 4

0.91 0.92 0.90 0.90 0.74 0.94 1.00

ρ = 4
α = 0 – 4

0.94 0.91 0.96 0.96 0.32 0.65 0.81 1.00
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Table 7.  Correlation of the Rankings Produced by the Ranking Criteria and All Certainty
Equivalent Criteria:  Crop and Hog Farm Simulation.

Sharpe Ratio VAR10 Nfsdra Nssdra
ρ = 0.5  α = 0 – 1 0.27 0.27 0.26 0.23

ρ = 0.5  α = 0 – 2 0.39 0.40 0.38 0.36

ρ = 0.5  α = 0 – 3 0.44 0.44 0.43 0.40

ρ = 0.5  α = 0 – 4 0.49 0.49 0.49 0.46

ρ = 1  α = 0 – 1 0.42 0.43 0.41 0.38

ρ = 1  α = 0 – 2 0.55 0.55 0.54 0.52

ρ = 1  α = 0 – 3 0.71 0.71 0.70 0.69

ρ = 1  α = 0 – 4 0.79 0.79 0.77 0.76

ρ = 1.5  α = 0 – 1 0.53 0.53 0.53 0.50

ρ = 1.5  α = 0 – 2 0.77 0.77 0.75 0.74

ρ = 1.5  α = 0 – 3 0.88 0.88 0.87 0.87

ρ = 1.5  α = 0 – 4 0.91 0.92 0.90 0.90

ρ = 4  α = 0 – 1 0.90 0.90 0.88 0.88

ρ = 4  α = 0 – 2 0.97 0.96 0.96 0.97

ρ = 4  α = 0 – 3 0.97 0.96 0.98 0.99

ρ = 4  α = 0 – 4 0.94 0.91 0.96 0.96
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