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Abstract

The use of meta-response functions based on EPIC-generated data resulted in
comparisons between variable (VRAT) and uniform rate application technologies for 36
simulated fields.  VRAT was more profitable and less nitrogen was lost to the
environment in most cases.   When spatial variability was small, uniform rate application
techniques were adopted.   However, when nitrogen use is restricted, VRAT is used on all
simulated fields.
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Economic and Environmental Benefits of Variable Rate Application of
Nitrogen to Corn Fields: Role of Variability and Weather

Several studies have assessed the economic potential of variable rate application

technology (VRAT) (Carr et al., 1991; English et al., 1998; Fiez et al., 1994; Forcella,

1993; Hayes et al., 1994; Hibbard et al., 1993; Snyder, 1996; Wibawa et al., 1993).

However, most earlier studies ignored the effects of variable rate input application on the

environment (Watkins et al., 1998; Lowenberg-DeBoer, 1996; Swinton and Ahmed,

1996).

Precision farming addresses site-specific crop needs.  Its component technologies

enable the farmers to understand the changing plant growth environment across the field,

estimate the nutrient requirements of relatively homogeneous smaller-than-field size

units, and apply inputs on a site-specific basis.  Claims are frequently made that precision

farming enables farmers to enjoy greater economic benefits resulting from increased

yields/reduced input use, while reducing the environmental harms associated with the

excessive use of agricultural chemicals (Kitchen et al.; Koo and Williams; National

Research Council; Sawyer; Watkins et al.).

A profit maximizing farmer is guided primarily by the expected economic benefits

from the VRAT adoption decision.  The economic benefits of VRAT are determined by

spatial variability and the magnitude of spatial yield differences (English et al.).  The

specific objectives of this study were (i) to examine the economic feasibility of variable

rate nutrient application vis-à-vis changing spatial variability and weather conditions, and

(ii) to test the hypothesis that precision farming provides environmental benefits.
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Methods

Using the Environmental Policy Integrated Climate (EPIC) crop growth

simulation model for corn to develop information on weather and nitrogen-crop

responses for three different West Tennessee soils under three different rainfall scenarios,

nine quadratic plus plateau metamodels (y=f(n)) were estimated (equations 1 and 2); one

for each soil type and rainfall scenario

Y = α + βN + γN2 if N < cN                                                                         [1]

Y = pY if N ƒ cN                                                                         [2]

Where Y = corn yield (bu/acre); N = nitrogen application rate (lb/acre); α, β and γ are

intercept, linear coefficient and quadratic coefficient respectively obtained by fitting the

model to the data; and the cN  and pY  are the critical N rate and plateau yield, also

obtained by fitting the model.  The NLIN procedure (SAS Institute) was used to estimate

the model.  Field average response functions were estimated from the data based on land

mix and rainfall scenario.  These average response functions were used to determine the

rate of application under uniform rate application technology (URAT).

Thirty-six different 100-acre fields were simulated, each having a different land

mix (Table 1).  The response functions determined the optimal level of nitrogen

application for a given soil and a given weather pattern.  This information was used to

simulate production, assuming expected and actual weather were the same. The net return

differential between VRAT and URAT (return to VRAT) was estimated for each soil in

the field and summed over the entire field.  If the return to VRAT exceeded the additional
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cost of VRAT ($300), the adoption of VRAT would be economically beneficial

compared to URAT.

Using the monthly rainfall data recorded by the Covington weather station in West

Tennessee (U. S. Department of Commerce), three rainfall scenarios were created and

used in EPIC.  Scenario 1 was created with average rainfall for each month over the

period 1988-1997.  Scenarios 2 and 3 were created by decreasing the monthly average

rainfall by 0.5 standard deviation and 1 standard deviation, respectively.  EPIC was

forced to generate adjusted weather to the mean monthly minimum and maximum

temperatures were the same as reported at the Covington weather station.  Rainfall was

the same for each year of simulation.

Custom hiring the necessary VRAT services is the typical means of using this

relatively new technology (English et al.).  The additional custom charge incurred when

switching from URAT to VRAT of N was $3/acre1.  A corn price ( CP ) of $2.79/bu and a

urea price ( nP ) of $0.26/lb of N was used in the analysis2 (Tennessee Department of

Agriculture).

Analysis of the first objective was conducted in three steps.  First, the producer was

assumed to select the appropriate response function that matched expected weather.

Second, a response function representing the expected weather scenario was used to

determine optimal input application rates.  Finally, returns to VRAT were evaluated with

respect to spatial variability as represented by the land mix in each of the 36 fields.

The second objective weighed the economic and environmental consequences of a

restriction in the amount of nitrogen applied on the fields identified as not economically
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benefiting from VRAT under the unconstrained, scenario 3 rainfall case.  A comparison

was conducted evaluating net returns between VRAT and URAT when nitrogen

availability was constrained.

Economic Analysis of Precision Farming

Total optimal returns above N costs from the field with VRAT ( VRT
*R ) can be

estimated as

 )NPY(PA*
VRTR *

in
*
ici∑ −= [3]

Where iA  is total area in soil i, cP is the price of the crop, nP is the price of nitrogen, Ni
*

is the optimal nitrogen applied on soil i and Yi
*
 is the yield on soil i.  Similarly, the

optimum returns above N costs from the field under URT (R*
URT) can be expressed as:

*
FLD

*
FLD NnPYcP*

URTR −=  [4]

where YFLD and NFLD are the optimum average yield and nitrogen level applied assuming

an average field response function weigted by Ai.

The return to VRAT is VRT
*R  – URT

*R  = RTVR & .  With C as the additional custom

charges for VRAT the necessary economic condition for VRAT adoption on this field is

RTVR &  ƒ C.  If RTVR &  is greater than C, the farmer was assumed to adopt VRAT and

expect economic gains. RTVR &  was calculated for each of the 36 fields to determine how

many of them would switch to VRAT subsequent to the realization of a particular

weather scenario.

                                                                                                                                                                    
1 This $3 cost for VRAT was obtained through personal communication with two local farmer's
cooperatives in West Tennessee. (Names of providers are not given to prevent disclosure.)
2 Prices used in this analysis were mean annual averages reported over the 1993 to 1997 period.
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Environmental Analysis of Precision Farming
The study analyzed the environmental consequences of N application under both

URAT and VRAT.  Following Chowdhury and Lacewell and Wu et al., environmental

data generated with EPIC were synthesized into functional relationships.  The total

amount of N lost (Nloss) was calculated by adding pounds of N lost in leaching, surface

runoff and sub surface flow obtained from EPIC output (V.W. Benson, personal

communication) for each soil series under each rainfall scenario.  Preliminary analysis

suggested that Nloss was linear in N applied (Wu et al) and ordinary least squares (SAS

Institute) was used to estimate these relationships.  The estimated equations were used to

predict Nloss as a consequence of the profit-maximizing behavior of farmers under both N

application methods.  Further, the N Loss Difference (NLD), defined as Nloss with VRAT

minus Nloss with URAT, and the N Applied Difference (NAD), defined as the amount of

N applied using VRAT less the amount of N applied using URAT, were calculated for

each field under each rainfall scenario.

Restricting N Application
When N application is restricted, VRAT applies each unit of the scarce input based

on its marginal value whereas, the URAT places the input on the field uniformly not

accounting for differences in marginal physical product between soils within the field.

This should increase the return to VRAT relative to URAT when compared to the

unconstrained case.  As a result, on those fields that do not switch to VRAT in the

unconstrained case could switch under the constrained situation results.  This study

analyzed a restriction on the amount of N applied by constraining the URAT farmers to

applying 95 percent of their URAT rate.  A new net return above N cost ( URTR~ ) for
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URAT was determined by replacing the optimal N in the average response function with

0.95 *
FLDN .

To determine nitrogen levels for VRAT under the constrained N situation, several

steps were required.  First, the amount of N allowed under the URAT constrained

situation (95 *
FLDN ) is compared to the VRAT unconstrained levels.  If VRAT

unconstrained levels used less then the URAT constrained situation, the optimal values

for VRAT were used.  If these rates required more fertilizer than the optimal VRAT then

Ni
*
  was reduced by equating the marginal physical products of the each soil given a

reduction in the optimum uniform N rate from *
FLDN  to .95 *

FLDN .  These VRAT rates

were then compared to the economic optimum unconstrained values and the lesser of the

two levels were used for VRAT.  Once the optimal level of fertilizer for each soil was

determined, yield and VRTR~ were estimated.  Referring to the difference VRTR~  – URTR~  as

the constrained return to variable rate technology ( RTV~R ), the necessary condition for

VRAT adoption because RTV~R  ƒ C.   Farmers who found URAT more beneficial in the

unconstrained case could switch to VRAT under the N restriction situation.

Results

Table 2 presents the estimated corn yield response functions for Collins, Memphis

and Loring series under rainfall scenarios 1, 2, and 3.  The linear and quadratic

coefficients for all equations had the expected positive and negative signs respectively

and almost all were significantly different from zero.   Almost all coefficients for the

average response functions were significant and all had the expected signs (not reported

here).  The estimated Nloss response functions had significant coefficients for applied N,

with expected positive signs (Mahajanashetti).
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The results revealed that a farming decision supported by correct weather

expectations was important in determining the economic gains from VRAT adoption.

Most of the 36 fields benefited economically from VRAT adoption (Table 3).  More

fields used VRAT when rainfall was less than average.  Under average rainfall, fields

8,15, 21, 26, 30, 33, 35, and 36 would be farmed with URAT.  However, if one standard

deviation less rainfall were expected, fields 21, 26, and 30 would switch to VRAT.  The

results also showed considerable environmental benefits in terms of reduced N loss from

leaching, subsurface flow and surface runoff.  Spatial variability influenced the

magnitude of RTVR &  and the extent to which Nloss was reduced.   Field variability is

important as demonstrated by fields with low amounts of Loring soils (10 percent) (fields

8, 15, 33, 35, and 36).  Farmers of these fields would not adopt VRAT under any of the

rainfall scenarios because yield response variability was low.

The impacts of restricting N are presented for fields 8, 15, 33, 35, and 36 (Table 4).

When farmers were constrained to apply not more than 95 percent of the N applied with

URAT, return was greater in the VRAT option than when URAT was used.  In all five

cases VRAT was more attractive then URAT.  Adoption of VRAT would reduce Nloss

considerably on all fields.  For example, on field 8, total Nloss would decrease from 1073

pounds to 492 pounds, and on field 36, Nloss would decrease from around 1039 lb to 534

lb.

Optimized corn output falls for URAT as conditions change form unconstrained to

constrained N use.  However, on all five fields, production actually increased when the

restricted quantity of N was precisely applied with VRAT.  For example, field 8 would

produce 102 bushels less corn when N amount was restricted and was applied uniformly,
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compared to the unconstrained situation when N was applied uniformly.  Conversely, the

variable rate application of the restricted quantity of N increased production by more than

20 bushels when compared to the unrestricted application using URAT in the

unconstrained case.

Under the N constrained case, returns above N costs fall for both VRAT ( vrtR~ ) and

URAT ( vrtR~ )compared to the unconstrained optimum ( URT
*R ); but the decline is less

with the VRAT because of the projected increase in output.  For field 8, restricting N

application meant a decrease in returns above N costs of $86.75 assuming the farmer had

to continue to use URAT; however, with VRAT available, precision application of the

restricted amount of N would be economically more attractive with returns above N cost

falling by $23.40.

Conclusions

This simulation study investigated economic and environmental effects of custom

hired VRAT adoption.  For analyzing the impacts of spatial variability on the outcomes

of technology adoption, a total of 36 hypothetical fields were created with varying

proportions of three soil series suited to growing corn.  Further, to investigate the effects

of weather on the economic benefits from the technology, different rainfall scenarios

were created.  The Environmental Policy Integrated Climate (EPIC) simulator was used

to estimate corn yield and N loss response functions for applied N.

Most of the study fields benefited economically from VRAT.  The extent of

benefits varied across fields depending upon spatial variability and amount of rainfall

received.  The results also showed considerable environmental benefits in terms of

reduced N loss from leaching, subsurface flow and surface runoff.
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The study analyzed the impacts of restricting N application for motivating URAT

farmers to switch to VRAT and help reduce environmental degradation.  When N

application was restricted, the return to VRAT went up and exceeded custom charges

inducing farmers to adopt VRAT.

Table 1.  Proportions of Collins, Memphis and Loring Soils 1n the Hypothetical Fields
Land Proportions in the Field Land Proportions in the Field

Field No. Collins Memphis Loring
Field
No. Collins Memphis Loring

1 10 10 80 19 30 40 30
2 10 20 70 20 30 50 20
3 10 30 60 21 30 60 10
4 10 40 50 22 40 10 50
5 10 50 40 23 40 20 40
6 10 60 30 24 40 30 30
7 10 70 20 25 40 40 20
8 10 80 10 26 40 50 10
9 20 10 70 27 50 10 40
10 20 20 60 28 50 20 30
11 20 30 50 29 50 30 20
12 20 40 40 30 50 40 10
13 20 50 30 31 60 10 30
14 20 60 20 32 60 20 20
15 20 70 10 33 60 30 10
16 30 10 60 34 70 10 20
17 30 20 50 35 70 20 10
18 30 30 40 36 80 10 10
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Table 2.  Estimated Corn Yield Response Functions for Applied N for Collins, Memphis
               and Loring Soils under Three Rainfall Scenarios
Soil/Scenario Equation R2

Collins:
Rainfall Scenario 1 Y = 19.401 + 1.664N – 0.00391N2 if N < 212.57

       (5.049)*  (0.108)    (0.000458)
Y = 196.22 if N µ 212.57

0.999

Rainfall Scenario 2 Y = 18.727 + 1.695N – 0.0039N2 if N < 217.47
       (5.533)    (0.116)   (0.000481)
Y = 203.05 if N µ 217.47

0.994

Rainfall Scenario 3 Y = 22.366 + 1.6N – 0.00542N2 if N < 147.53
      (2.871)   (0.0889) (0.000533)
Y = 140.36 if N µ 147.53

0.996

Memphis:
Rainfall Scenario 1 Y = 19.401 + 1.664N – 0.00391N2 if N < 212.57

       (5.049)    (0.108)   (0.000458)
Y = 196.22 if N µ 212.57

0.999

Rainfall Scenario 2 Y = 18.727 + 1.695N – 0.0039N2 if N < 217.47
      (5.533)   (0.116)    (0.000481)
Y = 203.05 if N µ 217.47

0.994

Rainfall Scenario 3 Y = 22.094 + 1.677N – 0.00509N2 if N < 164.76
      (4.401)    (0.122)    (0.000653)
Y = 160.24 if N µ 164.76

0.994

Loring:
Rainfall Scenario 1 Y = 5.674 + 1.639N – 0.00632N2 if N < 129.61

     (19.130)  (0.689)   (0.00472)
Y = 111.90 if N µ 129.61

0.841

Rainfall Scenario 2 Y = 9.398 + 1.368N – 0.00621N2 if N < 110.18
      (3.883)   (0.165)   (0.00133)
Y = 84.76 if N µ 110.18

0.985

Rainfall Scenario 3 Y = 10.72 + 0.491N – 0.00361N2 if N < 67.88
  (0.00408) (0.000299) (0.000004)
Y = 27.37 if N µ 67.88

0.999

* Numbers in parentheses are asymptotic standard errors.  Intercepts and linear and
quadratic coefficients were all significant at the α = 0.10 level for Collins and
Memphis series under all the three scenarios, and for Loring series under scenario
2 and 3.  In the equation for Loring series under scenario 1, only linear coefficient
was found significant at the α = 0.10 level.
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Table 3.  Optimum return to VRAT ( RTVR & ), N application difference (NAD) and N
loss difference (NLD) for 36 hypothetical corn fields under two rainfall scenarios

Rainfall Scenario 1 Rainfall Scenario 3
Field
Number

RTVR & ¶ NAD# NLD† RTVR & ¶ NAD# NLD†

Dollars Pounds Pounds Dollars Pounds Pounds
1 1141.20 276.80 -384.92 1444.17 -3418.05 -2520.54
2 1406.15 249.08 -549.80 1470.06 -3899.59 -2829.64
3 1467.22 218.45 -654.52 1353.57 -3802.31 -2751.80
4 1442.44 411.69 -645.88 1173.55 -3468.96 -2494.71
5 1269.63 490.73 -615.20 965.74 -2950.17 -2112.49
6 973.85 460.14 -548.91 743.17 -2315.19 -1651.05
7 623.32 382.73 -427.13 512.54 -1592.06 -1134.51
8 273.45†† 245.65 -245.64 276.60 -811.78 -580.70
9 1406.15 249.08 -558.60 1372.50 -3571.67 -2621.77

10 1467.22 218.45 -662.07 1295.60 -3626.71 -2628.93
11 1442.44 411.69 -652.52 1144.64 -3328.59 -2402.75
12 1269.63 490.73 -620.76 956.04 -2845.67 -2047.47
13 973.85 460.14 -553.22 747.51 -2232.78 -1606.11
14 623.32 382.73 -430.12 526.44 -1551.57 -1109.72
15 273.45 245.65 -247.22 298.21 -829.02 -572.35
16 1467.22 218.45 -669.62 1224.41 -3389.73 -2483.42
17 1442.44 411.69 -659.16 1102.00 -3172.58 -2305.91
18 1269.63 490.73 -626.32 933.72 -2736.73 -1981.31
19 973.85 460.14 -557.54 738.62 -2190.72 -1568.92
20 623.32 382.73 -433.11 529.70 -1525.29 -1086.82
21 273.45 245.65 -248.80 310.92 -805.79 -560.93
22 1442.44 411.69 -665.80 1044.96 -3019.45 -2209.93
23 1269.63 490.73 -631.88 897.70 -2648.73 -1920.38
24 973.85 460.14 -561.85 718.98 -2141.79 -1530.38
25 623.32 382.73 -436.10 522.92 -1501.62 -1064.25
26 273.45 245.65 -250.38 314.45 -795.33 -550.46
27 1269.63 490.73 -637.43 850.46 -2545.48 -1855.59
28 973.85 460.14 -566.16 689.66 -2063.38 -1486.14
29 623.32 382.73 -439.09 506.76 -1459.87 -1039.24
30 273.45 245.65 -251.96 309.03 -787.05 -540.13
31 973.85 460.14 -570.47 650.57 -1970.32 -1439.05
32 623.32 382.73 -442.08 481.47 -1401.91 -1012.02
33 273.45 245.65 -253.53 294.88 -761.76 -528.50
34 623.32 382.73 -445.07 446.46 -1359.82 -986.92
35 273.45 245.65 -255.11 272.10 -749.75 -517.85
36 273.45 245.65 -256.69 241.10 -712.46 -505.27

¶ Optimum returns above N costs from the field under VRAT minus optimum returns under URAT, with unconstrained N availability.
# Total N application under VRAT minus total N application under URAT.
† Total N loss by leaching, surface runoff and subsurface flow from the field under VRAT minus total N loss under URAT.
†† RVRT*’s that are less than the custom charges ($300) are shown in bold numbers; they indicate the cases in which VRAT
adoption would not be economically feasible.
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Table 4.  Effects of N-restriction on production, returns and N-loss in five simulated fields managed
with URAT in the unconstrained case when rainfall scenario 3 is expected
Field
No.

Constraint on N Application Production Optimum
Returns

N Loss NLD

(bu) ($) (lb) (lb)
8 No N constraints 14428.92 36304.88 1072.50 -580.70

N-constrained with VRAT 14452.41 36281.48 491.81 -523.26
N-constrained no VRAT option 14326.98 36218.13 1015.10 NA
Effects on output and returns
With VRAT Option   + 23.49 – 23.40 NA NA
Without VRAT option – 101.94 – 86.75 NA NA

15 No N constraints 14225.27 35775.32 1070.19 -572.35
N-constrained with VRAT 14254.90 35773.53 497.83 -515.44
N-constrained no VRAT option 14127.37 35697.88 1013.28 NA
Effects on output and returns
With VRAT Option + 29.63 – 1.79 NA NA
Without VRAT option – 97.90 – 77.44 NA NA

33 No N constraints 13430.16 33746.84 1050.44 -528.50
N-constrained with VRAT 13464.86 33741.71 521.94 -474.19
N-constrained no VRAT option 13338.03 33676.07 996.13 NA
Effects on output and returns
With VRAT Option + 34.70 – 5.13 NA NA
Without VRAT option – 92.13 – 70.77 NA NA

35 No N constraints
N-constrained with VRAT 13267.35 33233.76 527.97 -464.25
N-constrained no VRAT option 13149.02 33192.40 992.22 NA
Effects on output and returns
With VRAT Option + 27.66 – 27.89 NA NA
Without VRAT option – 90.67 – 69.25 NA NA

36 No constraints 13049.82 32784.70 1039.27 -505.27
N-constrained with VRAT
option

13069.84 32725.80 534.00 -452.40

N-constrained no VRAT option 12958.77 32711.80 986.39 NA
Effects on output and returns
With VRAT Option + 20.02 – 58.90 NA NA
Without VRAT option – 91.05 – 72.90 NA NA
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